Что такое френеля. Парковочная линза Френеля — бюджетная альтернатива парктронику и камере заднего вида? Доставка и упаковка

Один из создателей волновой теории света, выдающийся французский физик Огюстен Жан Френель родился в маленьком городке близ Парижа в 1788 году. Он рос болезненным мальчиком. Учителя считали его бестолковым: в восьмилетнем возрасте не умел читать и с трудом мог запомнить урок. Однако в средней школе у Френеля проявились замечательные способности к математике, особенно к геометрии. Получив инженерное образование, он с 1809 года участвовал в проектировании и строительстве дорог и мостов в разных департаментах страны. Однако его интересы и возможности были гораздо шире простой инженерной деятельности в провинциальной глуши. Френель хотел заниматься наукой; особенно его интересовала оптика, теоретические основы которой только-только начали складываться. Он исследовал поведение световых лучей, проходящих сквозь узкие отверстия, огибающих тонкие нити и края пластинок. Объяснив особенности возникающих при этом картин, Френель в 1818-1819 годах создал свою теорию оптической интерференции и дифракции - явлений, возникающих по причине волновой природы света.

В начале XIX века европейские морские государства решили совместными усилиями усовершенствовать маяки - важнейшие навигационные устройства того времени. Во Франции для этой цели была создана специальная комиссия, и работать в ней ввиду богатого инженерного опыта и глубокого знания оптики пригласили Френеля.

Свет маяка должен быть виден далеко, поэтому маячный фонарь поднимают на высокую башню. А чтобы собрать его свет в лучи, фонарь нужно поместить в фокус либо вогнутого зеркала, либо собирающей линзы, причём довольно большой. Зеркало, конечно, можно сделать любого размера, но оно даёт только один луч, а свет маяка должен быть виден отовсюду. Поэтому на маяках ставили порой полтора десятка зеркал с отдельным фонарём в фокусе каждого зеркала. Вокруг одного фонаря можно смонтировать несколько линз, но сделать их необходимого - большого - размера практически невозможно. В стекле массивной линзы неизбежно будут неоднородности, она потеряет форму под действием собственной тяжести, а из-за неравномерного нагрева может лопнуть.
Нужны были новые идеи, и комиссия, пригласив Френеля, сделала правильный выбор: в 1819 году он предложил конструкцию составной линзы, лишённую всех недостатков, присущих линзе обычной. Френель рассуждал, вероятно, так. Линзу можно представить в виде набора призм, которые преломляют параллельные световые лучи - отклоняют их на такие углы, что после преломления они сходятся в точке фокуса. Значит, вместо одной большой линзы можно собрать конструкцию в виде тонких колец из отдельных призм треугольного сечения.

Френель не только рассчитал форму профилей колец, он также разработал технологию и проконтролировал весь процесс их создания, нередко исполняя обязанности простого рабочего (подчинённые оказались крайне неопытными). Его усилия дали блестящий результат. «Яркость света, которую даёт новый прибор, удивила моряков», - писал Френель друзьям. И даже англичане - давние конкуренты французов на море - признали, что конструкции французских маяков оказались самыми лучшими. Их оптическая система состояла из восьми квадратных линз Френеля со стороной 2,5 м, имевших фокусное расстояние 920 мм.

С тех пор прошло 190 лет, но конструкции, предложенные Френелем, остаются непревзойдённым техническим устройством, и не только для маяков и речных бакенов. В виде линз Френеля до недавнего времени делали стёкла различных сигнальных фонарей, автомобильных фар, светофоров, деталей лекционных проекторов. И уж совсем недавно появились лупы в виде линеек из прозрачного пластика с еле заметными круговыми бороздками. Каждая такая бороздка - миниатюрная кольцевая призма; а все вместе они образуют собирающую линзу, которая может работать и как лупа, увеличивая предмет, и как объектив фотоаппарата, создавая перевёрнутое изображение. Такая линза способна собрать свет Солнца в маленькое пятнышко и поджечь сухую доску, не говоря уж о листке бумаги (особенно чёрной).

Линза Френеля может быть не только собирающей (положительной), но и рассеивающей (отрицательной) - для этого нужно кольцевые призмы-бороздки на куске прозрачного пластика сделать другой формы. Причём отрицательная френелевская линза с очень коротким фокусным расстоянием имеет широкое поле зрения, в нём в уменьшенном виде помещается кусок пейзажа, в два-три раза больший, чем охватывает невооружённый глаз. Такие «минусовые» пластинки-линзы используют вместо панорамных зеркал заднего вида в больших автомобилях типа микроавтобусов и универсалов.

Грани миниатюрных призмочек можно покрыть зеркальным слоем - скажем, напылив алюминий. Тогда линза Френеля превращается в зеркало, выпуклое или вогнутое. Изготовленные с использованием нанотехнологий, такие зеркала применяют в телескопах, работающих в рентгеновском диапазоне. А отштампованные в гибком пластике зеркала и линзы для видимого света настолько просты в изготовлении и дёшевы, что их выпускают буквально километрами в виде лент для оформления витрин или штор для ванных комнат.
Были попытки использовать линзы Френеля при создании плоских объективов для фотоаппаратов. Но на пути конструкторов встали трудности технического характера. Белый свет в призме разлагается в спектр; то же происходит и в миниатюрных призмочках линзы Френеля. Поэтому она имеет существенный недостаток - так называемую хроматическую аберрацию. Из-за неё на краях изображений предметов появляется радужная кайма. В хороших объективах кайму ликвидируют, ставя дополнительные линзы. Так же можно было бы поступить и с френелевской линзой, но плоского объектива тогда уже не получится.

Френелевская линза-линейка фокусирует солнечные лучи не хуже, а даже лучше (потому что она больше) обычной стеклянной линзы. Солнечные лучи, собранные ею, мгновенно прожигают сухую сосновую доску.

Огюстен Френель вошёл в историю науки и техники не только и не столько благодаря изобретению своей линзы. Его исследования и созданная на их основе теория окончательно подтвердили волновую природу света и разрешили важнейшую проблему физики того времени - нашли причину прямолинейного распространения света. Работы Френеля легли в основу современной оптики. Попутно он предсказал и объяснил несколько парадоксальных оптических явлений, которые тем не менее несложно проверить и теперь.

Давний спор исследователей о природе света - волновая она или корпускулярная - в общих чертах разрешился в конце XVII века, когда Христиан Гюйгенс издал свой «Трактат о свете» (1690). Гюйгенс считал, что каждая точка пространства (в его описании - эфира), через которую проходит световая волна, становится источником вторичных волн. Поверхность, их огибающая, - это распространяющийся волновой фронт. Принцип Гюйгенса решал задачи отражения и преломления света, но не смог объяснить хорошо известное явление - его прямолинейное распространение. Парадоксальным образом причиной этого было то, что Гюйгенс не рассматривал отступления от прямолинейности - дифракцию света (огибание препятствий) и его интерференцию (сложение волн).

Этот недостаток восполнил в 1818-1819 годах Огюстен Френель, инженер по образованию и физик по интересам. Он дополнил принцип Гюйгенса процессом интерференции вторичных волн (введённых Гюйгенсом чисто формально, то есть для удобства расчётов, без физического содержания). За счёт их сложения и возникает фронт результирующей волны, реальная поверхность, на которой волна имеет заметную интенсивность.

Поскольку все вторичные волны порождены одним источником, они имеют одинаковые фазы, то есть когерентны. Френель предложил мысленно разбить поверхность сферической волны, идущей из одной точки О, на зоны такого размера, чтобы разность расстояний от краёв соседних зон до некой выбранной точки F были равны λ/2. Лучи, исходящие из соседних зон, в точку F придут в противофазе и при сложении ослабят друг друга до полного исчезновения.

Обозначив амплитуду колебаний световой волны, пришедшей из зоны m как Sm, суммарное значение амплитуды колебаний в точке F

S = S0-S1+S2-S3+S4+...+Sm=S0-(S1-S2)-(S3-S4)-...-(Sm-1-Sm)

Поскольку S0>S1>S2>S3>S4... выражения в скобках положительны и S меньше, чем S0. Но насколько меньше? Расчёты суммы знакопеременного ряда, которые провёл американский физик Роберт Вуд, показывают, что S=S0/2±Sm/2. А поскольку вклад дальней зоны чрезвычайно мал, интенсивность света дальних зон, поступая в противофазе, уменьшает действие центральной зоны в два раза.
Поэтому, если центральную зону закрыть маленьким диском, освещённость в центре тени не изменится: туда за счёт дифракции попадёт свет из следующих зон. Увеличивая размер диска и последовательно закрывая следующие зоны, можно убедиться в том, что в центре тени будет оставаться яркое пятно. Это теоретически доказал в 1818 году Симеон Дени Пуассон и посчитал свидетельством ошибочности теории Френеля. Однако эксперименты, которые проделали Доменик Араго и Френель, пятно обнаружили. С тех пор оно называется пятном Пуассона.

Для успеха опыта необходимо, чтобы края диска точно совпадали с границами зон. Поэтому на практике используют миниатюрный шарик от подшипника, наклеенный на стекло.

Ещё один парадокс волновых свойств света. Поставим на пути луча экран с маленьким отверстием. Если его размер равен диаметру центральной зоны Френеля, освещённость за экраном будет больше, чем без него. Но если размер отверстия охватит и вторую зону, свет от неё придёт в противофазе, и при сложении со светом из центральной зоны волны взаимно уничтожатся. Увеличивая диаметр отверстия, можно уменьшить освещённость за ним до нуля!

Итак, суммарная амплитуда всей сферической волны меньше, чем амплитуда, создаваемая одной центральной зоной. А поскольку площадь центральной зоны меньше 1 мм2, получается, что световой поток идёт в виде очень узкого луча, то есть прямолинейно. Так теория Френеля с волновой точки зрения объяснила закон прямолинейного распространения света.

Хорошим примером, иллюстрирующим метод Френеля, служит опыт с его зонной пластинкой, которая работает как собирающая линза.

На большом листе бумаги нарисуем ряд концентрических кругов с радиусами, пропорциональными корням квадратным из чисел натурального ряда (1, 2, 3, 4...). При этом площади всех получившихся колец будут равны площади центрального круга. Зальём тушью кольца через одно, причём неважно, оставить ли центральную зону светлой или сделать её чёрной. Получившуюся чёрно-белую кольцевую структуру сфотографируем с большим уменьшением. На негативе получится зонная пластинка Френеля. Диаметр её центральной зоны определяет формула D=0,95√λF, где λ - длина волны света, F - фокусное расстояние линзы-пластинки. При λ=0,64 мкм (красный свет) и F=1 м D≈0,8 мм. Если центральную зону такой пластинки навести на яркую лампочку, то вся она начнёт светиться подобно собирающей линзе. Если её скомбинировать с окуляром из слабой линзы, получится подзорная труба, способная дать резкое изображение нити накаливания лампочки. А из двух зонных пластинок можно построить телескоп по схеме Галилея (объектив - пластинка с большим фокусным расстоянием, окуляр - с малым). Он даёт прямое изображение, как театральный бинокль.

Из всего изложенного становится понятно, как малое отверстие может играть роль объектива, именуемого стенопом или пинхолом. Оно соответствует центральной зоне фазовой пластинки Френеля. Именно поэтому стеноп не имеет никаких аберраций, кроме хроматической, - ведь сквозь неё лучи проходят без искажений.

Световая волна, прошедшая сквозь зонную пластинку, даёт результирующую амплитуду S=S0+S2+S4+... - в два раза большую, чем свободная волна: зонная пластинка работает как собирающая линза. Ещё больший эффект получится, если не задерживать свет чётных зон, а изменить его фазу на обратную. Интенсивность света при этом возрастает в четыре раза.

Такую пластинку в 1898 году изготовил Роберт Вуд покрыв стекло слоем лака и сняв его с нечётных зон, так что разность хода лучей в них составляла λ/2. Стеклянную пластинку, покрытую лаком, он поместил на вращающийся столик. Резец - им служила граммофонная игла - срезал слои лака, для внешних зон было достаточно одного прохода иглы, а на внутренних игла двигалась по узкой спирали, последовательно снимая несколько сливающихся бороздок. Диаметр зон и их ширину контролировали в микроскоп.

Интересно было бы попробовать сделать такую пластинку, используя диск проигрывателя.

Напоследок ещё один парадокс волновой оптики. Как уже говорилось, совершенно неважно, прозрачна центральная зона или нет. Это значит, что роль объектива-стенопа (или пинхола) может играть не только маленькое отверстие, но и крошечный шарик, диаметр которого равен размеру центральной зоны Френеля.

Сергей Транковский.
Журнал «Наука и жизнь», №5-2009.

В былые времена приближение к берегу для моряков было самой опасной частью их пути. Из-за неблагоприятных климатических условий мели или прибрежные скалы могли стать причиной кораблекрушения. Спасали моряков маяки, лучшие навигационные конструкции того времени. Долгое время на их вершинах просто разжигали костры, позже источниками света служили пока не стали применять электричество. В XIX веке светом, спасающим жизнь, стала линза Френеля, делающая свет маяка наиболее ярким и видимым издалека.

Составная сложная линза была создана Огюстеном Френелем, французским физиком, создателем волновой теории света. Линза Френеля составлена из отдельных небольшой толщины концентрических колец, примыкающих друг к другу и образующих цилиндр с источником света внутри. В сечении кольца имеют форму призм. Каждое из колец собирает свет в параллельный узкий пучок лучей, расходящийся от центра. При вращении цилиндра вокруг источника света лучи света простираются до самого горизонта. Цвет лучей, их число, временной промежуток между ними составляют особый неповторимый почерк маяка. Сводка с характеристиками различных маяков имелась на борту кораблей, и именно по ней моряки узнавали, какой маяк перед ними.

Линзы Френеля, установленные на маяках, стали важнейшим шагом в оснащении их мощными источниками света. Данные сложные составные линзы позволили увеличить концентрацию силы света до 80 000 свечей. До изобретения Френеля сфокусировать свет горящего фитиля или фонаря можно было, только поместив фонарь в фокус достаточно большого диаметра или вогнутого зеркала. Для этих целей был необходим цельный оптический элемент большого размера, который под воздействием собственной тяжести мог лопнуть. Поэтому использовались десятки вогнутых зеркал, в фокусе каждого из них находился отдельный фонарь. Это решение было неудобным.

Составная линза Френеля помогла достигнуть увеличения силы света, его концентрации в заданном направлении. Сборка отдельных оптических элементов не отражала свет, а работала на просвет, вращаясь вокруг излучающего во всех направлениях постоянного по интенсивности источника света.

С тех пор конструкции Френеля остаются непревзойденным техническим устройством, используемым не только для речных бакенов и маяков. В виде линз Френеля сначала делали стекла различных сигнальных фонарей, светофоров, автомобильных фар, деталей лекционных проекторов. Затем были созданы лупы в виде линеек, изготовленных из с малозаметными круговыми бороздками, каждая из которых являлась миниатюрной кольцевой призмой, а в целом они являли собой собирающую линзу. Полученная линза применяется как лупа для увеличения предмета, как объектив фотоаппарата, создающий перевернутое изображение.

Со временем сфера применения линз Френеля значительно расширилась. Она включает в себя разработку фототехники, различных осветительных приборов, датчиков слежения охранных систем, концентратора энергии для зеркал, применяемых в телескопах. Оптические свойства линз также используются в сфере мультимедиа. Так, компанией DNP, крупнейшим производителем высокотехнологичных проекционных экранов, на основе линзы создаются экраны Supernova. А в экранах обратной проекции применяется не только линза Френеля, но и другие оптические технологии, что позволяет получить уникальнейшие средства отображения.

В зависимости от области применения линзы могут иметь разный диаметр, различаться по типу. Известны два типа линз: кольцевые и поясные. Первые созданы для направления потока световых лучей в одну сторону. Кольцевые линзы нашли применение при ручной работе с мелкими деталями, вытеснив обычные лупы. Поясные линзы, способные пропускать пучки света в любых заданных направлениях, используются в промышленной отрасли.

Линза Френеля может быть положительной (собирающей) и отрицательной (рассеивающей). Отрицательная поливиниловая линза с коротким фокусом заметно увеличивает Она известна как линза Френеля парковочная. Расширение угла обзора, которое она дает, позволяет увидеть препятствия, находящиеся внизу за автомобилем, не входящие в поле зрения боковых зеркал или зеркало заднего обзора. Такая линза существенно облегчает маневрирование при парковке, буксировке прицепа и позволяя избежать наезда на играющих детей, животных или другие объекты.

Линза Френеля стала многофункциональным средством, ее изобретение сыграло немаловажную роль в развитии технологической сферы.

В этой статье речь пойдет о линзе френеля и о том как с ее помощью добыть огонь.

Добыть огонь от солнца с помощью увеличительного стекла - процесс весьма трудоемкий, но увлекательный. Однако всегда хочется чего то большего. Например, чтобы огонь вспыхивал тут же при фокусировании луча на предмете, без проведения шаманских обрядов и ритуалов , то есть без особых стараний. Но для этого нужно собрать в пучок как можно больше солнечных лучей, то есть нужна линза большого диаметра . Но тут то и вся загвоздка: Что касается обычной стеклянной линзы.


  1. Линзу большого диаметра сложно достать(купить).(Обычно самые большие линзы в около 100-120 мм в диаметре)
  2. Такая линза будет стоить недешево.
  3. Ее будет неудобно носить с собой, так как большая линза много весит + она стеклянная и может разбиться.
Ну в общем сплошные неудобства и трудности. Теперь поговорим о линзе френеля.

Линза френеля.

Линза френеля - это пластиковая прозрачная пластина с концентричными насечками . Все насечки дают фокус в одном месте. Получается некая составная линза. При этом линза френеля может быть больших размеров и иметь малый вес.

Самую большую линзу которую мне удалось заказать в местных интернет магазинах это линза размером примерно с альбомный лист А4 . Цена невелика по сравнению со стеклянными лупами.

Увеличительные способности этой линзы меня мало интересовали. Скажу лишь что кратность ее равна 3х.

Линза френеля. Добываем огонь от солнца.

Выбравшись, наконец, на природу, я испытал линзу френеля в действии. Итак, сентябрь месяц, температура чуть ниже 20 градусов цельсия, погода солнечная,время чуть больше 14 часов.

Попробуем наконец что нибудь поджечь с помощью линзы.
Не долго думая нахожу трухлявую палку. Концентрирую на ней пучок солнечных лучей. Далее немного выжигаю на одном месте.

И вот линза френеля превзошла все мои ожидания. Палка начинает обугливаться, а затем на месте солнечных лучей вспыхивает пламя!

Попробуем поджечь что-нибудь другое, например кусочек бересты .
Навожу пучок света на бересту, концентрирую все лучи в одном месте линзой. Отмечу что линза достаточно большая, поэтому поймать солнечный зайчик чуть тяжелее, необходимо выдерживать перпендикуляр по направлению к солнцу. Таким образом максимальное количество солнечных лучей проходит сквозь линзу и затем фокусируется в одной точке.

Совсем недолго выжигаем и береста также вспыхивает от солнечных лучей. Температура достаточная для воспламенения.

Поджигать линзой одно удовольствие. Например легко поджечь сухую листву , которой осенью ну очень много. Вот пожалуйста собираем кучку листьев, кладем на железный лист от мангала, чтобы не устроить тут пожар. Далее как обычно берем линзу френеля, концентрируем с ее помощью пучок солнечных лучей и выжигаем на одном месте.

Листья загораются, не смотря на то что солнце было слегка за деревьями, дуть не пришлось!

Еще более лучший трут-это сухая трава. Собираем высохшие верхушки растений.

Получается вот такой пучок размером с кулак.

Вспыхивает почти мгновенно! Идеальный трут в данной ситуации. Осторожно, не устройте пожар!

С помощью линзы френеля у меня получилось добыть огонь даже на закате , когда солнце уже скрывалось за деревьями и становилось холодно, правда тут приходилось раздувать высохшую траву и гнилушки от деревьев.

Линза френеля как предмет в наборе для выживания.

Поговорим о практичности и полезности линзы френеля. Другими словами стоит ли брать линзу френеля с собой в поход или где ее лучше применять.

Отмечу так же что речь идет о линзе френеля именно таких размеров, какой рассматривал я. Так как линзы других размеров обладают совершенно другими характеристиками. Линза меньших размеров не способна так эффективно добывать огонь, придется весьма заморачиваться с трутом, и соответственно без определенных навыков огонь может вообще не получиться.
Линза же больших размеров, во-первых уже весьма грамоздкая(уже не поместится в сумку), во-вторых ее еще сложнее купить или приобрести.



Итак плюсы:

Теперь минусы:


  1. Солнце,солнце. Как же мало солнечных дней бывает в году. Зависимость от солнца это главный и жирный минус при добыче огня от увеличительного стекла.
  2. Линза сделана из пластика, поэтому может сломаться если надавить посильнее. Так же легко поцарапать концентричные насечки. Поэтому для линзы лучше приспособить какой-нибудь чехол, например папку для бумаги ну или полиэтиленовый пакет или файл.
  3. Линза все же большая, спички или зажигалка гораздо меньше.
  4. Во время выжигания слишком яркий свет слепит глаза, но не критично. Можете одевать солнцезащитные очки, но лично я ими не пользуюсь.

Вывод сделаю такой, что использование линзы френеля такого размера целесообразно в автономных походах, когда запас газа или спичек может иссякнуть. Чем дольше автономный поход тем практичнее будет применение линзы. В местах где часто светит солнце линза френнеля вполне сгодится. Например если поехать в Крым в горы на пару недель.


Всем спасибо! Желаю вам побольше солнечных дней!

Огонь с помощью линзы френеля видео.

На этом все. Отставляйте комментарии.!

Несмотря на разнообразие инфракрасных датчиков движения, практически все они одинаковы по своей структуре. Основным элементом в них является пироприемник, или пиродетектор, который включает в себя два чувствительных элемента.

Зона обнаружения пироприемника – два узких прямоугольника. Чтобы увеличить зону обнаружения с одного луча прямоугольной формы до максимально возможного значения
и повысить ее чувствительность, используются собирающие линзы.

Собирающая линза по форме выпуклая, она направляет падающие на нее оптические лучи в одну точку F – это главный фокус линзы. Если использовать несколько таких линз, зона обнаружения увеличится.

Использование сферических выпуклых линз утяжеляет и удорожает конструкцию устройства. Поэтому в инфракрасных датчиках движения и присутствия используется линза Френеля.

Линза Френеля. История создания

Французский физик Огюст Френель в 1819 году предложил свою конструкцию линзы для маяка.

Линза Френеля образована от сферической линзы. Последнюю разделили на множество колец, уменьшенных по толщине. Так получилась плоская линза.

Благодаря такой форме, линзы начали изготавливать из тонкой пластиковой пластины, что позволило применять их в осветительных устройствах и датчиках движения и присутствия.

Линзы датчика состоят из множества сегментов, представляющих собой линзы Френеля. Каждый сегмент сканирует определенную область зоны охвата датчика. Формы линз датчиков движения определяют форму зоны обнаружения.

Например, у потолочных устройств форма линз – полусфера, соответственно 360 градусов. У устройств с цилиндрической формой линз она обычно составляет 110-140 градусов. Есть и квадратные формы зон обнаружения.

Линейка инфракрасных датчиков движения и присутствия компании B.E.G имеет высококачественные линзы Френеля, которые обеспечивают отличные параметры обнаружения.

Крупными буквами печатались слова совершенно несущественные, а все существенное изображалось самым мелким шрифтом.
М.Е. Салтыков-Щедрин

Всякий раз, перечитывая Михаила Евграфовича, поражаешься прозорливости тверского вице-губернатора. Вот откуда он узнал про продукты сырные , напитки пивные и прочий притворившийся едой корм, с крошечными буковками на упаковках?! Да, буковки разглядеть в 20 лет без проблемы. Но молодость - недуг, что проходит сам собой. И если у вас свои глаза ещё позволяют микротексты жёлтым по розовому читать, вашим старикам может очень пригодиться.

В принципе, наштамповать такие штуки (называется линза Френеля) не сложно. Штука сделать годную. Я опасался гораздо худшего. Но с качеством явно повезло.

Предварительный тест

На упаковке иероглифами написано «Увеличительное стекло высокой чёткости в формате визитки». Взял первую попавшуюся листовку. Кстати, можно грубо оценить увеличение.


Видим, что изображение не как в хорошем объективе - по направлению от центра к периферии чёткость немного падает. Но остаётся вполне приличным. В самой нижней части, где линза прикреплена к рамке - искажение. Но радужных разводов (хроматическая аберрация) и дисторсии (превращения квадрата в подушку или бочку) не заметно

Иллюстрации про аберрации

Дисторсия

Хроматическая аберрация

И пример

Как линза Френеля устроена

Дополнительная информация

Линза Френеля из экспозиции музея маяков в Пойнт Арена, Калифорния


Обычно для понимания идеи линзы Френеля приводят подобные картинки.


."… давайте разрежем плоско-выпуклую линзу на кольца и сложим их к плоскости." Конечно, это лишь упрощённая модель. Во-первых, в таком варианте разные зоны не соберут свет в одной точке, будет сдвиг вдоль оптической оси. Во-вторых, чтобы линза работала для наклонных пучков, переход от зоны к зоне делают не отвесным, а наклонным. В третьих, приходится искать компромисс между узкими и широкими кольцами… В результате расчёт получается достаточно сложным. Но нам, к счастью, считать и не надо:) Надо изготовителю.

Доставка и упаковка

Заказ 19 июля 2018, отгрузка 22 июля, получено 06 августа. Полный трек

Транспортная упаковка - серый ПЭ пакет. Коммерческая упаковка - прозрачный ПЭ пакет. Оба не заслуживают личных портретов.

Спецификация

Прозрачная лупа RIMIX
Цвет: Случайный
Материал: ПВХ
Размер: 85x55x1
Увеличение: 3 X

Внешний вид

Линза укомплектована пластиковым чехлом-кармашком, защищающим оптическую поверхность от царапин и загрязнений. Надпись иероглифами на чехле «Увеличительное стекло высокой чёткости в формате визитки» (Карта Тройка - для масштаба. Соответствует по размерам пластиковой банковской карте, но не палит номера карты.


Размеры карточки (не чехла) точно соответствуют размерам пластиковых карт


Увеличение на глаз я бы оценил раза в два, вот и проверим.

Фокусное расстояние

Проверяемых характеристик, кроме размеров всего одна - 3X увеличение
На бытовом уроне под увеличением понимают частное от деления расстояния оптимального зрения (принимается 250 мм, хотя у разных глаз - разное) и фокусного расстояния линзы. Приблизительно* измерить его проще всего, построив изображение от удалённого источника и измерив дистанцию от линзы до изображения. В качестве удалённого источника идеально подходит солнце за облаком - на листе бумаги появляется изображение не только солнца, но и облаков. То, что линза Френеля построила вполне чёткое изображение меня приятно удивило. Это на обычной линзе получается почти всегда. Линзы Френеля вроде нашей часто делают грубее и вместо изображения облаков получается туман. К сожалению, сфотать это дело мне это не удалось - диапазона яркостей камеры смартфона не хватило:(

*Прим. для зануд

На самом деле измерять нужно не от края лупы, а от т.н. задней главной плоскости. Но с нашей точностью разницей можно пренебречь. Тем более, что у линзы Френеля строго говоря столько же пар главных плоскостей, сколько кольцевых зон:)

Так вот, фокусное расстояние я намерил грубо 140 мм. То есть увеличение реально около 2Х крат (при 3, напомню, обещанных). А оптическая сила - около 7D. 7 диоптрий - это много по меркам очков. Характерная оптическая сила очков для пенсионеров 2-2.5-3 диоптрии. Хотя бывает и много больше, конечно.

В магазине

Это, конечно, главное применение. Линза нашла постоянное место в моём кошельке и пользуюсь ежедневно. Пример - типа сыр в Пятёрочке


Страшное слово ХИМОЗИН на проверку оказалось вполне законным составляющим - сычужным ферментом (хоть и вряд ли натуральным). А вот соли цианистой кислоты меня как-то напрягли.
Е536 – Ферроцианид калия
Само вещество - ферроцианид калия - очень слаботоксично, но при взаимодействии его с водой в процессе реакции выделяются ядовитые газы. Но их количество, как правило, не представляет серьезной опасности для здоровья. При взаимодействии гексацианоферрата с некоторыми кислотами может выделятся большое количество сильно-токсичного газа цианистого водорода. В пищевой промышленности используется, в основном, для предотвращения комкования и слеживания, в качестве добавки к поваренной соли. Так же применяется при производстве колбас, о чем всегда незамедлительно сообщает белый налет на оболочке продукта.

Собираем солнечный свет

Для детей такая штука тоже может быть забавной игрушкой, прежде всего жечь что-то солнечными лучами. Опыты ниже ставили в деревне на подручных подножных материалах, не стреляйте в пианиста. От чёрного шланга сразу идёт дым и воняет. На чек от термопринтера сфокусировать труднее, но получается, тк при нагреве он чернеет. А вот прожечь листок из школьной тетрадки я смог только со второй попытки и только около полудня


В процессе выяснилось, что у линзы огромная кома. На практике это означает, что держать для выжигания её нужно довольно точно перпендикулярно направлению на солнце. У меня это не вызывало проблем, а вот у дочери всё время получалось примерно вот так. (внимание на изображение на шланге)

Детские стихи: Подарил мне папа лупу

Подарил мне папа лупу
(Мне ужасно повезло!),
Всё рассматривать я буду
В это толстое стекло.

Увеличивает лупа
Всё, что только видит глаз,
Я теперь узнал, что в супе
Мама варит каждый раз.

У капусты вид ужасный -
Всё, пропал мой аппетит…
А второе съел я сразу,
И теперь мне не влетит.

Я поймал на кухне кошку,
Чтобы рассмотреть усы,
А она тотчас - в окошко,
Хоть страшней не лупа - псы!

Солнце светит в окна ярко,
Лучик мне в ладонь упал…
Лупу я навёл… как жарко!
Луч рассматривать я стал…

Точка обожгла ладошку
Я невольно вскрикнул… ой!..
Но поплакал я немножко,
Пряча лупу под тахтой.

Чтобы мама не ругала
Папу, лупу и меня,
Эту маленькую ранку
Смажу сам зеленкой я.

Олля Лукоева

Достоинства и недостатки

+ Неожиданно качественная картинка для такого типа линз. Говорит о качественном материале, правильном конструкторском расчёте и соблюдении технологии.
+ Лёгкая и компактная, умещается в кошельке и окажется в нужное время под рукой
+ Можно использовать в образовательных целях и как игрушку, поджигать солнечным светом
+ На длинной стороне небольшая линейка

Не дешёвый вариант. Линзы этого типоразмера есть и в разы дешевле
- Недодали кратности - 2 при заявленных 3
- В чехле не лезет в отделение для пластиковых карт. А без чехла нельзя, быстро придёт в негодность.

Итого

Линза мне понравилась больше, чем я ожидал. Ещё раз уточню, то полно предложений во много раз дешевле. Сильно сомневаюсь, что аналогичного качества. Но для целей изучения состава фальш-сыра в магазине радужные разводы по краям не смертельны. Так что каждый может выбрать под себя дешевле или качественнее. С оптикой постоянно такая петрушка.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +22 Добавить в избранное Обзор понравился +61 +96