Что такое QD-телевизор, где искать «квантовые точки» и почему они показывают лучше. Квантовые точки — новая технология производства дисплеев

Проще говоря, квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы. Регулируя размер квантовой точки, мы можем изменять энергию испускаемого фотона, а значит, можем изменять цвет испускаемого квантовой точкой света. Основное преимущество квантовой точки заключается в возможности, изменяя размер, точно настраивать длину волны излучаемого света.

Описание:

Квантовые точки - это фрагменты проводника или полупроводника (например InGaAs, CdSe или GaInP/InP), носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах.

Проще говоря, квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы. Чем меньше размер кристалла, тем больше расстояние между энергетическими уровнями. При переходе электрона на энергетический уровень ниже, испускается фотон. Регулируя размер квантовой точки, мы можем изменять энергию испускаемого фотона, а значит, можем изменять цвет испускаемого квантовой точкой света. Основное преимущество квантовой точки заключается в возможности, изменяя размер, точно настраивать длину волны излучаемого света.

Квантовые точки разных размеров могут быть собраны в градиентные многослойные нанопленки.

Различают два типа квантовых точек (по способу создания):

коллоидные квантовые точки.

Характеристики:

Применение:

для различных биохимических и биомедицинских исследований, в том числе для многоцветной визуализации биологических объектов (вирусов, клеточных органелл, клеток, тканей) in vitro и in vivo, а также в качестве пассивных флуоресцентных маркеров и активных индикаторов для оценки концентрации определенного вещества в том или ином образце,

для многоканального оптического кодирования, например, в проточной цитометрии и высокопроизводительном анализе белков и нуклеиновых кислот,

для исследования пространственного и временного распределения биомолекул методом конфокальной микроскопии ,

в иммуноанализе,

при in situ диагностике маркеров рака,

в блоттинге,

как источник белого цвета,

в светодиодах ,

в полупроводниковых технологиях,

Льняная теплоизоляция и шумоизоляция...

Оборудование для производства комбикорма - у...

Сверхпроводящие проводники второго поколения...

Гидроакустические системы, гидроакустические компл...

Средство защиты от вредителей и болезней растений...

Композитные ограждения

Пултрузия

Водородные топливные элементы...

Мобильные роботы Сервосила «Инженер»...

Сверхтвердый режущий материал из импактных алмазов...

Фрезерно-гравировальный станок с ЧПУ двухшпиндельн...



Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - h/(2md^2), где:

  1. h - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Квантовые точки - это крошечные кристаллы, излучающие свет с точно регулируемым цветовым значением. Технология Quantum dot LED существенно повышает качество изображения, не влияя при этом на конечную стоимость устройств, в теории:).

Обычные жидкокристаллические телевизоры могут охватывать лишь 20–30% цветового диапазона, который способен воспринимать человеческий глаз. Изображение на обладает большой реалистичностью, но данная технология не ориентирована на массовое производство больших диагоналей дисплеев. Кто следит за рынком телевизоров, помнит, что еще в начале 2013 года Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED) . Крупные производители телевизоров выпустят модели телевизоров на квантовых точках в этом году, Samsung их уже представил в России под названием SUHD, но об этом в конце статьи. Давайте узнаем, чем отличаются дисплеи, произведенные по QLED технологии, от уже привычных ЖК-телевизоров.

В ЖК-телевизорах отсутствуют чистые цвета

Ведь жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный , зеленый , синий ). Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками

В телевизорах QLED в качестве источника света выступают квантовые точки - это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек . В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

QLED телевизор с дисплеем на основе технологии квантовых точек от Samsung

Компания Samsung Electronics представила в России премиальные телевизоры, изготовленные по технологии квантовых точек. Новинки с разрешением 3840 × 2160 пикселей оказались не из дешёвых, а флагманская модель вовсе оценена в 2 млн рублей.

Нововведения. Изогнутые телевизоры Samsung SUHD на квантовых точках отличаются от распространённых ЖК-моделей более высокими характеристиками цветопередачи, контрастности и энергопотребления. Интегрированный процессор обработки изображения SUHD Remastering Engine позволяет масштабировать видеоконтент низкого разрешения в 4K. Помимо этого, новые телевизоры получили функции интеллектуальной подсветки Peak Illuminator и Precision Black, технологии Nano Crystal Color (улучшает насыщенность и естественность цветов), UHD Dimming (обеспечивает оптимальный контраст) и Auto Depth Enhancer (автоматическая настройка контрастности для определённых областей картинки). В программной основе телевизоров лежит операционная система Tizen с обновлённой платформой Samsung Smart TV.

Цены. Семейство Samsung SUHD TV представлено в трёх сериях (JS9500, JS9000 и JS8500), где стоимость начинается со 130 тыс. рублей. Во столько российским покупателям обойдётся 48-дюймовая модель UE48JS8500TXRU. Максимальная цена на телевизор с квантовыми точками достигает 2 млн рублей - за модель UE88JS9500TXRU с 88-дюймовым изогнутым дисплеем.

Телевизоры нового поколения по технологии QLED готовят южнокорейские Samsung Electronics и LG Electronics, китайские TCL и Hisense, а также японская Sony. Последняя уже выпустила LCD-телевизоры, изготовленные по технологии квантовых точек, о чем я упоминал в описании технологии Quantum dot LED.

«Нанотехнологии» - слово со сложной историей и контекстом в русском языке, к сожалению, слегка дискредитированное. Однако если отвлечься от ироничного общественно-экономического подтекста, то можно констатировать, что нанотехнологии за последние годы из научно-теоретического концепта стали обретать формы, которые в обозримом будущем могут стать реальными коммерческими продуктами и войти в нашу жизнь.

Отличный пример тому – квантовые точки. Технологии с использованием наночастиц полупроводников постепенно находят себе применения в совершенно различных областях: медицина, полиграфия, фотовольтаика, электроника – некоторые из продуктов еще существуют на уровне прототипов, где-то технология реализована частично, а какие-то уже практически используются.

Так что такое «квантовая точка» и «с чем ее едят»?

Квантовая точка – это нанокристал неорганического полупроводникового материала (кремния, фосфида индия, селенида кадмия). «Нано» - значит измеряющийся в миллиардных долях, размеры таких кристаллов варьируются в пределах от 2 до 10 нанометров. Из-за такого малого размера электроны в наночастицах ведут себя совсем не так как в объемных полупроводниках.

Энергетический спектр квантовой точки неоднороден, в нем есть отдельные уровни энергии для электрона (отрицательно заряженной частицы) и дырки. Дыркой в полупроводниках называется незаполненная валентная связь, носитель положительного заряда численно равному электрону, она появляется, когда связь между ядром и электроном разрывается.

Если создаются условия, при которых носитель заряда в кристалле переходит с уровня на уровень, то при этом переходе излучается фотон. Изменяя размер частицы можно управлять частотой поглощения и длиной волны этого излучения. Практически же это значит, что в зависимости от размера частицы точки при облучении они будут светиться разным цветом.

Возможность контролировать длину волны излучения через размер частицы позволяет получать из квантовых точек устойчивые вещества, превращающие поглощаемую ими энергию в световое излучение – фотостабильные люминофоры.

Растворы на основе квантовых точек превосходят традиционные органические и неорганические люминофоры по ряду параметров, важных для тех областей практического применения, в которых необходима точная перенастраиваемая люминесценция.

Преимущества квантовых точек:

  • Фотостабильны, сохраняют флуоресцентные свойства в течение нескольких лет.
  • Высокая стойкость к фотовыцветанию: в 100 – 1000 раз выше, чем у органических флуорофоров.
  • Высоких квантовый выход флуоресценции – до 90%.
  • Широкий спектр возбуждения: от УФ до ИК (400 – 200 нм).
  • Высокая чистота цвета из-за высоких пиков флуоресценции (25-40 нм).
  • Высокая устойчивость к химической деградации.

Еще одним преимуществом, в особенности для полиграфии, является то, что на основе квантовых точек можно делать золи – высокодисперсные коллоидные системы с жидкой средой, в которой распределены мелкие частицы. А значит из них можно производить растворы, пригодные для струйной печати.

Области применения квантовых точек:

Защита документов и изделий от фальсификации: ценных бумаг, банкнот, удостоверений личности, штампов, печатей, сертификатов, свидетельств, пластиковых карт, товарных знаков. Система многоцветного кодирования на основе квантовых точек может быть коммерчески востребована для цветовой маркировки продукции в пищевой, фармацевтической, химической промышленности, ювелирных изделий, произведений искусства.

Благодаря тому, что жидкая основа может быть водной или уф-отверждаемой, при помощи чернил с квантовыми точками можно маркировать практически любые объекты – для бумажных и других впитывающих основ - чернила на водной основе, а для невпитывающих (стекло, дерево, металл, синтетические полимеры, композиты) – уф-чернила.

Маркер в медицинских и биологических исследованиях. Благодаря тому, что на поверхность квантовых точек можно нанести биологические маркеры, фрагменты ДНК и РНК, реагирующие на определенный тип клеток, их можно использовать в качестве контраста в биологических исследованиях и диагностике рака на ранних стадиях, когда опухоль еще не определяется стандартными методами диагностики.

Использование квантовых точек в качестве флуоресцентных меток для изучения опухолевых клеток invitro– одна из наиболее перспективных и быстро развивающихся сфер применения квантовых точек в биомедицине.

Массовому внедрению этой технологии препятствует только лишь вопрос о безопасности применения контрастов с квантовыми точками в исследованиях invivo, так как большая часть из них производится из очень токсичных материалов, а размеры настолько малы, что они с легкостью проникают через любые барьеры организма.

Дисплеи на квантовых точках: QLED – технология создания дисплеев LCDсо светодиодной подсветкой на квантовых точках уже опробована передовыми производителями электроники. Применение этой технологии позволяет сократить энергопотребление дисплея, увеличить световой поток по сравнению с LED экранами на 25-30%, более сочные цвета, четкая цветопередача, глубина цвета, возможность делать экраны сверхтонкими и гибкими.

Прототип первого дисплея, по этой технологии был представлен компанией Samsungв феврале 2011, а первый компьютерный дисплей выпустила компания Philips.

В нем квантовые точки использованы для получения красного и зеленого цветов из спектра излучения синих светодиодов, что обеспечило близкую к естественной цветопередачу. В 2013 году компания Sony выпустила QLED экран, работающий по такому же принципу. В текущий момент эта технология производства больших экранов не имеет широкого применения из-за высокой себестоимости производства.

Лазер на квантовых точках. Лазер, рабочей средой которого являются квантовые точки в излучающей области, имеет ряд преимуществ в сравнении с традиционными полупроводниковыми лазерами на основе квантовых ям. У них лучше характеристики по полосе частот, интенсивности шума, они менее чувствительны к изменениям температуры.

Благодаря тому, что изменение состава и размера квантовой точки позволяет управлять активной средой такого лазера, стала возможна работа на длинах волн, которые раньше были недоступны. Эта технология активно применяется на практике в медицине, с ее помощью был создан лазерный скальпель.

Энергетика

На основе квантовых точек также разработаны несколько моделей тонкопленочных солнечных батарей. В их основе лежит следующий принцип действия: фотоны света попадают на фотоэлектрический материал, содержащий квантовые точки, стимулируют появление пары электрона и дырки, энергия которых равна или превосходит минимальную энергию, необходимую электрону данного полупроводника для того, чтобы перейти из связанного состояния в свободное. Изменяя размеры нанокристаллов материала можно варьировать «энергетическую производительность» фотоэлектрического материала.

На основе этого принципа уже создано несколько оригинальных работающих прототипов различных видов солнечных батарей.

В 2011 г. исследователи из университета Нотр-Дама предложили «солнечную краску» на основе диоксида титана, нанесение которой может превратить любой объект в солнечную батарею. У нее довольно низкое КПД (всего 1%), но зато она дешева в производстве и может производиться в больших объемах.

В 2014 г. Ученые из Массачусетского технологического института представили метод изготовления солнечных элементов из ультратонких слоёв квантовых точек, КПД их разработки – 9%, а главное ноу-хау заключается в технологии объединения квантовых точек в пленку.

В 2015 г. Лаборатория Центра передовых технологий солнечной фотовольтаики в Лос-Аламосе предложила свой проект окон-солнечных батарей с КПД 3,2%, состоящих из прозрачного люминесцентного квантового концентратора, который может занимать достаточно большую площадь, и компактных солнечных фотоэлементов.

А вот исследователи из американской национальной лаборатории возобновляемых источников энергии (NREL) в поисках оптимального сочетания металлов для производства ячейки с максимальной квантовой эффективностью создали настоящего рекордсмена производительности – внутренняя и внешняя квантовая эффективность их батареи на тестах составила 114% и 130% соответственно.

Эти параметры не являются КПД батареи, которая сейчас показывает сравнительно небольшой процент – всего 4,5%, однако оптимизация сбора фотопотока и не являлась ключевой целью исследования, которая заключалась только в подборе наиболее эффективного сочетания элементов. Тем не менее стоит отметить, что до эксперимента NREL ни одна батарея не показывала квантовую эффективность выше 100%.

Как видим потенциально сферы практического применения квантовых точек широки и разнообразны, теоретические разработки ведутся сразу в нескольких направлениях. Массовому внедрению их в различных сферах препятствует ряд ограничений: дороговизна производства самих точек, их токсичность, несовершенство и экономическая нецелесообразность самой технологии производства.

В самом ближайшем будущем массовое распространение может получить система цветового кодирования и маркировки чернилами на основе квантовых точек. Понимая, что эта рыночная ниша пока не занята, но является перспективной и наукоемкой, компания IQDEMY в качестве одной из научно-исследовательских задач своей химической лаборатории (Новосибирск) определила разработку оптимальной рецептуры уф-отверждаемых чернил и чернил на водной основе, содержащие квантовые точки.

Первые полученные образцы печати впечатляют и открывают дальнейшие перспективы практического освоения этой технологии:

Современный мир переполнен всевозможной информацией. Особенно интересует людей область медицинских открытий. Частенько можно услышать о таком диво-приборе, как очки Панкова. Отзывы очень многих практиков довольно обнадеживающие, но есть и не такие уж радужные впечатления, как обещает реклама аппарата. Что же представляют собой чудодейственные очки, и в чем заключается суть их применения в области восстановления зрения взрослых и детей?

Методика воздействия на глаза квантовых очков профессора Панкова

Суть инновационной методики лечения глаз Панкова заключается в восстановлении зрения с помощью воздействия на сетчатку глаза цветного излучения. Строение человеческого ока таково, что оно различает цвета согласно импульсу головного мозга на определенные нервные окончания. Когда на глаза воздействуют в быстром темпе различные цветовые излучения, возбуждаются все ткани и нервные окончания, улучшается кровоснабжение и происходит оживление тех участков, которые, казалось бы, уже не выполняют свою функцию.

Новый аппарат, применяемый во многих медицинских центрах по восстановлению зрения, имеет положительные отзывы. Очки Панкова, как считают многие специалисты в сфере офтальмологии и цветотерапии, заслуживают внимания тех людей, которые теряют зрение или имеют побочные эффекты от работы за компьютером.

По своей сути квантовые очки Панкова - тренажерный стимулятор, который улучшает физиологическое предназначение каждой составляющей глазного аппарата. Очень много мнений сегодня сосредоточено вокруг темы, что же собой представляют квантовые очки Панкова. Отзывы бывают как лестными, так и отрицательными.

Где можно почерпнуть подробную информацию о приборе Панкова?

Перед тем как проект прибора был утвержден и разрешен для массового выпуска с целью применения в медицинской сфере для лечения зрения людей, автор - профессор Панков - написал интересный труд по теме возможностей восстановления зрения именно с помощью воздействия на глаза всех оттенков радуги.

Как выглядят очки Панкова, отзывы о данном приборе можно найти без особых проблем. Но в противоречивой информации от разных продавцов не всегда можно конкретно понять, что же все-таки лечит данный прибор и как его применять. Поэтому в большинстве случаев те, кому действительно необходима помощь в восстановлении своего зрения, обращаются за пояснениями к книге профессора, описывающей физиологическое значение каждого цвета, - «Радуга прозрения». Очки Панкова, отзывы о них имеют прямое отношение к книге.

Сегодня рынок медицинских приборов переполнен подделками, инструкции продаваемых аппаратов почти в каждом втором случае включают описания из авторского источника, но они не совсем конкретные касаемо применения их на практике.

В книге описаны методы воздействия на освещения, которое является разминкой. Но не всегда упражнения, например наблюдение за рыбками в аквариуме с цветным освещением, дает эффект. А вот заслуженное признание за счет ритмичности своей работы получил созданный автором прибор - очки профессора Панкова. Отзывы, безусловно, не могут дать детального ответа по поводу эффективности прибора. Чтобы получить достоверную оценку очков для восстановления зрения, нужно еще знать и мнение профессиональных офтальмологов.

Без назначения офтальмолога аппарат не применяется на практике. Эффект от него может профессионально оценить только специалист.

Влияние очков на восстановление зрения

Очки Панкова воздействуют на глаза таким образом:

  • за счет подаваемых световых сигналов происходит массаж глазных мышц; снимается спазм зрачка, который во время тренировки то сужается, то расширяется;
  • за счет ритмичной работы глазного аппарата улучшается отток внутриглазной жидкости, и передняя камера глаза получает колебание глубины восприятия изображения;
  • сокращение мышц улучшает кровообращение, за счет чего происходит эффективная микроциркуляция в сетчатке глаза, улучшается питание всех тканей, поэтому и улучшается зрительное восприятие.

В большинстве случаев положительные отзывы очки Панкова заслуживают при использовании в качестве тренажера для профилактики незапущенных заболеваний глаз, а также для тренировки зрения людей, профессиональная сфера деятельности которых связана с большой нагрузкой на зрение: компьютерщиков, бухгалтеров, кассиров, научных сотрудников, летчиков.

Очки Панкова назначаются офтальмологом при начальной степени катаракты, астенопии, амблиопии, прогрессирующей миопии, глаукоме, косоглазии, близорукости, развитой дальнозоркости, дистрофии сетчатки.

Если ориентироваться на положительные отзывы, очки Панкова рекомендуется также применять для профилактики осложнений в послеоперационный период, если хирургическое вмешательство было проведено в области глаз.

Факторы, обуславливающие использование очков

  • Анализируя все отзывы, очки Панкова следует применять в качестве тренажера офисным работникам, которые не имеют фактически перерывов в своей работе во время обработки данных на компьютерной технике.
  • Положительно о приборах отзываются и студенты, которым приходится и днем, и ночью напрягать зрение за чтением книг.
  • Полезны очки Панкова и тем, кто вместо обычных очков носит современные линзы, от которых устают глаза и часто краснеют.
  • Во многих ситуациях врач-офтальмолог выписывает тренинги аппаратом, если уверен в угрозе развития того или иного заболевания глаз.
  • Особенно полезно применение прибора при поставленном специалистом диагнозе - спазм аккомодации.

Возможные противопоказания применения инновационного тренажера для зрения

Не разрешено использование прибора Панкова при сильных воспалительных процессах глаз, психических заболеваниях, онкологии, заболеваниях центральной нервной системы, беременности, тяжелых формах сахарного диабета, туберкулезе легких, восстановлении после инфаркта или инсульта, а также не рекомендуется практика на детях младше трех лет.

Все "за" и "против" применения прибора для восстановления зрения

Как уже указывалось выше, очень многие, кому довелось столкнуться с очками Панкова на практике, отмечают положительный эффект после прохождения курса лечения под наблюдением врача-офтальмолога. Количество пациентов детского возраста в общем соотношении превышает число больных средней и пожилой возрастной категории. Практика говорит о важности исправления в раннем возрасте.

Люди, которые решили применять прибор без назначения врача, эффект не могут оценить профессионально, поэтому и много негативных отзывов, которые связывают это открытие не с чем иным, как с шарлатанством.

Советы профессиональных офтальмологов по поводу применения очков Панкова

Каждый офтальмолог, прежде чем назначить курс лечения очками Панкова, всегда перед этим ставит четкий диагноз. Прибор может не давать положительных сдвигов к улучшению состояния зрения, если болезнь слишком запущена. Очки Панкова можно применять только после медикаментозного лечения, после снятия воспалений.

Где можно приобрести очки Панкова?

Чего точно не следует делать, исходя из выше сказанного, так это приобретать прибор через Интернет-магазины. Причина этому - очень много подделок эффективного медицинского аппарата и очень много рекламы.

Причем реклама аппарата в большей степени акцентирует внимание покупателя не на его тренажерном предназначении, а на лечебных свойствах. Особенно активно очки Панкова предлагаются на сайтах мегаполисов. Так, для примера была проведена оценка мнений о данном аппарате жителей Санкт-Петербурга, которые удосужились приобрести его через виртуальных продавцов и испытать на практике. Если изучать эти отзывы, очки Панкова (Спб - не единственный регион, жители которого попались на уловки рекламщиков) вызвали очень много негативных характеристик и недоверия к данной инновации.

Так что восстанавливать свое зрение стоит посещая офтальмолога, а если и покупать прибор, то только по рекомендации компетентного доктора, который уж точно плохого не посоветует.