Атмосфера Марса: давления или плотности? Основные характеристики марса

Общая ошибка, которая обычно делает оценки климатических условий конкретной планеты, - путать давления с плотностью. Хотя с теоретической точки зрения мы все знаем разницу между давление и плотность, в действительности он берется для сравнения атмосферного давления на земле с атмосферное давление данной планеты без мер предосторожности.

В любой земной лаборатории, где гравитация примерно такой же, Эта предосторожность не нужен и часто использует давление как «синоним» плотность. Некоторые явления обрабатываются безопасно с точки зрения стоимости «давления/температуры», как например фасы диаграм (или Диаграмма состояний), где в действительности было бы более правильно было бы говорить о «коэффициент плотности и температуры» или «под давлением/температуры», в противном случае мы не понимаем присутствие жидкой воды в отсутствие гравитации (и затем невесомости) в космических аппаратов на орбите в космосе!

На самом деле, технически атмосферное давление составляет «вес», которое оказывают определенное количество газа над нашими головами на все, что находится под. Однако реальная проблема заключается в том, что вес обусловлено не только плотность но очевидно тяжести. Если мы например уменьшение тяжести Земли 1/3, Очевидно, что такое же количество газа, что выше нас будет иметь одну треть своего первоначального веса, Несмотря на количество газа остается точно то же самое. Так, то, в сравнении климатические условия между двумя планетами бы более правильно говорить к плотности, а не давление.

Мы очень хорошо понимаем этот принцип путем анализа функционирования Торричелли барометр, Первый документ, который был измеряется земли атмосферное давление. Если мы заполним закрыт Тюбе ртути на одной стороне и множество вертикально с открытым концом погруженной в бак, наполненный ртутью также, Вы заметите, формирования вакуумной камеры в верхней части соломы. Торричелли фактически отметил, что внешнее давление, відсутні в соломе, Это было для поддержки столбца ртути высокой примерно 76 см. Путем расчета продукт удельной ртути, ускорение силы тяжести Земли и высота колонны ртути, можно вычислить вес выше атмосферы.

Из Википедии по адресу: http:/// Вики/Tubo_di_Torricelli it.wikipedia.org

Эта система, блестящий для своего времени, Однако сильные ограничения при применении в «Земляне». На самом деле, как настоящий гравитации в двух из трех факторов формулы, Любая разница в гравитации производит квадратичной разница в ответ барометр, затем, один и тот же столбец воздуха, на планете с 1/3 оригинальные гравитации, будет производить, для барометр, Торричелли, под давлением 1/9 исходное значение.
Ясно, Помимо инструментальная артефактов, факт остается фактом: тот же столбец воздуха будет иметь вес пропорциональны тяжести, планеты на которых время от времени мы будем иметь это так просто барометрическое давление не является абсолютным показателем плотности!
Этот эффект систематически игнорируется в анализе атмосферы Марса. Мы говорим легко давления в гПа и сделки непосредственно с земли, полностью игнорируя давление гПа, что гравитация на Марсе о 1/3 что земли (для точности 38%). Те же ошибки вы сделали, когда вы посмотрите на фасы диаграм воды, чтобы продемонстрировать, что на Марсе, вода не может существовать в жидкой форме. В частности, тройной точки воды, на земле 6.1 гПа, но на Марсе, где гравитация это 38% что земли, Если вы делаете в hPa, было бы абсолютно 6.1 но для 2.318 гПа (Хотя барометр, ознаменует Торричелли 0.88 гПа). Этот анализ, однако, это всегда, на мой взгляд обманным путем, систематически избегать, Восстановление обозначение в те же значения земли. Же указание 5-7 ГПА для марсианской атмосферное давление явно не указаны ли в виду земной гравитации или Марс.
На самом деле 7 hPa на Марсе должна иметь плотность газа на земле будет измерения о 18.4 гПа. Это абсолютно избежать во всех современные исследования, Скажем, в второй половине 60 Далее, В то время как ранее строго указано, что давление было одной десятой от земли но с плотностью 1/3. С чисто научной точки зрения был рассмотрен реальный вес столба воздуха, что приводит как 1/3 его фактический вес на земле, но что на самом деле плотность была сопоставима с 1/3 что земли. Как прийти в последних исследованиях существует эта разница?

Может быть потому что это проще рассуждать о невозможности сохранить жидкой фазы воды?
Есть другие ключи для этого тезиса: Каждый атмосфера на самом деле производит рассеяния света (рассеяние) преимущественно в синем, что даже в случае Марс могут легко анализироваться. Хотя атмосфера Марса кучу пыли, чтобы сделать его красноватый, разделение синий компонент цвета панорамного изображения Марса, Вы можете получить представление о плотности атмосферы Марса. Если мы сравним земной небо снимки, сделанные на разных высотах, а потом с разной степенью плотности, Мы понимаем, что номинальный размер, в котором мы должны найти 7 гПа, т.е. 35.000 m, небо полностью черный, Сальво ярмарка горизонт полоса, где на самом деле мы все еще видим в слоях нашей атмосферы.

Слева: Съемка марсианского пейзажа, сделанные зондом следопыта 22 Июнь 1999. Источник: http://photojournal.JPL. nasa.gov/catalog/PIA01546 право: Синий канал рисунок рядом; Обратите внимание, интенсивность неба!

Слева: Сидней - город Юго-Восточной Австралии, Столица штата Новый Южный Уэльс, на 6 m. Право: Синий канал рисунок рядом.

Слева: Сидней, но всегда во время песчаной бури. Право: Синий канал рисунок рядом; как вы можете видеть, Подвесные пыли уменьшить яркость неба, а не увеличить его, Вопреки тому, что утверждается в случае НАСА Mars!

Очевидно, что фотографии марсианского неба, отфильтрованные синяя полоса, гораздо ярче, почти сопоставима с изображений, снятых на горе Эверест, чуть меньше чем 9.000 m, где смотреть, если атмосферное давление составляет 1/3 нормальный уровень моря давление.

Еще одним свидетельством серьезных пользу марсианский плотности атмосферы выше, чем объявленные, была предоставлена феномен пыль Девилс. Эти «мини Торнадо» способны поднять песка столбцов до нескольких километров; Но как это возможно?
НАСА, сам пытался имитировать их, в вакуумной камере, Имитация марсианского давления 7 гПа, и они не смогли моделировать явления, если не поднимает давление по меньшей мере 11 раз! Начальное давление, даже при использовании очень мощный Вентилятор, не мог снять что-нибудь!
На самом деле, 7 ГПа, действительно просто, Учитывая тот факт, что помимо возвышается над уровнем моря снижается быстро сразу для дробных значений; но тогда все явления наблюдается вблизи горы Олимп, что это означает 17 км высоты, Как можно будет?

Это известно из телескопических наблюдений, Марс имеет очень активную атмосферу, особенно в отношении формирования облака и туманы, не только песчаных бурь. Наблюдения Марса в телескоп в самом деле, Вставка синий светофильтр, Вы можете выделить все эти атмосферные явления далеко не незначительной. Утром и вечером туман, орографические облака, в телескоп с средней мощности СМИ всегда наблюдались полярные облака. Любой человек может к примеру, с обычной графической программы, отдельные три красных уровни, Грин, синий цвет изображения Марса и проверить как это работает. Образ, соответствующий красный канал предоставит нам хорошая Топографическая карта в то время как синий канал покажет полярных ледяных шапок и облака.. Это легко сделать это как на снимки, сделанные с помощью малых телескопов, Оба на снимки с космического телескопа. Кроме того, в изображения, полученные с космического телескопа, Вы заметили синий границы, вызванных атмосферы, что затем появляется синий и красный не, как показано на месте изображения.

Типичные изображения Марса, принятые космический телескоп Хаббла. Источник: http://Science.NASA.gov/Science-News/Science-at-NASA/1999/ast23apr99_1/

Красный канал (слева), Зеленый канал (Центр) и синий канал (право); Обратите внимание, экваториальных облако.

Еще один интересный момент - анализ полярных месторождений; пересечение высотные данные и gravitometrici, Это было невозможно определить, что полярный месторождения различаются сезонно примерно 1.5 метров на Северный полюс и 2.5 метров на Южном полюсе, с средней плотности населения в то время максимальная высота примерно 0.5 g/см 3 .

При этом плотность, 1 мм снега в CO 2 производит давление 0.04903325 гПа; Теперь, даже если предположить наиболее оптимистичный марсианского давления, приведенные выше 18.4 гПа, игнорируя тот факт, что CO 2 представляет 95% и не 100% атмосфера Марса, Если мы все condensassimo атмосферы на земле будет получить слой 37.5 см толщиной!
С другой стороны, 1.5 футов снега углекислого газа с плотностью 0.5 g/см 3 производит давление 73.5 ГПа и 2.5 метров вместо 122.6 гПа!

Время эволюция поверхности атмосферное давление, записано два Викинг Ландерс 1 и 2 (Викинг Ландер 1 Он приземлился в Хриса космизм в 22.48° n, 49.97° Западной долготы, 1.5 Км ниже среднего уровня. Викинг Ландер 2 Он приземлился в утопии космизм в 47.97° n, 225.74° Западной долготы, 3 Км ниже среднего уровня), в течение первых трех лет марсианской миссии: 1й год (точки), 2й год (сплошная линия) и 3 года (Пунктирная линия) укладываются в том же графе. Источник Тилман и гость (1987) (Смотрите также Тиллман 1989).

Рассмотрим также, что, Если масса сезонные сухого льда был похож между двумя полушариями не должна вызывать сезонные вариации глобального атмосферного давления, Так как распад полярной шапки всегда будет компенсироваться конденсации на полу в другом полушарии.

Но мы знаем, что уплощение марсианской орбиты создает разница почти 20° c средняя температура двух полушарий, с вершины до 30° C пользу Широта-30 ° ~. Имейте в виду, что 7 ГПа CO 2 ICES-123 ° c (~ 150° K), Хотя на 18.4 гПа (правильное значение для гравитации Марса) ЛЬДОВ до ~-116 ° C (~ 157° K).

Сравнение данных, собранных миссией Маринер 9 в течение весны бореальных (Ls = 43 – 54°). Показано сплошной линией на графике выше температуры (в Кельвинах) обнаружен эксперимент IRIS. Штрих пунктирные кривые показывают местные ветра (в m s-1) как вытекает из теплового баланса ветра (Поллак и. 1981). Средний график показывает температуру моделирования (K) за тот же сезон., В то время как нижней граф представляет моделирование ветров (в m s-1). Источник: «Метеорологической изменчивости и годового поверхностного давления цикла на Марсе» Фредерик Hourdin, Ле Ван Фу, Франсуа забыть, Olivier Talagrand (1993)

По данным Маринер 9 только на Южном полюсе мы находим необходимых погодных условий, Хотя согласно повреждает глобального съемщика (MGS), связанные с землей, Возможно присутствие в обоих полушариях.

Минимальные температуры в градусах Цельсия почвы Марса, взятые из тепловых спектрометр (TES) на борту Mars Global Surveyor (MGS). В горизонтальной и вертикальной Широта Долгота солнца (Ls). Синяя часть таблицы приведены минимальная температура, Среднегодовой максимум и всегда со ссылкой на ежедневных минимальных температур.

Затем, Подведение итогов, атмосфера, как представляется, достичь минимальной температуры-123 ° C нуля-132 ° C; Я отмечаю, что в-132 ° 2 не должно превышать давление 1.4 ГПа без льда!

Граф давления паров двуокиси углерода; среди других утилит этого графа, можно определить максимальное давление СО2 может достигать до конденсации (в данном случае на льду) при данной температуре.

Но вернемся к сезонной полярной депозиты; как мы уже видели, по крайней мере на ночь, на широте 60°, как кажется, существуют условия для формирования сухого льда, но то, что действительно происходит во время полярной ночи?

Давайте начнем с двух совершенно разных состояния: конденсат от поверхности для охлаждения массы воздуха или «холодные».

Для первого случая, Предположим, что температура почвы опускается ниже замораживания предел двуокиси углерода; почва начнет покрывать слоем льда все больше и больше, до здесь тепловой изоляции, вызванной льда, сам будет достаточно остановить процесс. В случае сухого льда, будучи хорошим теплоизолятором, Он просто очень мало, Поэтому само это явление не является достаточно эффективной для того, чтобы оправдать наблюдаемых ледовых накоплений! Как доказательство этого, на Северный полюс и Южный полюс принадлежит запись-132 ° C, где минимум составляет-130 ° C (По словам TES MGS). Я также интересую как надежное обнаружение-132 ° c с марсианской орбиты и спектроскопических путь, потому что при этой температуре сама почва должна быть завуалированной от процесса конденсации!

Во втором случае, Если воздушная масса (в данном случае CO 2 почти чистый) достигает точки росы, как только температура падает, его давление не превышает предел, установленный «давление пара» для этого газа при этой температуре, вызывает немедленное земли конденсации массы любой избыток газа! На самом деле, эффективность этого процесса действительно драматического; Если мы должны были имитировать аналогичное мероприятие на Марсе, Нам также нужно будет учитывать цепь событий, которые создадут.

Мы понижаем температуру Южного полюса, например до-130 ° C, начальное давление 7 гПа; давление прибытия должно быть ~ 2 ГПа, вызывая осадки снега сухого льда ~ 50 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 10 см толщиной. Конечно такой перепад давления будет оперативно воздух из прилегающих районов, с эффектом от нижней (цепочки) давление и температура из соседних районов, но конденсации вклад всех в снегу. Сам процесс также стремится сделать тепловой энергии (затем повышение температуры) в то же, Но если температура остается на уровне-130 ° C, процесс конденсации остановится только тогда, когда все планеты достигнет равновесия давление 2 гПа!

Это небольшой моделирование используется для понимания взаимосвязи между минимальных температур и изменения атмосферного давления, разъяснение почему минимальная температура и давление связаны. Из представленных графиков атмосферного давления, записаны два Викинг Ландерс мы знаем, что для викингов 1 давление изменяется от минимального 6.8 ГПа и максимум 9.0 гПа, среднее значение 7.9 . Для викингов 2 Допустимые значения – от 7.4 HPA на 10.1 ГПа в среднем 8.75 гПа. Мы также знаем, что VL 1 Он приземлился 1.5 Км и VL 2 3 Км, оба под средний уровень Марса. Учитывая, что средний уровень Марс 6.1 гПа (происходит с тройной точки воды!), Если мы масштаб значений, указанных выше среднее значение 6.1 гПа, Затем оба варьируются от менее 5.2 ± 0.05 ГПа и максимум 7 ± 0.05 гПа. Тогда как минимальное значение 5.2 ГПа, низкая температура, мы получаем ~-125 ° C (~ 148° K), уже в явные разногласия с вашими данными. Теперь, в то время как падение давления от 7 HPA на 5.2 Осаждают HPA 18,4 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 3.7 см толщиной, и что поверхность Южной полярной шапке ~ 1/20 Общая поверхность Марса (определенно приближаясь по умолчанию!), 3.7 см X 20 = 74 см, Это гораздо меньшее значение в пределах полярных отложений обнаружена!

Поэтому существует очевидное противоречие между тепловой данных и данных о погоде, Если один не поддерживает другие! Столь низкая температура приведет к сильным давлением колебания (даже между днем и ночью!) или даже более низкое общее давление! С другой стороны, однако 7 абсолютно недостаточно для учета такого явления, как пыль Девилс номинальное HPA, овраги, распространения света небес или величины переходных полярных месторождений, которые вы объяснили лучше намного выше атмосферного давления 7 гПа.

Пока что, были рассмотрены только аспекты, связанные с двуокиси углерода, считается одним из основных компонентов атмосферы (~ 95%); Но если мы введем даже вода в этом анализе, обозначение 7 ГПа становится совершенно нелепо!
Например, следы, оставленные поток жидкой воды (увидеть кратер Ньютон) где вода должна только быть пара государства, с учетом очень низкого давления и температуры до около 27 ° C!
В такой ситуации можно смело сказать, что давление (в наземных условиях) не может быть меньше, чем 35 гПа!

> > > Атмосфера Марса

Марс - атмосфера планеты : слои атмосферы, химический состав, давление, плотность, сравнение с Землей, количество метана, древняя планета, исследования с фото.

А тмосфера Марса составляет всего 1% земной, поэтому на Красной планете нет никакой защиты от солнечного излучения, а также нормального температурного режима. Состав атмосферы Марса представлен углекислым газом (95%), азотом (3%), аргоном (1.6%) и небольшими примесями кислорода, водяного пара и прочих газов. Также она переполнена мелкими пылевыми частичками, из-за которых планета кажется красной.

Исследователи полагают, что ранее атмосферный слой был плотным, но 4 млрд. лет назад разрушился. Без магнитосферы солнечный ветер врезается в ионосферу и снижает атмосферную плотность.

Это привело к низкому показателю давления – 30 Па. Атмосфера простирается на 10.8 км. В ней присутствует много метана. Причем заметны сильные выбросы в конкретных областях. Выделяют две локации, но источники пока не обнаружены.

В год выходит 270 тонн метана. А значит, речь идет о каком-то активном подповерхностном процессе. Скорее всего, это вулканическая активность, кометные удары или серпентинизация. Наиболее привлекательный вариант – метаногенная микробная жизнь.

Теперь вы знаете о наличии атмосферы Марса, но, к сожалению, она настроена на истребление колонистов. Она не дает скопиться жидкой воде, открыта для радиации и чрезвычайно холодная. Но в ближайшие 30 лет мы все равно нацелены на освоение.

Диссипация планетных атмосфер

Астрофизик Валерий Шематович об эволюции планетных атмосфер, экзопланетных системах и потере атмосферы Марса:

Сегодня о полётах на Марс и его возможной колонизации говорят не только фантасты в своих рассказах, но и реальные ученые, бизнесмены, политики. Зонды и марсоходы дали ответы об особенностях геологии. Однако для пилотируемых миссий следует разобраться, есть ли у Марса атмосфера и какая она по своей структуре.


Общие сведения

У Марса есть своя атмосфера, но она составляет всего 1% от земной. Как и у Венеры, состоит преимущественно из углекислого газа, но опять же, намного тоньше. Относительно плотный слой составляет 100 км (для сравнения у Земли 500 — 1000 км по разным оценкам). Из-за этого отсутствует защита от солнечной радиации, а температурный режим практически не регулируется. Воздуха на Марсе в привычном нам понимании нет.

Учёные установили точный состав:

  • Двуокись углерода — 96%.
  • Аргон — 2,1%.
  • Азот — 1,9%.

В 2003 году обнаружен метан. Открытие подстегнуло интерес к Красной планете, многие страны запустили программы исследования, которые привели к разговорам о полётах и колонизации.

Из-за маленькой плотности температурный режим не регулируется, поэтому перепады составляют в среднем 100 0 С. В дневное время устанавливаются достаточно комфортные условия +30 0 С, а ночью температура поверхности падает до -80 0 С. Давление составляет 0,6 кПа (1/110 от земного показателя). На нашей планете подобные условия встречаются на высоте 35 км. Это главная опасность для человека без защиты — его убьёт не температура или газы, а давление.

У поверхности постоянно присутствует пыль. Из-за маленькой силы тяжести облака поднимаются до 50 км. Сильные перепады температуры приводят к появлению ветров с порывами до 100 м/с, поэтому пылевые бури на Марсе обычное дело. Серьезной угрозы они не представляют из-за маленькой концентрации частиц в воздушных массах.

Из каких слоев состоит атмосфера Марса?

Сила тяжести меньше земной, поэтому у Марса атмосфера не так явно делится на слои по плотности и давлению. Однородный состав сохраняется до отметки 11 км, далее атмосфера начинает разделяться на слои. Выше 100 км плотность снижается до минимальных значений.

  • Тропосфера — до 20 км.
  • Стратомезосфера — до 100 км.
  • Термосфера — до 200 км.
  • Ионосфера — до 500 км.

В верхней атмосфере присутствуют лёгкие газы — водород, углерод. В этих слоях скапливается кислород. Отдельные частицы атомарного водорода распространяются на расстояние до 20 000 км, формируя водородную корону. Чёткого разделения между крайними областями и космическим пространством нет.

Верхняя атмосфера

На отметке более 20-30 км располагается термосфера — верхние области. Состав остается стабильным до высоты 200 км. Здесь наблюдается высокое содержание атомарного кислорода. Температура достаточно низкая — до 200-300 К (от -70 до -200 0 С). Далее идет ионосфера, в которой ионы вступают в реакцию с нейтральными элементами.

Нижняя атмосфера

В зависимости от времени года граница этого слоя меняется, и эта зона именуется тропопаузой. Далее простирается стратомезосфера, температура которой в среднем составляет -133 0 С. На Земле здесь содержится озон, защищающий от космического излучения. На Марсе он скапливается на высоте 50-60 км и далее практически отсутствует.

Состав атмосферы

Земная атмосфера состоит из азота (78%) и кислорода (20%), в небольших количествах присутствует аргон, углекислый газ, метан и т.д. Такие условия считаются оптимальными для возникновения жизни. Состав воздуха на Марсе существенно отличается. Основным элементом марсианской атмосферы является углекислый газ — порядка 95%. На азот приходится 3%, а на аргон 1,6%. Общее количество кислорода — не более 0,14%.

Такой состав сформировался из-за слабого притяжения Красной планеты. Наиболее устойчивым оказался тяжёлый углекислый газ, который постоянно пополняется в результате вулканической активности. Лёгкие газы рассеиваются в космосе, вследствие низкой силы притяжения и отсутствия магнитного поля. Азот удерживается гравитацией в виде двухатомной молекулы, но расщепляется под воздействием радиации, и виде одиночных атомов улетает в космос.

С кислородом схожая ситуация, но в верхних слоях он вступает в реакцию с углеродом и водородом. Однако учёные до конца не понимают особенности реакций. По расчётам количество угарного газа СО должно быть больше, но в итоге он окисляется до углекислого СО2 и опускается к поверхности. Отдельно молекулярный кислород О2 появляется только после химического распада углекислого газа и воды в верхних слоях под воздействием фотонов. Он относится к неконденсирующимся на Марсе веществам.

Учёные полагают, что миллионы лет назад количество кислорода было сопоставимо с земным — 15-20%. Пока неизвестно точно, почему условия изменились. Однако отдельные атомы не так активно улетучиваются, и из-за большего веса он даже накапливается. В некоторой степени наблюдается обратный процесс.

Остальные важные элементы:

  • Озон — практически отсутствует, имеется одна область скопления в 30-60 км от поверхности.
  • Вода — содержание в 100-200 раз меньше, чем в самом засушливом регионе Земли.
  • Метан — наблюдаются выбросы неизвестной природы, и пока наиболее обсуждаемое вещество для Марса.

Метан на Земле относится к биогенным веществам, поэтому потенциально может быть связан с органикой. Природа появления и быстрого разрушения пока не объяснена, поэтому ученые ищут ответы на эти вопросы.

Что случилось с атмосферой Марса в прошлом?

На протяжении миллионов лет существования планеты атмосфера меняется по составу и структуре. В результате исследований появились доказательства того, что в прошлом на поверхности существовали жидкие океаны. Однако сейчас вода осталась в небольших количествах в виде пара или льда.

Причины исчезновения жидкости:

  • Низкое атмосферное давление не способно сохранять воду в жидком состоянии длительное время, как это происходит на Земле.
  • Гравитация не достаточна сильная, чтобы удерживать облака пара.
  • Из-за отсутствия магнитного поля вещество уносится частицами солнечного ветра в космос.
  • При значительных перепадах температуры вода может сохраняться только в твёрдом состоянии.

Иными словами, атмосфера Марса не достаточно плотная, чтобы сохранять воду в виде жидкости, а маленькая сила притяжения не способна удержать водород и кислород.
По оценкам специалистов благоприятные условия для жизни на Красной планете могли сформироваться около 4 млрд. лет назад. Возможно, в то время существовала жизнь.

Называют следующие причины разрушения:

  • Отсутствие защиты от излучения солнца и постепенно истощение атмосферы на протяжении миллионов лет.
  • Столкновение с метеоритом или иным космическим телом, моментально уничтожившим атмосферу.

Первая причина на данный момент пока более вероятна, так как следов глобальной катастрофы пока не обнаружено. Подобные выводы удалось сделать благодаря исследованием автономной станции Curiosity. Марсоход установил точный состав воздуха.

Древняя атмосфера Марса содержала много кислорода

Сегодня у учёных практически нет сомнений, что раньше на Красной планете была вода. На многочисленных виды очертания океанов. Визуальные наблюдения подтверждаются конкретными исследованиями. Марсоходы брали анализы грунта в долинах бывших морей и рек, и химический состав подтвердил первоначальные предположения.

В нынешних условиях любая жидкая вода на поверхности планеты моментально испарится, потому что давление слишком низкое. Однако если в древности существовали океаны и озёра, то условия были иными. Одно из предположений — иной состав с долей кислорода порядка 15-20%, а также увеличенной долей азота и аргона. В таком виде Марс становится практически идентичным нашей родной планете — с жидкой водой, кислородом и азотом.

Другие учёные высказывают предположении о существовании полноценного магнитного поля, способного защитить от солнечного ветра. Его мощность сопоставима с земным, а это ещё один фактор, говорящий в пользу наличия условия для зарождения и развития жизни.

Причины истощения атмосфера

Вершина развития приходится на Гесперийскую эру (3,5-2,5 млрд. лет назад). На равнине находился солёный океан, сопоставимый по размерам с Северным Ледовитым океаном. Температура у поверхности достигала 40-50 0 С, а давление было около 1 атм. Высока вероятность существования живых организмов в тот период. Однако период “процветания” был недостаточно долгим, чтобы возникла сложная и тем более разумная жизнь.

Одна из основных причин — маленькие размеры планеты. Марс меньше Земли, поэтому гравитация и магнитное поле слабее. В результате солнечный ветер активно выбивал частицы и буквально срезал оболочку слой за слоем. Состав атмосферы начал меняться на протяжении 1 млрд лет, после чего климатические изменения стали катастрофическими. Уменьшение давления приводило к испарению жидкости и перепадам температуры.

Марс четвертая планета от Солнца и последняя из планет земной группы. Как и остальные планеты в Солнечной системе (не считая Земли) назван в честь мифологической фигуры — римского бога войны. В дополнение к его официальному названию Марс иногда называют Красной планетой, что связано с коричнево-красным цветом его поверхности. При всем этом Марс является второй самой маленькой планетой в Солнечной системе после .

В течение практически всего девятнадцатого века считалось, что на Марсе существует жизнь. Причина такой веры заключается частично в ошибке, а частично в человеческом воображении. В 1877 году астроном Джованни Скиапарелли смог наблюдать то, что, по его мнению, было прямыми линиями на поверхности Марса. Подобно другим астрономам, когда он заметил эти полосы, то предположил, что подобная прямота связана с существованием на планете разумной жизни. Популярной в то время версией о природе этих линий было предположение о том, что это были оросительные каналы. Тем не менее, с развитием более мощных телескопов в начале двадцатого века астрономы смогли увидеть марсианскую поверхность более четко и определить, что эти прямые линии были всего лишь оптической иллюзией. В результате все более ранние предположения о жизни на Марсе остались без доказательств.

Большое количество научной фантастики написанной в течение двадцатого века было прямым следствием убеждения, что на Марсе существует жизнь. Начиная от небольших зеленых человечков, заканчивая рослыми захватчиками с лазерным оружием, марсиане были в центре внимания многих теле- и радиопрограмм, комиксов, фильмов и романов.

Не смотря на то, что открытие марсианской жизни в восемнадцатом веке в результате оказалось ложным, Марс оставался для научных кругов наиболее дружелюбной для жизни (не считая Земли) планетой в Солнечной системе. Последующие планетарные миссии были без сомнения посвящены поиску хоть какой-либо формы жизни на Марсе. Так миссия под названием Viking, осуществленная в 1970-е годы, проводила эксперименты на марсианской почве в надежде обнаружить в ней именно микроорганизмов. В то время считалось, что образование соединений в ходе экспериментов может быть результатом биологических агентов, однако позже было установлено, что соединения химических элементов могут быть созданы и без биологических процессов.

Однако даже эти данные не лишили ученых надежды. Не обнаружив признаков жизни на поверхности Марса, они предположили, что все необходимые условия могут существовать под поверхностью планеты. Эта версия актуальна и сегодня. По крайней мере, такие планетарные миссии настоящего как ExoMars и Mars Science предполагают проверку всех возможных вариантов существования жизни на Марсе в прошлом или настоящем, на поверхности и под ней.

Атмосфера Марса

По своему составу атмосфера Марса очень похожа на атмосферу , одной из наименее гостеприимных атмосфер во всей Солнечной системе. Основным компонентом в обеих средах является двуокись углерода (95% для Марса, 97% для Венеры), но есть большое отличие – парниковый эффект на Марсе отсутствует, поэтому температура на планете не превышает 20°C, в отличие от 480°С на поверхности Венеры. Такая огромная разница связана с разной плотностью атмосфер этих планет. При сопоставимой плотности, атмосфера Венеры чрезвычайно толстая, тогда как Марс обладает довольно тонким атмосферным слоем. Проще говоря, если бы толщина атмосферы Марса была более значительна, то он напоминал бы Венеру.

Кроме того Марс обладает очень разреженной атмосферой, — атмосферное давление составляет лишь около 1% от давления на . Это эквивалентно давлению в 35 километров над поверхностью Земли.

Одним из самых первых направлений в исследовании марсианской атмосферы является ее влияние на присутствие воды на поверхности. Не смотря на то, что полярные шапки содержат воду в твердом состоянии, а воздух содержит водяной пар, образующийся в результате морозов и низкого давления, сегодня все исследования указывают на то, что «слабая» атмосфера Марса не способствует существованию воды в жидком состоянии на поверхности планеты.

Тем не менее, полагаясь на последние данные марсианских миссий, ученые уверены, что вода в жидком виде на Марсе существует и находится она на один метр ниже поверхности планеты.

Вода на Марсе: предположение / wikipedia.org

Однако не смотря на тонкий атмосферный слой Марс обладает достаточно приемлемыми по земным меркам погодными условиями. Наиболее экстремальными формами этой погоды являются ветра, пыльные бури, морозы и туманы. Как результат такой погодной деятельности в некоторых районах Красной планеты были замечены значительные следы эрозии.

Еще одним интересным пунктом о марсианской атмосфере можно указать то, что как утверждает сразу несколько современных научных исследований, в далеком прошлом она была достаточно плотной для существования на поверхности планеты океанов из воды в жидком состоянии. Однако, согласно тем же исследованиям, атмосфера Марса была резко изменена. Ведущей версией такого изменения на данный момент является гипотеза о столкновении планеты с другим достаточно объемным космическим телом, что привело потере Марсом большей части своей атмосферы.

Поверхность Марса обладает двумя значительными особенностями, которые, по интересному стечению обстоятельств, связаны с различиями в полушариях планеты. Дело в том, что северное полушарие имеет достаточно гладкий рельеф и всего несколько кратеров, тогда как южное полушарие буквально испещрено возвышенностями и кратерами разной величины. Помимо топографических различий, обозначающих разницу в рельефе полушарий, есть и геологические, — исследования указывают на то, что области в северном полушарии гораздо более активны, нежели в южном.

На поверхности Марса находится самый большой из известных на сегодняшний день вулканов — Olympus Mons (Гора Олимп) и самый крупный из известных каньонов – Mariner (долина Маринер). В Солнечной системе пока не найдено ничего более грандиозного. Высота Горы Олимп составляет 25 километров (это в три раза выше Эвереста, самой высокой горы на Земле), а диаметр основания 600 километров. Длина долины Маринер составляет 4000 километров, ширина 200 километров, а глубина почти 7 километров.

На сегодняшний день самым значительным открытием в отношении марсианской поверхности было обнаружение каналов. Особенностью этих каналов является то, что они, по мнению экспертов NASA , были созданы проточной водой, и, таким образом, являются наиболее достоверным доказательством теории о том, что в далеком прошлом поверхность Марса значительно напоминала земную.

Наиболее известной перейдолией связанной с поверхностью Красной планеты является так называемое «Лицо на Марсе». Рельеф действительно очень напоминал человеческое лицо тогда, когда был получен первый снимок определенной местности космическим аппаратом Viking I в 1976 году. Многие люди в то время посчитали этот снимок настоящим доказательством того, что на Марсе существовала разумная жизнь. Последующие снимки показали, что это всего лишь игра освещения и человеческая фантазия.

Подобно другим планетам земной группы, в интерьере Марса выделяют три слоя: кора, мантия и ядро.
Не смотря на то, что точные измерения еще не сделаны, ученые сделали определенные прогнозы о толщине коры Марса на основании данных о глубине долины Маринер. Глубокая, обширная система долины, расположенной в южном полушарии, не могла бы существовать если бы кора Марса не была значительно толще земной. Предварительные оценки указывают на то, что толщина коры Марса в северном полушарии составляет порядка 35 километров и около 80 километров в южном.

Достаточно много исследований было посвящено ядру Марса, в частности выяснению того, является ли оно твердым или жидким. Некоторые теории указали на отсутствие достаточно мощного магнитного поля как признака твердого ядра. Тем не менее, в последнее десятилетие все большую популярность набирает гипотеза о том, что ядро Марса жидкое, по крайней мере, частично. На это указало открытие намагниченных пород на поверхности планеты, что может быть признаком того, что Марс обладает или обладал жидкой сердцевиной.

Орбита и вращение

Орбита Марса примечательна по трем причинам. Во-первых, ее эксцентриситет является вторым по величине среди всех планет, меньше только у Меркурия. При такой эллиптической орбите перигелий Марса составляет 2.07 х 108 километров, что гораздо дальше, чем его афелий — 2,49 х 108 километров.

Во-вторых, научные данные свидетельствуют о том, что столь высокая степень эксцентричности присутствовала далеко не всегда, и, возможно, была меньше Земной в какой-то момент истории существования Марса. Причиной такого изменения ученые называют гравитационные силы соседних планет, воздействующие на Марс.

В-третьих, из всех планет земной группы Марс является единственной, на которой год длится дольше, чем на Земле. Естественным образом это связано с его орбитальным расстоянием от Солнца. Один марсианский год равен почти 686 земным дням. Марсианский день длится примерно 24 часа 40 минут, — именно такое время требуется планете, чтобы завершить один полный оборот вокруг своей оси.

Еще одним примечательным сходством планеты с Землей является ее наклон оси, который составляет примерно 25°. Такая особенность указывает на то, что сезоны на Красной планете сменяют друг друга точно таким же образом как и на Земле. Тем не менее, полушария Марса переживают абсолютно другие, отличные от земных, температурные режимы для каждого сезона. Это связано опять же с гораздо большим эксцентриситетом орбиты планеты.

SpaceX И планы по колонизации Марса

Итак, мы знаем, что SpaceX хочет отправить людей на Марс в 2024 году, но их первой марсианской миссией будет запуск капсулы «Красного Дракона» в 2018 году. Какие шаги собирается предпринять компания для достижения этой цели?

  • 2018 год. Запуск космического зонда «Красный Дракон» в целях демонстрации технологий. Цель миссии — достичь Марса и совершить некоторые изыскания на месте посадки в небольшом масштабе. Возможно, поставка дополнительной информации для НАСА или космических агентств других государств.
  • 2020 год. Запуск космического корабля Mars Colonial Transporter MCT1 (беспилотный). Цель миссии — отправка груза и возврат образцов. Масштабные демонстрации технологии для обитания, жизнеобеспечения, энергетики.
  • 2022 год. Запуск космического корабля Mars Colonial Transporter MCT2 (беспилотный). Вторая итерация MCT. В это время MCT1 будет на обратном пути к Земле, неся марсианские образцы. MCT2 осуществляет поставку, оборудования для первого пилотируемого полета. Корабль MCT2 будет готов к запуску, как только экипаж прибудет на Красную планету через 2 года. В случае возникновения неприятностей (как в фильме «Марсианин») команда сможет им воспользоваться, чтобы покинуть планету.
  • 2024 год. Третья итерация Mars Colonial Transporter MCT3 и первый пилотируемый полет. На тот момент все технологии докажут свою работоспособность, MCT1 совершит путешествие на Марс и обратно, а MCT2 готов и протестирован на Марсе.

Марс является четвертой планетой от Солнца и последней из планет земной группы. Расстояние от Солнца составляет около 227940000 километров.

Планета названа в честь Марса — римского бога войны. У древних греков он был известен как Арес. Считается, что такую ассоциацию Марс получил из-за кроваво-красного цвета планеты. Благодаря цвету, планета также была известна и у других древних культур. Первые китайские астрономы называли Марс «Звездой Огня», а древнеегипетские жрецы обозначали его как «Ее Desher», что означает «красный».

Массив суши на Марсе и на Земле очень похож. Несмотря на то, что Марс занимает только 15% объема и 10% массы Земли, он имеет сопоставимый с нашей планетой массив суши как следствие того, что вода покрывает около 70% поверхности Земли. При этом поверхностная сила тяжести Марса составляет около 37% тяжести на Земле. Это означает, что теоретически на Марсе можно прыгать в три раза выше, чем на Земле.

Только 16 из 39 миссий на Марс были успешными. Начиная с миссии «Марс 1960А», запущенной в СССР в 1960 году, на Марс было отправлено в общей сложности 39 спускаемых орбитальных аппаратов и марсоходов, но только 16 из этих миссий были успешными. В 2016 году был запущен зонд в рамках российско-европейской миссии «ЭкзоМарс», основными целями которого будет поиск признаков жизни на Марсе, изучение поверхности и рельефа планеты и составление карты потенциальных опасностей от окружающей среды для будущих пилотируемых полетов на Марс.

Обломки с Марса были обнаружены на Земле. Считается, что следы некоторого количества марсианской атмосферы были найдены в метеоритах, отскочивших от планеты. После того, как покинули Марс эти метеориты долгое время, в течение миллионов лет, летали по Солнечной системе среди других объектов и космического мусора, но были захвачены гравитацией нашей планеты, попали в ее атмосферу и рухнули на поверхность. Изучение этих материалов позволило ученым узнать очень многое о Марсе еще до начала космических полетов.

В недалеком прошлом люди были уверены, что Марс является домом для разумной жизни. Во многом на это повлияло обнаружение прямых линий и канав на поверхности Красной планеты итальянским астрономом Джованни Скиапарелли. Он считал, что такие прямые линии не могут быть созданы природой и являются результатом разумной деятельности. Однако позже было доказано, что это не более чем оптическая иллюзия.

Самая высокая планетарная гора известная в Солнечной системе находится на Марсе. Она носит название Olympus Mons (Гора Олимп) и возвышается на 21 километр в высоту. Считается, что это вулкан, который был сформирован миллиарды лет назад. Ученые нашли достаточно много свидетельств того, что возраст вулканической лавы объекта достаточно невелик, что может быть доказательством того, что Олимп все еще может быть активным. Тем не менее есть гора в Солнечной системе, которой Олимп уступает по высоте, — это центральный пик Реясильвия, расположенный на астероиде Веста, высота которого 22 километра.

На Марсе происходят пылевые бури – самые обширные в Солнечной системе. Это связано с эллиптической формой траектории орбиты планеты вокруг Солнца. Путь орбиты более вытянутый, чем у многих других планет и эта овальная форма орбиты приводит к свирепым пылевым штормам, которые охватывают всю планету и могут длиться в течение многих месяцев.

Солнце выглядит примерно в половину своего визуального земного размера, если смотреть на него с Марса. Когда Марс находится ближе всего к Солнцу по своей орбите, а его южное полушарие обращено к Солнцу, на планете наступает очень короткое, но невероятно жаркое лето. При этом на северном полушарии наступает короткая, но холодная зима. Когда планета находится дальше от Солнца, и направлен к нему северным полушарием Марс переживает долгое и мягкое лето. На южном полушарии при этом наступает продолжительная зима.

За исключением Земли, ученые считают Марс наиболее подходящей для жизни планетой. Ведущие космические агентства планируют осуществить целый ряд космических полетов в течение следующего десятилетия для того, что выяснить существует ли на Марсе потенциал для существования жизни и возможно ли построить на нем колонию.

Марсиане и инопланетяне с Марса достаточно долгое время были основными кандидатами на роль внеземных пришельцев, что сделало Марс одной из самых популярных планет Солнечной системы.

Марс это единственная в системе планета, кроме Земли, на которой есть полярные льды. Под полярными шапками Марса была обнаружена вода в твердом состоянии.

Также как и на Земле на Марсе есть сезоны, но длятся они в два раза дольше. Это происходит потому, что Марс наклонен по своей оси примерно на 25,19 градусов, что близко к значению наклона оси Земли (22,5 градуса).

Марс не имеет магнитного поля. Некоторые ученые считают, что на оно существовало на планете около 4 миллиардов лет назад.

Две луны Марса, Фобос и Деймос, были описаны в книге «Путешествия Гулливера» автором Джонатаном Свифтом. Это было за 151 год до того, как они были открыты.

Характеристики: Атмосфера Марса более разряжена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1% (Точный состав см ). Среднее давление атмосферы на уровне поверхности около 6,1 мбар. Это в 15000 раз меньше, чем на Венере, и в 160 раз меньше, чем у поверхности Земли. В самых глубоких впадинах давление достигает 10 мбар.
Средняя температура на Марсе значительно ниже чем на Земле, - около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С - вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать до -125° С. При зимней температуре даже углекислота замерзает, превращаясь в сухой лед. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922 г. дали среднюю температуру поверхности Марса -28°С, Э. Петтит и С. Никольсон получили в 1924 г. -13°С. Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: -43°С. Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до +27°С, но уже к утру до -50°С.

На Марсе существуют и температурные оазисы, в районах "озера" Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53° С до +22° С летом и от -103° С до -43° С зимой. Итак, Марс - весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде. Когда первые фотографии с поверхности Марса, сделанные “Викингом”, были переданы на Землю, ученые были очень сильно удивлены, увидев, что Марсианское небо не черное, как это предполагалось, а розовое. Оказалось что пыль, висящая в воздухе, поглощает 40% поступающего солнечного цвета, создавая цветной эффект.
Пылевые бури: Одним из проявлений перепада температур являются ветры. Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чаще всего они возникают вблизи полярных шапок. Глобальная пылевая буря на Марсе помешала фотографированию поверхности с борта зонда "Маринер-9". Она бушевала с сентября 1971 по январь 1972 г., подняв в атмосферу на высоте более 10 км около миллиарда тонн пыли. Пылевые бури чаще всего бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Продолжительность бурь может достигать 50-100 суток. (Раньше меняющийся цвет поверхности объяснялся ростом марсианских растений).
Пылевые дьяволы: Пылевые смерчи - еще один пример процессов на Марсе, связанных с температурой. Такие смерчи очень частые проявления на Марсе. Они поднимают в атмосферу пыль и возникают из-за разниц температур. Причина: днем поверхность Марса достаточно нагревается (иногда и до положительных температур), но на высоте до 2х метров от поверхности атмосфера остается такой же холодной. Такой перепад вызывает нестабильность, поднимая в воздух пыль - образуются пылевые дьяволы.
Водяной пар: Водяного пара в марсианской атмосфере совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными. В телескоп видны только самые большие из них, но наблюдения с космических кораблей показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами - каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы. Зимой 1979 г. в районе посадки "Викинга-2" выпал тонкий слой снега, который пролежал несколько месяцев.
Времена года: На сегодняшний момент известно, что из всех планет Солнечной системы Марс наиболее подобен Земле. Он сформировался приблизительно 4,5 млрд. лет назад. Ось вращения Марса наклонена к его орбитальной плоскости приблизительно на 23,9°, что сравнимо с наклоном земной оси, составляющим 23,4°, а потому там, как и на Земле, происходит смена сезонов. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном же наоборот - лето короткое и относительно теплое, а зима длинная и холодная.
С наступлением весны полярная шапка начинает "съеживаться", оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распространяется так называемая волна потемнения. Современные теории объясняют ее тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.
Марсианский день, называемый сол, составляет 24,6 часа, а его год - 669 сол.
Влияние климата: Первые попытки разыскать в марсианской почве прямые свидетельства наличия основы для жизни - жидкой воды и таких элементов, как азот и сера, не принесли успеха. Экзобиологический эксперимент, проведенный на Марсе в 1976 году после посадки на его поверхность американской межпланетной станции «Викинг», несшей на своем борту автоматическую биологическую лабораторию (АБЛ), не принес доказательств существования жизни. Отсутствие органических молекул на изученной поверхности могло быть вызвано интенсивным ультрафиолетовым излучением Солнца, так как у Марса нет защитного озонового слоя, и окисляющим составом почвы. Поэтому верхний слой марсианской поверхности (толщиной около нескольких сантиметров) - бесплоден, хотя существует предположение, что в более глубоких, подповерхностных, слоях сохранились условия, которые были миллиарды лет назад. Определенным подтверждением этих предположений стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы - метаногены, питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях. Гипотеза о более теплом древнем Марсе с открытыми водоемами - реками, озерами, а может, и морями, а также с более плотной атмосферой - обсуждается уже более двух десятилетий, так как «обживать» столь негостеприимную планету, да еще при отсутствии воды, было бы очень сложно. Для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была бы очень сильно отличаться от нынешней.


Переменчивый марсианский климат

Современный Марс - очень негостеприимный мир. Разреженная атмосфера, к тому же непригодная для дыхания, страшные пылевые бури, отсутствие воды и резкие перепады температуры в течение суток и года - всё это свидетельствует о том, что заселить Марс будет не так-то просто. Но ведь когда-то на нём текли реки. Значит ли это, что в прошлом на Марсе был другой климат?
Есть несколько фактов в поддержку этого утверждения. Вопервых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Во-вторых, существуют многочисленные следы проточной воды, что также невозможно при нынешнем состоянии атмосферы. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд пет назад. Приблизительно такой же возраст имеют и многие промоины.
К сожалению, сейчас не удаётся объяснить, что именно привело к таким серьёзным изменениям климата. Ведь для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была очень сильно отличаться от нынешней. Возможно, причина этого кроется в обильном выделении летучих элементов из недр планеты в первый миллиард лет её жизни или в изменении характера движения Марса. Из-за большого эксцентриситета и близости к планетам - гигантам орбита Марса, а также наклон оси вращения планеты могут испытывать сильные колебания, как короткопериодические, так и достаточно длительные. Эти изменения вызывают уменьшение или увеличение количества солнечной энергии, поглощаемой поверхностью Марса. В прошлом климат мог испытать сильное потепление, вследствие которого плотность атмосферы повысилась за счёт испарения полярных шапок и таяния подземных льдов.
Предположения о переменчивости марсианского климата подтверждаются недавними наблюдениями на Хаббловском космическом телескопе. Он позволил производить с околоземной орбиты очень точные измерения характеристик атмосферы Марса и даже предсказывать марсианскую погоду. Результаты оказались довольно неожиданными. Климат планеты сильно изменился со времени посадок спускаемых аппаратов «Викинг» (1976 г.): он стал суше и холоднее. Возможно, это связано с сильными бурями, которые в начале 70-х гг. подняли в атмосферу огромное количество мельчайших пылинок. Эта пыль препятствовала остыванию Марса и испарению водяного пара в космическое пространство, но потом осела, и планета вернулась к своему обычному состоянию.