Атом водорода - Решение уравнения Шрёдингера. Решение уравнения Шредингера для атома водорода

Рассмотрим теперь квантово-механическую теорию атомов. Она сохраняет некоторые аспекты старой теории Бора. Например, электроны могут находиться в атоме только в дискретных состояниях с определенной энергией; при переходе электрона из одного состояния в другое испускается или поглощается фотон. Согласно квантовой механике, не существует определенных круговых орбит электронов , как в теории Бора. В силу волновой природы электрон «размазан» в пространстве , подобно «облаку» отрицательного заряда .

Применим уравнение Шредингера к электрону, находящемуся в атоме водорода.

Решение задачи об энергетических уровнях электрона для водорода, а также водородоподобных систем сводится к задаче о движении электрона в кулоновском поле ядра. Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1), определяется выражением (21.20)

и зависит только от r – расстояния между электроном и протоном, поэтому задачу с таким видом потенциальной энергии обычно решают в сферической системе координат. В общем случае волновая функция является функцией от всех координат и уравнение Шредингера будет иметь вид:

Электрон в атоме находится в потенциальной яме, края которой имеют форму гиперболы (рис.21.5).

Очевидно, что решение этой задачи должно быть подобно решению задачи, когда частица находилась в бесконечно глубокой одномерной потенциальной яме с прямоугольными краями.

Так как электрическое поле – центрально-симметрично, то для решения этого уравнения воспользуемся сферической системой с координатами (r , θ, φ),

Рис.21.5.

которые связаны с декартовыми координатами, как это следует из рис. 21.6, соотношениями: x = r sin θ cos φ; y = r sin θ sin φ; z = r cosθ .

Рис. 21.6

Подставив в (21.23) выражение оператора Лапласа в сферических координатах, получим уравнение Шредингера в следующем виде:

Строгое решение уравнения (21.22) в соответствии с теорией дифференциальных уравнений дает следующие результаты. Электрон в атоме обладает не произвольным значением энергии, а набором определенных отрицательных дискретных значений E n :

, (21.23)

где n главное квантовое число , принимающее значения 1,2,3.…,∞. Из (21.23) следует, что именно главное квантовое число определяет энергию электрона в атоме: E n ~ . Выражение для значений энергий En (21.23) полностью совпадает с результатами теории Бора (19.15). Для атома водорода значение n = 1 соответствует основному состоянию электрона, значение n = ∞ – свободному электрону (E∞ = 0). Отрицательные значения энергии соответствуют связанному состоянию электрона, когда он находится внутри потенциальной ямы и имеет большие отрицательные значения потенциальной энергии (21.20). Положительными значениями энергии электрон обладает в свободном состоянии, когда он покидает пределы атома, и его энергетический спектр становится непрерывным, т.е. область E > 0 соответствует ионизированному атому.


Оказывается, что одному и тому же значению энергии электрона соответствует несколько различных состояний с разными волновыми функциями, соответствующими различным типам движения электрона. Эти типы движения различаются разными значениями орбитального момента импульса и его проекцией на физически выделенное направление Z , совпадающее с направлением вектора напряженности внешнего магнитного поля.

В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции Ψn l m s , определяемые набором четырех квантовых чисел: главного n , орбитального l, магнитного m и спинового m s .

Момент импульса частицы относительно начала координат О (центр орбиты электрона на рис. 21.7) в классической механике определяется векторным произведением , где вектора и являются соответственно радиус-вектором частицы и ее импульсом.

Модуль магнитного момента тока, создаваемого движущимся по орбите электроном, равен . (21.26)

Здесь T – период обращения электрона по орбите, V – его скорость, I − орбитальный ток, S − площадь орбиты.

Магнитный момент обусловлен движением электрона по орбите,

вследствие чего называется орбитальным магнитным моментом электрона.

Электрон обладает массой m e , поэтому при движении по орбите он обладает моментом импульса , модуль которого . (6.25)

Вектор называюторбитальным механическим моментом электрона. Он образует с направлением движения электрона правовинтовую систему. Следовательно, направление векторов и противоположны (рис. 21.7).

Отношение магнитного момента элементарной частицы к ее механическому моменту называется орбитальным гиромагнитным отношением . Для электрона оно равно . (21.26)

Такая связь между векторами сохраняется и в теории Бора. Поскольку направления векторов и противоположны, . (21.27)

В квантовой механике модуль момента импульса движущейся микрочастицы определяется выражением:

(21.28)

Здесь – орбитальное квантовое число . Величина является дискретной (квантовой).

В квантовой механике строго доказывается (это следует из решения уравнения Шредингера), что проекция (L Z) вектора на направление вектора напряженности внешнего магнитного поля , совмещенного с осью Z, может принимать лишь целочисленные значения, кратные постоянной : Lz = . (21.29)

Проекция любого вектора не может быть больше модуля этого вектора, т.е. . Поэтому в соответствии с выражениями (21.28) и (21.29) имеем:

, (21.30)

Следовательно, максимальное значение равно , тогда . При заданном число т принимает значений: , которые образуют спектр проекций на любую выделенную ось , т.е. вектор может принимать (2l + 1) ориентаций в пространстве (рис. 21.8).

Таким образом, квантовое число определяет как модуль момента импульса, так и все возможные значения его проекции на ось . На рис. 6.8 показаны возможные ориентации вектора и его проекции на выделенное направление магнитного поля. Например, когда орбитальное квантовое число (средний рисунок 6.8), то ; 0; .

Уравнение Шредингера, примененное к атому водорода, позволяет получить результаты боровской теории атома водорода без привлечения постулатов Бора и условия квантования. Квантование энергии возникает как естественное условие, появляющееся при решении уравнения Шредингера, в некотором смысле аналогичное причине квантования энергии для частицы в потенциальной яме.

Применить стационарное уравнение Шредингера к атому водорода это значит:

а) подставить в это уравнение выражение для потенциальной энергии взаимодействия электрона с ядром

б) в качестве m подставить m e - массу электрона (если пренебречь, как и в лекции N 4, движением ядра).

После этого получим уравнение Шредингера для атома водорода :

Решение уравнения Шредингера для атома водорода существует при следующих условиях:

а) при любых положительных значениях полной энергии (E > 0). Это так называемые несвязанные состояния электрона , когда он пролетает мимо ядра и уходит от него на бесконечность;

б) при дискретных отрицательных значениях энергии (n–целое):

Эта формула совпадает с полученной Бором формулой для энергии стационарных состояний атома водорода. Целое число n называют главным квантовым числом .

23. Состав атомного ядра. Нуклоны и их взаимопревращаемость.

Атомныеядра различных элементов состоят из частиц двух видов – протонов и нейтронов.

протон – положительно заряженная частица, заряд которой равен по модулю заряду электрона, а масса в 1836 раз превышает массу электрона.

После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, т. е. при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд.

Жестко связанная компактная протон-электронаяпарая, представляющая собой электрически нейтральное образование – частицу с массой, приблизительно равной массе протона. Резерфорддаже придумал название этой гипотетической частице – нейтрон - ошибочная идея. Электрон не может входить в состав ядра.Нейтрон - нейтральная частица с массой, примерно равной массе протона.

Масса протона , по современным измерениям, равна m p = 1,67262∙10 –27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной 1/12 массы атома углерода с массовым числом 12:

в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов .масса нейтрона m n = 1,67493∙10 –27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона.

В свободном состоянии нейтроннестабилен (радиоактивен). Он самопроизвольно распадается, превращаясь в протон, испуская электрон(-е ) и еще одну частицу, называемую антинейтрино ():

Период полураспада равен 12мин.

Масса антинейтрино пренебрежимо мала по сравнению с массами частиц, фигурирующих в правой части уравнения/ Масса нейтрона больше массы протона на 2,5 me. àМасса нейтрона превышает суммарную массу частиц в правой части на 1,5 m e , т.е. на 0,77 МэВ . Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

кол-во нейтронов: N=A-Z ,

число нуклонов A

Стационарное уравнение Шредингера для водородоподобного атома (один электрон около ядра с зарядом Ze ) имеет вид

Это уравнение удобно записать в сферических координатах:

Разумеется, мы не станем решать это уравнение, но просто внимательно на него посмотрим.

Заметим, что та часть уравнения (5.6), которая зависит от углов, входит только в состав оператора квадрата момента импульса (5.3). Довольно ясен физический смысл этого члена. Представим себе, что в поле центральных сил по орбите радиусом r движется классическая частица с импульсом . Ее момент количества движения равен

где - проекция импульса на направление, ортогональное радиусу-вектору . Обозначим

кинетическую энергию «ортогонального» движения. Ее можно выразить через квадрат момента количества движения:

Этот член добавляется к потенциальной энергии кулоновского притяжения к ядру, и его можно интерпретировать как потенциальную энергию в поле центробежных сил. Действительно, если - потенциальная энергия, то ее производная по r должна дать соответствующие силы:

В конечном выражении легко узнать известную из классической механики формулу для центробежной силы. Квантовая механика, как это и должно быть, воспроизводит на новом уровне результаты классической: теперь момент импульса стал оператором, но вошел на прежних правах в выражение для оператора полной энергии (гамильтониана).

Любой оператор коммутирует сам с собой, и так как оператор квадрата момента (5.3) вообще не зависит от радиальной переменной r, то

коммутирует с гамильтонианом (5.6). Кроме того, оператор проекции момента импульса

коммутирует c

и, стало быть, с гамильтонианом. Следовательно, выполняются классические законы сохранения квадрата и одной проекции момента импульса. Эти законы сохранения справедливы для любого центрально-симметричного поля: специфика кулоновского взаимодействия пока нами не использовалась. Поэтому проекция и квадрат момента могут быть определены одновременно с энергией, и волновая функция стационарного состояния будет зависеть от квантовых чисел l и m . Однако в уравнении Шредингера (5.6) гамильтониан вовсе не зависит от оператора проекции момента импульса. Это значит, что энергия состояния не будет зависеть от магнитного квантового числа m . Иными словами, в любом центрально-симметричном поле имеется вырождение по n, кратность которого равна 21 + 1 . Мы уже знаем, что источником вырождения должна служить та или иная симметрия. В классической физике движение частицы в центрально-симметричном поле всегда происходит по орбите, лежащей в одной плоскости. Но сама эта плоскость может быть произвольной в зависимости от начального положения и скорости частицы. Ясно, что значение полной энергии частицы не зависит при этом от ориентации плоскости орбиты в пространстве. Это и есть искомая симметрия, приводящая к вырождению по магнитному квантовому числу.

В кулоновском поле (равно как и в гравитационном) имеется еще одно специфическое вырождение, приводящее к тому, что энергия системы не зависит и от квантового числа l .

Вспомним опять классическую физику. В кулоновском поле финитное движение частицы совершается только по эллипсу. Возьмем в качестве аналогии искусственный спутник. Поместим его на каком-то расстоянии от Земли (то есть зададим потенциальную энергию) и придадим ему какую-то скорость (зададим кинетическую энергию). Таким образом, мы задали полную энергию спутника. Но определена ли его орбита? Разумеется, нет! При той же полной энергии направление скорости влияет на форму орбиты - от прямой линии (вертикальное падение) при нулевом моменте импульса до окружности максимально возможного радиуса при данной полной энергии. Нулевой момент соответствует чисто радиальным колебаниям сквозь центр притяжения, когда вовсе нет кругового движения, и эллипс вырождается в прямую линию (для спутника такое колебание невозможно, но микрочастицы - иное дело). Максимально возможный момент импульса достигается в обратном случае чисто круговой орбиты, когда совсем нет радиального движения. Важно, что его (максимального момента импульса) величина зависит от полной энергии спутника.

Подчеркнем, что ограничение сверху на возможную величину момента импульса - при заданной полной механической энергии - имеет чисто классическое происхождение. Убедиться в этом можно следующим образом. Запишем классическое (не квантовое) выражение для в виде

.

Здесь - кинетическая энергия радиального движения: – радиальная составляющая скорости, - эффективная потенциальная энергия, включающая в себя потенциальную энергию в поле центробежных сил. Ясно, что . Учитывая, что энергия связанных состояний меньше нуля, перепишем это неравенство в виде


или
.

Эффективная потенциальная энергия при отличном от нуля моменте импульса L имеет минимум в точке , её минимальное значение равно

.

Поскольку неравенство должно выполняться и в точке минимума, получаем

или .

Если в последнее неравенство подставить боровское выражение (3.3) для энергии водородоподобного иона и выражение (5.5) для квадрата момента, то получим неравенство

которое имеет решение

Здесь n - боровский номер стационарной орбиты, или главное квантовое число (см. ниже). Основанная на решении уравнения Шредингера (5.6) строгая квантовая теория дает тот же результат.

Итак, классическая физика подсказывает нам следующие свойства решений уравнения Шредингера :

Вооружившись знанием классической механики, мы можем смело приступать к изучению квантовой. Теперь станут понятны свойства решений уравнения Шредингера для атома водорода. Его решениями являются волновые функции, нумеруемые тремя квантовыми числами: . Про l и n уже много говорилось, а n - знакомое нам по атому Бора главное квантовое число, принимающее целые положительные значения. Разным наборам чисел отвечают разные волновые функции, общий вид которых - для любых возможных наборов чисел – нам сейчас не важен.


Рис. 5.6. Волновые функции трех первых состояний атома водорода с l = 0

Пример 1. Волновая функция основного состояния электрона в атоме водорода имеет вид

Найдем вероятности и обнаружить электрон внутри сфер с радиусами и .

Вероятность обнаружить электрон в элементе объема dV равна

Так как волновая функция основного состояния не зависит от направления радиуса-вектора , а лишь от его модуля r, то можно написать выражение для вероятности обнаружить электрон в шаровом слое радиусом r и толщиной dr . Объем этого слоя равен (площадь поверхности, умноженная на толщину). Тогда

Теперь надо проинтегрировать вероятность no всем значениям r от 0 до R, получив вероятность W(R) найти электрон внутри сферы радиусом R:

Интеграл берется точно, и в результате получаем

откуда находим

Здесь e - основание натурального логарифма. Разность дает вероятность найти электрон между сферами с радиусами и . Видно, что численно эта вероятность близка к вероятности . Зато вероятность обнаружить электрон за пределами сферы радиусом заметно меньше: она равна, как нетрудно догадаться,

Иными словами, с вероятностью более 76% электрон в основном состоянии пребывает на расстоянии не более двух радиусов Бора от ядра.

Пример 2. Найдем электростатический потенциал, создаваемый атомом водорода в основном состоянии.

Возьмем любую точку на расстоянии R от ядра. Электростатический потенциал в ней создается, во-первых, положительным зарядом е ядра и, во-вторых, той частью заряда электрона, которая находится внутри сферы радиусом R. Хорошо известно, что сферически симметричное распределение заряда не создает поля во внутренних областях. Поэтому часть электронного облачка, находящаяся дальше выбранной точки, не внесет вклада в потенциал. Поскольку в уравнении (5.7) вычислена вероятность W(R) нахождения электрона внутри сферы радиусом R, то отрицательный заряд внутри этой сферы равен –eW(R). Поэтому потенциал в точке R, создаваемый эффективным зарядом

имеет вид

На больших расстояниях потенциал (5.8) убывает экспоненциально, то есть гораздо быстрее обычного кулоновского потенциала точечного заряда. Это - так называемый эффект экранировки: отрицательный заряд электрона компенсирует положительный заряд ядра. При

потенциал (5.8) переходит в обычный кулоновский потенциал: мы проникли внутрь электронного облачка, где оно уже не экранирует заряд ядра.

Для энергии из уравнения Шредингера получается в точности такая же формула, что и из теории Бора:

Как видно, энергия действительно не зависит от квантовых чисел l , m . При этом, как следует из свойств решений уравнения (5.6), азимутальное квантовое число l принимает целые значения от 0 до n – 1 . И это свойство, угаданное нами на основе классической физики, воспроизвелось в квантовой механике.

Удивительно, как квантовая механика, низвергнувшая столько классических представлений, дает аналогичные результаты там, где в дело вступают свойства симметрии системы. Отсюда вывод: симметрия играет более важную роль, чем конкретные физические законы. Когда-нибудь будут открыты новые законы, которые обобщат и квантовую механику, и все теории, которые ныне находятся на переднем крае науки. Но свойства симметрии системы так или иначе проявят себя.

Отличие квантовой механики от теории Бора - более богатая структура состояний: состояние определяется тремя квантовыми числами, как и в трехмерном потенциальном ящике. Кстати, это не случайно. Три квантовых числа в потенциальной яме и в атоме водорода - отражение трехмерности нашего пространства. Подсчитаем кратность вырождения, то есть число различных состояний с одной и той же энергией (главным квантовым числом n ). При данном значении n число l пробегает все целые числа от 0 до n – 1 , и каждому из них соответствует 2l + 1 значение n . Поэтому кратность вырождения N определяется соотношением

При n = 1 имеем N = 1 , то есть основной уровень не вырожден. При n=2 кратность вырождения равна 4 : один уровень с l = 0 и три уровня с l = 1 и различными проекциями момента импульса n = –1, 0, +1 . При n = 3 кратность вырождения N = 9 : один уровень с l = 0 , три уровня с l = 1 и пять уровней (по числу проекций) с l = 2. Для классификации состояний энергии по значению квантового числа l применяют условные обозначения, позаимствованные из спектроскопии, где они появились еще до создания теории атома:

символ

Главное квантовое число ставится впереди символа. Примеры возможных состояний:

1s, 2s, 2p, 3s, 3p, 3d, 4s, 4р, 4d, 4f и т. д.

Рис. 5.7. Собственные функции гамильтониана для атома водорода. Показаны поперечные сечения плотности вероятностей, величина которой отражена цветом (чёрный цвет соответствует минимальной плотности вероятности, а белый ̶ максимальной). Каждому столбцу отвечает определённое значение квантового числа l. Главное квантовое число n отмечено справа от каждого ряда. Для всех картин квантовое число m = 0. Проекция момента импульса берётся на вертикальную ось z. Сечение взято в плоскости x, z. Плотность вероятности в трёхмерном пространстве получается при вращении картинки вокруг оси z

Во избежание недоразумений отметим, что указанный здесь порядок следования состояний - исключительно «алфавитный». Если расположить состояния в порядке возрастания их энергий, то в многоэлектронных атомах список будет выглядеть иначе, например, начиная с калия (Z = 19), состояния 3 d и 4 s поменяются местами. Причины таких «инверсий» обсуждаются в соответствующих разделах далее.

При переходе электрона с более высокого уровня энергии на более низкий излучается фотон, уносящий собственный угловой момент, равный ħ (авторы просят принять это на веру). Следовательно, разрешены только переходы с изменением l на единицу: возникает правило отбора

Это значит, что в атоме водорода допустимы переходы

и т. д., приводящие к тем же спектральным сериям, что и теория Бора. Более богатая структура состояний не проявляется пока в большем разнообразии атомных уровней и, соответственно, спектров из-за вырождения.

Рис. 5.8. Схема уровней энергии и возможных переходов между уровнями в атоме водорода

Говоря о вырождении уровней, мы имели в виду водородоподобный атом. В более сложных атомах или в присутствии внешних электромагнитных полей вырождение, как говорят, снимается и появляется зависимость энергии от чисел . Любая не кулоновская центрально-симметричная поправка к потенциальной энергии приведет к зависимости уровней энергии от l (наблюдается, например, в щелочных металлах). В классической физике такая поправка к обычному закону притяжения (например, планеты к Солнцу) превращает эллиптические орбиты в незамкнутые кривые. Обращаясь по таким орбитам, планета как бы движется по обычному эллипсу, который дополнительно вращается как целое, прецессирует в той же плоскости. Подобный эффект - вращение перигелия Меркурия - предсказала общая теория относительности. Новое движение приводит к дополнительной энергии вращения, зависящей от l . В результате энергия уровня 2s перестанет совпадать с энергией уровня 2p p и т. д.

Любое не центрально-симметричное поле (например, магнитное) снимет вырождение по m m . В классической физике магнитное поле вызывает прецессию плоскости вращения вокруг направления поля и также появление из-за этого вращения дополнительной энергии. Сказанное можно сформулировать в виде общего вывода.

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

  • В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  • Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  • Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  • Временное и стационарное уравнение Шредингера. Решения.
  • Данное уравнение имеет следующий вид:

    Или в сферических координатах:

    представим волновую функцию в виде произведения радиальной и угловой частей и подставим в уравнение (II.99)

    (II.100)

    Приравняем левую и правую часть уравнения (II.100) одной и той же величине – . Получим два уравнения – одно для радиальной части и другое для угловой части:

    (II.100а )

    (II.100б )

    полагаем, что и тогда уравнение (II.100а ) такое же, как для жесткого ротатора. Таким образом, имеем и .

    решение уравнения (II.100б ) аналогично решению уравнения для гармонического осциллятора. Энергия n-го уровня

    , n=1,2,3… … (II.101)

    a 0 – радиус первой боровской орбиты, a 0 = 0,529177 Å.

    Сферические гармоники или угловые части выражаются, как и для жесткого ротатора через присоединенный полином Лежандра. Радиальные функции выражаются через функции Лагерра . Эти функции для функции имеют вид:

    Таким образом, мы имеем решение стационарного уравнения Шредингера для атома водорода в виде произведения угловой и радиальной частей, которые принято называть атомными орбиталями или АО. Они записываются как функции трех переменных с тремя индексами - АО.

    n – главное квантовое число и оно определяет энергию электрона

    l – орбитальное квантовое число и оно определяет форму атомной орбитали

    m – магнитное квантовое число и оно определяет в пространстве направление атомной орбитали

    (II.103)

    Волновые функции атома водорода представляют собой основные структурные единицы при построении молекулярных волновых функций. При этом важны даже не сами водородные функции, а функции родственного типа для так называемых водородоподобных атомов, которые мы и рассмотрим подробнее на конкретных примерах. Но прежде определим, какие же атомы называются водородоподобными.

    Водородоподобные атомы – это системы, состоящие из ядра с Z протонами и одного электрона. То есть это атомы с зарядом [(Z-1)e] + .

    Напишем несколько функций для водородоподобных атомов в явном виде. Сначала напишем их для радиальной части для нескольких значений l и m

    , (II.104)

    где – безразмерный параметр, , а первый и второй индексы при R обозначают l и m , соответственно.

    Максимальное количество орбиталей на энергетическом уровне или кратность вырождения определяется по формуле .

    Угловые части АО выглядят следующим образом:

    p – AO (II.105)

    d – AO

    Неудобством таких угловых функций является то, что среди них встречаются комплексные функции, которые нельзя изобразить в действительном пространстве. Однако из них можно получить удобные действительные функции – атомные орбитали, составляя линейные комбинации сферических гармоник с одинаковым квантовым числом l и одинаковым значением m .

    Например, рассмотрим линейную комбинацию:

    (II.106)

    Подставим последние две формулы в выражение для p x :

    Аналогичным способом можно построить две другие атомные орбитали с l = 1 , обозначения которых также понятны:

    (II.107)

    (II.108)

    Так же можно перейти от комплексных угловых функций для n=2 - , , к действительным АО, обозначаемым как , соответственно.

    Теперь вспомним, что атомные орбитали получаются в результате перемножения угловой и радиальной частей. И выпишем несколько нормированных волновых функций водородоподобного атома:

    В химических приложениях часто используют графическое изображение волновых функций, причем, как правило, отдельно изображаются радиальная и угловая части. Выделяют только ту часть, которая зависит только от угловых переменных и . Она имеет смысл полного выражения для АО, в котором условно принимают, что АО является произведением некоторой радиальной функции и определенной функции, зависящей от углов и . Например, для 2pz атомной орбитали эта функция имеет следующий вид: . Ее в учебниках химии изображают в виде гантели, вытянутой вдоль оси Оz, как это показано на Рис. 6а . На Рис.6 б и в показаны 2py и 2px атомные орбитали.

    Рис.6. Электронные облака p – орбиталей: а -2p z - АО, б -2p y - АО, в -2p x - АО.