Что такое вулканизм кратко. Словарь геологических терминов Что такое Вулканизм, что означает и как правильно пишется. Эффузивные, или лавовые, вулканы

ВУЛКАНИЗМ НА ЗЕМЛЕ И ЕГО ГЕОГРАФИЧЕСКИЕ СЛЕДСТВИЯ

Курсовую работы выполнил студент 1 курса 1 группы Бобков Степан

Министерство образования Республики Беларусь

Белорусский Государственный университет

Географический факультет

Кафедра общего землеведения

АННОТАЦИЯ

Вулканизм, типы вулканических извержений, состав лав, эффузивный, экструзивный процесс.

Проводится исследование типов: вулканов, вулканических извержений. Рассматривается их географическое распространение. Роль вулканизма в формировании земной поверхности.

Библиогр.5 назв., рис.3, стр.21

АНАТАЦЫЯ

Бабкоў С.У. Вулканізм на зямлі і яго геаграфічныя вынікі (курсавая работа).-Мн., 2003 .-21с.

Вулканізм, тыпы вулканічных вывяржэнняў, састаў лаў, эффузіўны, экструзіўны працэс.

Праводзіцца даследванне тыпаў : вулканаў, вулканічных вывяржэнняў разглядаецца іх геаграфічнае размеркаванне. Роля вулканізму ў фарміраванні зямной паверхні .

Бібліягр.5 назв., мал.3, стар.21

Bobkov S.V. Volcanism on the Earth and main of it in the geography sphere. (cours paper).-Minsk , 2003. –21 p.

Volcanism , types of volcanism effusion, contest of lavs,effusion ,extrusive edifice.

The tipes of volcanous and effusion have been researched.Role of volcanism in forming of earth’s surface.

The bibliograthy 5 references,pictures 3,pages 21.

ВВЕДЕНИЕ

Вулканическая деятельность, относящаяся к ряду наиболее грозных явлений природы, часто приносит огромные бедствия людям и народному хозяйству. Поэтому необходимо иметь в виду, что хотя не все действующие вулканы вызывают несчастья, тем не менее, каждый из них может быть в той или иной степени источником негативных событий, извержения вулканов бывают различной силы, однако к катастрофическим относятся только те, которые сопровождаются гибелью людей и материальных ценностей.

Также важно рассмотрение вулканизма с точки зрения глобальн6ого воздействия на географическую оболочку в процессе ее эволюции.

Целью является изучение вулканизма как важнейшего проявления эндогенных процессов, географическое распространение.

Также необходимо проследить:

1)классификацию извержений.

2)типы вулканов.

3)состав извергающихся лав.

4)Последствия деятельности вулканизма для географической оболочки.

Я же как автор данной курсовой работы хочу привлечь внимание окружающих по данному вопросу, показать глобальность данного процесса,причин и последствий воздействия вулканизма на географическую оболочку. Не секрет, что каждому из нас хотелось бы побывать неподалеку от извергающегося вулкана.Хоть раз почувствовать нашу микроскопичность по сравнению с природными силами Земли. А тем более для каждого географа главным источником знаний должны оставаться экспедиции и исследования, а не изучать все разнообразие Земли только по книгам и картинкам.

ГЛАВА 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ВУЛКАНИЗМЕ.

“Вулканизм – это явление, благодаря которому в течение геологической истории сформировались внешние оболочки Земли - кора, гидросфера и атмосфера, т. е. среда обитания живых организмов – биосфера”.

Такое мнение выражает большинство вулканологов, однако это далеко не единственное представление о развитии географической оболочки.

Вулканизм охватывает все явления связанные с извержением магмы на поверхность. Когда магма находится в глубине земной коры под большим давлением, все ее газовые компоненты остаются в растворенном состоянии. По мере продвижения магмы к поверхности давление уменьшается, газы начинают выделяться, в результате изливающаяся на поверхность магма существенно отличается от изначальной. Чтобы подчеркнуть это отличие, магму излившуюся на поверхность, называют лавой. Процесс извержения называется эруптивной деятельностью.

Извержения вулканов протекают неодинаково, в зависимости от состава продуктов извержения. В одних случаях извержения протекают спокойно, газы выделяются без крупных взрывов и жидкая лава свободно изливается на поверхность. В других случаях извержения бывают очень бурные, сопровождаются мощными газовыми взрывами и выжиманием или излиянием относительно вязкой лавы. Извержения некоторых вулканов заключаются только в грандиозных газовых взрывах, вследствие чего образуются колоссальные тучи газа и паров воды, насыщенных лавой,поднимающиеся на огромную высоту.

По современным представлениям, вулканизм является внешней, так называемой эффузивной формой магматизма - процесса, связанного с движением магмы из недр Земли к ее поверхности. На глубине от 50 до 350 км, в толще нашей планеты образуются очаги расплавленного вещества - магмы. По участкам дробления и разломов земной коры, магма поднимается и изливается на поверхность в виде лавы (отличается от магмы тем, что почти не содержит летучих компонентов, которые при падении давления отделяются от магмы и уходят в атмосферу.

В местах извержения возникают лавовые покровы, потоки, вулканы-горы, сложенные лавами и их распыленными частицами – пирокластами. По содержанию главной составляющей – оксида кремния магмы и образованные ими вулканические породы – вулканиты делят на ультраосновные (оксида кремния менее 40 %), основные (40-52%), средние (52-65%), кислые(65-75%). Наиболее распространена основная, или базальтовая, магма.

ГЛАВА 2. ТИПЫ ВУЛКАНОВ, СОСТАВ ЛАВ. КЛАССИФИКАЦИЯ ПО ХАРАКТЕРУ ИЗВЕРЖЕНИЯ.

Классификация вулканов основывается главным образом на характере их извержений и на строении вулканических аппаратов. А характер извержения, в свою очередь, определяется составом лавы, степенью ее вязкости и подвижности, температурой, количеством содержащихся в ней газов. В вулканических извержениях проявляются три процесса: 1) эффузивный - излияние лавы и растекание ее по земной поверхности; 2) эксплозивный (взрывной) - взрыв и выброс большого количества пирокластического материала (твердых продуктов извержения); 3) экструзивный - выжимание, или выдавливание, магматического вещества на поверхность в жидком или твердом состоянии. В ряде случаев наблюдаются взаимные переходы этих процессов и сложное их сочетание между собой. В результате многие вулканы характеризуются смешанным типом извержения – эксплозивно-эффузивным, экструзивно-эксплзивным, а иногда один тип извержения сменяется другим во времени. В зависимости от характера извержения отмечается сложность и многообразие вулканических построек и форм залегания вулканического материала.

Среди вулканических извержений выделяются следующие:1)извержения центрального типа, 2) трещинные и 3) ареальные.

Вулканы центрального типа.

Они имеют в плане форму, близкую к округлой, и представлены конусами, щитами, куполами. На вершине располагается обычно чашеобразное или воронкообразное углублением, называемое кратером (греч.’кратер’-чаша) .От кратера в глубину земной коры идет магмоподводящий канал, или жерло вулкана, имеющий трубообразную форму, по которому магма из глубинного очага поднимается к поверхности. Среди вулканов центрального типа выделяются полигенные, образовавшиеся в результате многократных извержений, и моногенные – один раз проявившие свою деятельность.

Полигенные вулканы.

К ним относится большинство известных вулканов мира. Единая и общепринятая классификация полигенных вулканов отсутствует. Различные типы извержений чаще всего обозначают по названию известных вулканов, в которых тот или иной процесс проявляется наиболее характерно.

Эффузивные, или лавовые, вулканы.

Преобладающим процессом в этих вулканах является эффузия, или излияние лавы на поверхность и движение ее в виде потоков по склонам вулканической горы. В качестве примеров такого характера извержения можно привести вулканы Гавайских островов, Самоа, Исландии и др.

Гавайский тип.

Гавайи образованы слившимися вершинами пяти вулканов, из которых четыре действовали в историческое время. Особенно хорошо изучена деятельность двух вулканов: Мауна-Лоа, возвышающегося почти на 4200 метров над уровнем Тихого океана, и Килауэа высотой более 1200 метров.

Лава в этих вулканах основная базальтовая, легкоподвижная, высокотемпературная (около 12000). В кратерном озере лава все время бурлит, ее уровень то понижается, то повышается. При извержениях происходит подъем лавы, возрастает ее подвижность, она заливает весь кратер, образуя огромное кипящее озеро. Газы выделяются относительно спокойно, образуя над кратером всплески, лавовые фонтаны, поднимающиеся в высоту от нескольких до сотен метров (редко). Вспененная газами лава разбрызгивается и застывает в виде тонких стеклянных нитей ‘волосами Пеле ’. Затем кратерное озеро переполняется и лава начинает переливаться через его края и стекать по склонам вулкана в виде крупных потоков.

Эффузивные подводные.

Извержения являются самыми многочисленными и наименее изученными. Они также приурочены к рифтовым структурам, отличаются господством базальтовых лав. На дне океана при глубине 2 км и более давление воды столь велико, что взрывов не происходит, а значит и пирокластов не возникает. Под давлением воды даже жидкая базальтовая лава далеко не растекается, образует короткие куполообразные тела или узкие и длинные потоки, покрытые с поверхности стекловатой коркой. Отличительной чертой подводных вулканов, находящихся на больших глубинах, является обильное выделение гидротерм, содержащих высокое количество меди, свинца, цинка и других цветных металлов.

Смешаннные эксплозивно-эффузивные (газово-взрывные-лавовые) вулканы.

Примерами таких вулканов могут служить вулканы Италии: Этна – высочайший вулкан Европы (более 3263 м), расположенный на острове Сицилия;Везувий (высотой около 1200 м), расположенный близ Неаполя; Стромболи и Вулкано из группы Липарских островов в Мессинском проливе. К этой же категории относятся многие вулканы Камчатки, Курильских и Японских островов и западной части Кордильерского подвижного пояса. Лавы данных вулканов различны - от основных (базальтовых), андезито-базальтовых, андезитовых до кислых (липаритовых). Среди их условно выделяют несколько типов.

Стромболианский тип.

Характерен для вулкана Стромболи, поднимающегося в Средиземном море до высоты 900 м. Лава этого вулкана главным образом базальтового состава, но более низкотемпературная (1000-1100) , чем лава вулканов гавайских островов, поэтому менее подвижна и насыщена газами. Извержения происходят ритмично через определенные короткие промежутки времени – от нескольких минут до часа. Газовые взрывы выбрасывают на относительно не большую высоту раскаленную лаву, которая выпадает затем на склоны вулкана в виде спирально завитых бомб и шлака (пористые, пузыристые куски лавы). Характерно, что пепла выбрасывается очень мало. Вулканический аппарат конусовидной формы состоит из слоев шлака и застывшей лавы. К этому же типу относится такой известный вулкан как Исалько.

Этно-везувианский (вулканский) тип.

Вулканы эксплозивные (газово-взрывные) и экструзивно-эксплозивные.

К этой категории относятся многие вулканы, в которых преобладающее значение имеют крупные газово-взрывные процессы с выбросом большого количества твердых продуктов извержения, почти без излияния лав (или в ограниченных размерах). Такой характер извержения связан с составом лав, их вязкостью, относительно малой подвижностью и большой насыщенностью газами. В ряде вулканов одновременно наблюдаются газово-взрывные и экструзивные процессы, выражающиеся в выжимании вязкой лавы и образовании куполов и обелисков, возвышающихся над кратером.

Пелейский тип.

Особенно ярко проявился в вулкане Мон-Пеле на о. Мартиника, входящем в группу Малых Антильских островов. Лава этого вулкана преимущественно средняя, андезитовая, отличается большой вязкостью и насыщена газами. Застывая, она образует в жерле вулкана твердую пробку, препятствующую свободному выходу газа, который, накапливаясь под ней, создает очень большие давления. Лава выжимается в виде обелисков, куполов. Извержения происходят как сильные взрывы. Возникают огромные облака газов, перенасыщенные лавой. Эти раскаленные(с температурой свыше 700-800) газово-пепловые лавины не поднимаются высоко, а скатываются с большой скоростью по склонам вулкана и уничтожают на своем пути все живое.

Кракатауский тип.

Выделен по названию вулкана Кракатау, на расположенного в Зондском проливе между Явой и Суматрой. Этот остров представлял собой три сросшихся вулканических конуса. Наиболее древний из них, Раката, сложен базальтами, а два других, более молодых,--андезитами. Эти три слившихся вулкана располагаются в древней обширной подводной кальдере, образовавшейся в доисторическое время. До 1883 г. в течение 20 лет Кракатау не проявлял активной деятельности. В 1883 г. произошло одно из крупнейших катастрофических извержений. Оно началось взрывами умеренной силы в мае, после некоторых перерывов вновь возобновлялись в июне, июле, августе с постепенным нарастанием интенсивности. 26 августа произошли два больших взрыва. Утром 27 августа произошел гигантский взрыв, который был слышен в Австралии и на островах в западной части Индийского океана на расстоянии 4000-5000 км. На высоту около 80 км поднялось раскаленное газово-пепловое облако. Огромные волны высотой до 30 м, возникшие от взрыва и сотрясения Земли, называемые цунами, вызвали большие разрушения на прилежащих островах Индонезии, ими было смыто с берегов Явы и Суматры около 36 тыс. человек. Местами разрушения и человеческие жертвы были связаны со взрывной волной огромной силы.

Катмайский тип.

Его выделяют по названию одного из крупных вулканов Аляски, близ основания которого в 1912 г. произошло крупное газово-взрывное извержение и направленный выброс лавин, или потоков, горячей газово-пирокластической смеси.Пирокластический материал имел кислый, риолитовый или андезито-риолитовый состав. Эта раскаленная газово-пепловая смесь заполнила на протяжении 23 км глубокую долину, расположенную к северо-западу от подножия горы Катмай. На месте прежней долины образовалась плоская равнина шириной около 4 км. Из заполнившего ее потока многие годы наблюдались массовые выделения высокотемпературных фумарол, что послужило основанием называть ее «Долиной десяти тысяч дымов».

Моногенные вулканы.

Маарский тип.

Этот тип объединяет лишь единожды извергавшиеся вулканы, ныне потухшие эксплозивные вулканы. В рельефе они представлены плоскими блюдцеобразными котловинами, обрамленными невысокими валами. В составе валов присутствуют как вулканические шлаки, так и обломки невулканических пород, слагающих данную территорию. В вертикальном разрезе кратер имеет вид воронки, которая в нижней части соединяется с трубообразным жерлом, или трубкой взрыва. К ним относятся вулканы центрального типа, образовавшиеся при однократном извержении. Это газово-взрывные извержения, иногда сопровождающиеся эффузивными или эксрузивными процессами. В результате на поверхности образуются небольшие шлаковые или шлаково-лавовые конусы (высотой от десятков до первых сотен метров) с блюдцеобразным или чашеобразным кратерным углублением. Такие многочисленные моногенные вулканы наблюдаются в большом количестве на склонах или у подножия крупных полигенных вулканов. К моногенным формам относятся также газово-взрывные воронки с подводящим трубообразным каналом (жерловиной). Они образованы одним газовым взрывом большой силы. К особой категории относятся алмазоносные трубки. Широкой известностью пользуются трубки взрыва в Южной Африке называемые диатремами(греч. «диа»-через, «трэма»-отверстие, дыра). Их диаметр колеблется от 25 до 800 метров, они заполнены своеобразной брекчированной вулканогенной породой, называемой кимберлитом (по г. Кимберли в Южной Африке). В составе этой породы присутствуют ультраосновные породы – гранатсодержащие перидотиты (пироп – спутник алмаза) , характерные для верхней мантии Земли. Это указыавает на подкровное образование магмы и быстрый ее подъем к поверхности, сопровождающийся газовыми взрывами.

Трещинные извержения.

Они приурочены к крупным разломам и трещинам в земной коре, играющим роль магмовыводящих каналов. Извержение, особенно в ранние фазы, может происходить вдоль всей тещины или отдельных участков ее участков. В последующем по линии разлома или трещины возникают группы сближеных вулканических центров. Излившаяся основная лава после застывания образует базальтовые покровы различных размеров с почти горизонтальной поверхностью. В историческое время подобные мощные трещинные излияния базальтовой лавы наблюдались в Исландии. Трещинные излияния широко распространены на склонах крупных вулканов. О ни же, по-видимому, широко развиты в пределах разломов Восточно-Тихоокеанского поднятия и в других подвижных зонах Мирового океана. Особенно значительные трещинные излияния были в прошлые геологические периоды, когда образовались мощные лавовые покровы.

Ареальный тип извержения.

К этому типу относятся массовые извержения из многочисленных близко расположенных вулканов центрального типа. Они часто бывают приурочены к мелким трещинам, или узлам их пересечения.В процессе извержения некоторые центры отмирают, а другие возникают. Ареальный тип извержения захватывает иногда обширные площади, на которых продукты извержения сливаются, образуя сплошные покровы.

ГЛАВА 3. ГЕОГРАФИЧЕСКОЕ РАСПРОСТРАНЕНИЕ ВУЛКАНОВ.

В настоящее время на земном шаре насчитывается несколько тысяч потухших и действующих вулканов, причем среди потухших вулканов многие прекратили свою деятельность десятки и сотни тысяч лет, а в ряде случаев и миллионы лет назад (в неогеновый и четвертичный периоды), некоторые относительно недавно. По данным В.И. Влодавца общее количество действующих вулканов (с 1500 г. до н. э.) составляет 817 , в число которых входят вулканы сольфатарной стадии (201) .

В географическом распределении вулканов намечается определенная закономерность, связанная с новейшей историей развития земной коры. На материках вулканы располагаются главным образом в их краевых частях, на побережьях океанов и морей, в пределах молодых тектонически подвижных горных сооружений. Особенно широко развиты вулканы в переходных зонах от материков к океанам –в пределах островных дуг, граничащих с глубоководными желобами. В океанах многие вулканы приурочены к срединно-океаническим подводным хребтам. Таким образом, основной закономерностью распространения вулканов является их приуроченность только к подвижным зонам земной коры. Расположение вулканов в пределах этих зон тесным образом связано с глубокими разломами, достигающими подкоровой области. Так, в островных дугах (Японской, Курило-Камчатской, Алеутской и др.) вулканы распространены цепями по линиям разломов, преимущественно продольных разломов поперечными и косыми. Некоторая часть вулканов встречается и в более древних массивах, омоложенных в новейший этап складчатости образованием молодых глубоких разломов.

Тихоокеанская зона характеризуется наибольшим развитием современного вулканизма. В ее пределах выделены две подзоны: подзона краевых частей материков и островных дуг, представленных кольцом вулканов, окружающим Тихий океан, и подзона собственно тихоокеанская с вулканами на дне Тихого океана. При этом в первой подзоне извергается преимущественно андезитовая лава, а во второй – базальтовая.

Первая подзона проходит через Камчатку, где сосредоточено около 129 вулканов, из которых 28 проявляют современную деятельность. Среди них наиболее крупные – Ключевской, Карымский Шивелуч, Безымянный, Толбачик, Авачинский и др. От Камчатки эта полоса вулканов тянется на Курильские острова, где известно 40 действующих вулканов, в их числе могучий Алаид. Южнее Курильских располагаются Японские острова, где около 184 вулканов, из которых свыше 55 действовало в историческое время. В их числе Бандай и величественный Фудзияма. Далее вулканическая подзона идет через острова Тайвань, Новую Британию, Соломоновы, Новые Гебриды, Новую Зеландию и затем переходит на Антарктиду, где на о. Росса возвышаются четыре молодых вулкана. Из них наиболее известны Эребус, действовавший в 1841 и 1968 гг., и Террор с боковыми кратерами.

Описываемая полоса вулканов переходит далее на Южно-Антильский подводный хребет (погруженное продолжение Анд), вытянутый к востоку и сопровождаемый цепью островов: Южные Шетландские, Южные Оркнейские, Южные Сандвичевы, Южная Георгия. Далее она продолжается вдоль побережья Южной Америки. Вдоль западного берега поднимаются высокие молодые горы– Анды, к которым приурочены многочисленные вулканы, расположенные линейно, вдоль глубинных разломов. Всего в пределах Анд имеется несколько сотен вулканов, из которых многие действуют в настоящее время или действовали в недалеком прошлом и некоторые достигают огромных высот (Аконкагуа –7035 м, Тупунгата-6700 м.).

Наиболее напряженная вулканическая деятельность наблюдается в пределах молодых сооружений Центральной Америки (Мексика, Гватемала, Сальвадор, Гондурас, Коста-Рика, Панама). Здесь известны величайшие молодые вулканы: Попокатепель, Орисаба, а также Исалько, называемый маяком Тихого океана из-за непрерывных извержений. К этой активной вулканической зоне примыкает Малоантильская вулканическая дуга Атлантического океана, где, в частности, находится знаменитый вулкан Мон-Пеле (на о. Мартиника).

В пределах Кордильер Северной Америки действующих в настоящее время вулканов не так много (около 12). Однако наличие мощных лавовых потоков и покровов, а также разрушеных конусов свидетельствует о предшествующей активной вулканической деятельности. Тихоокеанское кольцо замыкается вулканами Аляски со знаменитым вулканом Катмай и многочисленными вулканами Алеутских островов.

Вторая подзона – собственно Тихоокеанская область. За последние годы на дне Тихого океана обнаружены подводные хребты и большое число глубоких разломов, с которыми связаны многочисленные вулканы, то выступающие в виде островов, то находящиеся ниже уровня океана. Преобладающая часть островов Тихого океана обязана своим возникновением вулканам. Среди них наиболее изучены вулканы Гавайских островов. По данным Г. Менарда, на дне Тихого океана находится около 10 тысяч подводных вулканов, возвышающихся над ним на 1 км. и более.

Средиземноморско-Индонезийская зона

Эта зона активного современного вулканизма также разделяется на две подзоны: Средиземноморскую, Индонезийскую.

Гораздо большей вулканической активностью характеризуется Индонезийская подзона. Это типичные островные дуги, подобные Японской, Курильской, Алеутской, ограниченные разломами и глубоководными впадинами. Здесь сосредоточено очень большое количество действующих, затухающих и потухших вулканов. Лишь на о. Ява и четырех островах, расположенных восточнее, насчитывается 90 вулканов, и десятки вулканов потухших или находящихся в стадии затухания. Именно к этой зоне приурочен описанный вулкан Кракатау, извержения которого отличаются необычайно грандиозными взрывами. На востоке Индонезийская подзона смыкается с Тихоокеанской.

Между активными Средиземноморской и Индонезийской вулканическими подзонами располагается ряд потухших вулканов во внутриматериковых горных сооружениях. К ним относятся потухшие вулканы Малой Азии, наибольшие из них – Эрджияс и др.; южнее, в пределах Турции, возвышается Большой и Малый Арарат, на Кавказе – двуглавый Эльбрус, Казбек, вокруг которых имеются горячие источники. Далее, в хребте Эльбрус, расположен вулкан Демавенд и др.

.Атлантическая зона.

В пределах Атлантического океана современная вулканическая деятельность, за исключением указанных выше Антильских островных дуг и района Гвинейского залива, не затрагивает контонентов. Вулканы приурочены главным образом к Срединно-Атлантическому хребту и его боковым ответвлениям. Часть крупных островов в их пределах – вулканические. Ряд вулканов Атлантического океана начинается на севере с о. Ян-Майен. Южнее располагается о. Исландия, на котором насчитывается большое число действующих вулканов и где сравнительно недавно происходили трещинные излияния основной лавы. В 1973 г. в течение шести месяцев происходило крупное извержение Хельгафель, в результате которого мощный слой вулканического пепла покрыл улицы и дома г. Вестманнаэйяр. Южнее расположены вулканы Азорских островов, островов Вознесения, Асунсьен, Тристан-да-Кунья, Гоф и о. Буве.

Особняком стоят вулканические острова Канарские, Зеленого Мыса, Св. Елены, расположенные в восточной части Атлантического океана, вне срединного хребта, близ берегов Африки. Отмечается большая интенсивность вулканических процессов на Канарских островах. На дне Атлантического океана также много подводных вулканических гор и возвышенностей.

Индоокеанская зона.

В Индийском океане также развиты подводные хребты и глубокие разломы. Здесь много потухших вулканов, свидетельствующих об относительно недавней вулканической деятельности. Многие острова, разбросанные вокруг Антарктиды, по-видимому, также вулканического происхождения. Современные действующие вулканы распложены около Мадагаскара, на Коморских островах, о. Маврикий и Реюньон. Южнее известны вулканы на островах Кергелен, Крозе. На Мадагаскаре встречаются недавно потухшие вулканические конусы.

Вулканы центральных частей континентов

Они представляют относительно редкое явление. Наиболее яркое проявление современный вулканизм получил в Африке. В районе, прилегающем к Гвинейскому заливу, возвышается крупный стратовулкан Камерун, последнее его извержение было в 1959 г. В Сахаре на вулканическом нагорье Тибести располагаются вулканы с огромными кальдерами (13-14 км.), в которых находится по несколько конусов и выходы вулканических газов и горячих источников. В Восточной Африке проходит известная система глубинных разломов (рифтовая структура), протягивающаяся на 3,5 тыс. км от устья Замбези на юге до Сомали на севере, с которой и связана вулканическая деятельность. Среди многочисленных потухших вулканов есть действующие вулканы в горах Вирунга (район оз. Киву). Особенно известны вулканы в Танзании и Кении. Здесь находятся действующие крупные вулканы Африки: Меру с кальдерой и соммой; Килиманджаро, конус которого достигает высоты 5895 м. (высшая точка Африки); Кения к востоку от оз. Виктория. Ряд действующих вулканов расположен параллельно Красному морю и непосредственно в самом море. Что же касается самого моря то в его разломах выходит на поверхность базальтовая лава, что является признаком уже океанической коры которая здесь уже сформировалась.

В пределах Западной Европы действующих вулканов нет. Потухшие вулканы имеются во многих странах Западной Европы – во Франции, в Прирейнском районе Германии и других странах. В ряде случаев с ними связаны выходы минеральных источников.

ГЛАВА 4.ПОСТВУЛКАНИЧЕСКИЕ ЯВЛЕНИЯ

При затухании вулканической деятельности длительное время наблюдается ряд характерных явлений, указывающих на активные процессы, продолжающиеся в глубине. К их числу относятся выделение газов (фумаролы), гейзеры, грязевые вулканы, термы.

Фумаролы (вулканические газы).

После извержения вулканов длительное время выделяются газообразные продукты из самих кратеров, различных трещин, из раскаленных туфолавовых потоков и конусов. В составе поствулканических газов присутствуют те же газы группы галоидов, серы, углерода, пары воды и другие, что и выделяющиеся при вулканических извержениях. Однако нельзя наметить единую схему состава газов для всех вулканов. Так, на Аляске из туфогенно-лавовых продуктов извержения вулкана Катмай (1912 г.) в течение последующих лет выделяются тысячи газовых струй с температурой 600-650, в составе которых большое количество галоидов (HCl и HF), борной кислоты, сероводорода и углекислого газа. Несколько иная картина наблюдается в районе знаменитых Флегрейских полей в Италии, западнее Неаполя, где много вулканических кратеров и мелких конусов в течение тысяч лет характеризующихся исключительно сольфатарной деятельностью. В других случаях преобладает углекислый газ.

Гейзеры.

Гейзеры – это периодически действующие пароводяные фонтаны. Свою известность и название они получили в Исландии, где наблюдались впервые. Помимо Исландии гейзеры широко развиты в Иеллоустонском парке США, в Новой Зеландии, на Камчатке. Каждый гейзер приурочен обычно к округлому отверстию, или грифону. Грифоны бывают различных размеров. В глубине этот канал, по-видимому, переходит в тектонические трещины. Весь канал заполнен перегретой подземной водой. Ее температура в грифоне может быть 90-98 градусов, в то время как в глубине канала она значительно выше и достигает 125-150 гр. и более. В определенный момент в глубине начинается интенсивное парообразование, в результате колонна воды в грифоне приподнимается. При этом каждая частица воды оказывается в зоне меньшего давления, начинается кипение и извержение воды и пара. После извержения канал постепенно заполняется подземной водой, частично водой, выброшенной при извержении и стекающей обратно в грифон; на некоторое время устанавливается равновесие, нарушение которого приводит к новому пароводяному извержению. Высота фонтанирования зависит от величины гейзера. В одном из крупных гейзеров Иеллоустонского парка высота фонтана воды и пара достигала 40 м.

Грязевые вулканы (сальзы).

Они иногда встречаются в тех же районах, что и гейзеры (Камчатка, Ява, Сицилия и др.). Горячие пары воды и газы прорываются к поверхности через трещины, выбрасываются и образуют небольшие выводные отверстия с диаметром от десятков сантиметров до одного метра и более. Эти отверстия заполнены грязью, представляющей собой смесь паров газов с подземными водами и рыхлыми вулканическими продуктами и характеризующейся высокой температурой (до 80-90 0).Так возникают грязевые вулканы. Густота, или консистенция, грязи определяет характер их деятельности и строения. При относительно жидкой грязи выделения паров и газов вызывают в ней всплески, грязь растекается свободно и при этом конус с кратером наверху не более 1-1,5 м, состоящий целиком из грязи. В грязевых вулканах вулканических областей помимо паров воды выделяется углекислый газ и сероводород.

“В зависимости от причин возникновения грязевые вулканы можно разделить на:1)связанные с выделением горючих газов;2)приуроченные к областям магматического вулканизма и обусловленные выбросами магматических газов”. . К таким относятся Апшеронский, Таманский грязевые вулканы.

ЗАКЛЮЧЕНИЕ.

Современные действующие вулканы представляют собой яркое проявление эндогенных процессов, доступных непосредственному наблюдению, сыгравшее огромную роль в развитии географической науки.Однако изучение вулканизма имеет не только познавательное значение. Действующие вулканы наряду с землетрясениями представляют собой грозную опасность для близко расположенных населенных пунктов. Моменты их извержений приносят часто непоправимые стихийные бедствия, выражающиеся не только в огромном материальном ущербе, но иногда и в массовой гибели населения. Хорошо, например, известно извержение Везувия в 79 г. н.э., уничтожившее города Геркуланум, Помпею и Стабию, а также ряд селений, находившихся на склонах и у подножия вулкана. В результате этого извержения погибло несколько тысяч человек.

Так современные действующие вулканы, характеризующиеся интенсивными циклами энергичной эруптивной деятельности и представляющие собой, в отличие от своих древних и потухших собратьев, объекты для научно-исследовательских вулканических наблюдений, наиболее благоприятные, хотя далеко не безопасные.

Чтобы не сложилось впечатления, что вулканическая деятельность приносит только бедствия, следует привести такие краткие сведения о некоторых полезных сторонах.

Огромные выброшенные массы вулканического пепла обновляют почву и делают ее более плодородной.

Выделяющиеся в вулканических областях пары воды и газы, пароводяные смеси и горячие ключи стали источниками геотермической энергии.

С вулканической деятельностью связаны многие минеральные источники, которые используются в бальнеологических целях.

Продукты непосредственной вулканической деятельности – отдельные лавы, пемзы, перлит и др. находят применение в строительной и химической промышленности. С фумарольной и гидротермальной деятельностью связано образование некоторых полезных ископаемых, таких, как сера, киноварь, и ряд других. Вулканические продукты подводных извержений являются источниками накопления полезных ископаемых таких, как железо, марганец, фосфор и др.

И еще хотелось бы сказать, что вулканизм как процесс до конца не изучен и что перед человечеством еще много не разгаданных загадок помимо вулканизма и их надо кому то разгадывать.

А изучение современной вулканической деятельности имеет важное теоретическое значение, так как помогает понять процессы и явления, происходившие на Земле в давние времена.

Список литературы

2.Влодавец В.И. Вулканы Земли.- М.: Наука,1973 .-168 с.

3.Мархинин Е.К. Вулканы и жизнь.-М.:Мысль, 1980-196 с.

4.Якушко О.Ф. Основы геоморфологии // Рельефообразующая роль вулканических процессов.- Мн.: БГУ, 1997.- с 46-53 .

5.Якушова А.Ф. Геология с основами геоморфологии // Магматизм.-Москва: Изд-во Моск. ун-та, 1983.- с 236-266.

Вулканы и вулканизм

Введение

Вулканами называются конусообразные или куполовидные возвышения над каналами, трубками взрыва и трещинами в земной коре, по которым извергаются из недр газообразный продукты, лава, пепел, обломки горных парод. Проявления вулканизма представляют собой один из наиболее характерных и важных геологических процессов, имеющих огромное значение в истории развития и формирования земной коры. Ни одна область на Земле – будь то континент или океаническая впадина, складчатая область или платформа – не сформировалась без участия вулканизма. Высокая практическая значимость этих явлений обусловило выбор темы курсовой работы. Основной целью работы является исследование вулканов и вулканизма. В соответствии с поставленной целью в работе рассматриваются следующие задачи. В первой главе рассматриваются история появления вулканов их распространенность на земной поверхности, так же пойдет речь и о продуктах вулканических извержений, который бываю твердые в виде вулканических бомб и пепла и жидкие в виде лавы. Во второй главе речь идет о проявлении вулканизма и строении вулкана. Так мы узнаем, что вулканы бывают трех типов: 1) площадные 2) трещинные 3) центральные и очень сложно строение.

Общие сведения о вулканах

В Тирренском море в группе Липарских островов есть небольшой остров Вулькано. Древние римляне считали этот остров входом в ад, а также владением бога огня и кузнечного ремесла Вулкана. По имени этого острова огнедышащие горы впоследствии стали называть вулканами. Извержение вулкана может продолжаться несколько дней и даже месяцев. После сильного извержения вулкан снова приходит в состояние покоя на несколько лет и даже десятилетий. Такие вулканы называются действующими. Есть вулканы, которые извергались в давно прошедшие времена. Некоторые из них сохранили форму красивого конуса. О деятельности их у людей не сохранилось никаких сведений. Их называют потухшими. В древних вулканических областях встречаются глубоко разрушенные и размытые вулканы. В нашей стране такие области – Крым, Забайкалье и другие места.

Если подняться на вершину действующего вулкана во время его спокойного состояния, то можно увидеть кратер (по-гречески – большая чаша) – глубокую впадину с обрывистыми стенками, похожую на гигантскую чашу. Дно кратера покрыто обломками крупных и мелких камней, а из трещин на дне и стенах кратера поднимаются струи и газы пара. Иногда они спокойно выходят из под камней и щелей, а иногда вырываются бурно со свистом и шипением. Кратер наполняютудушливые газы ; поднимаясь вверх они образуют облачко на вершине вулкана. Месяцы и годы вулкан может спокойно куриться, пока не произойдет извержение. Этому событию часто предшествует землетрясение; слышится подземный гул, усиливается выделение паров и газов, сгущаются облака над вершиной вулкана. Потом под давлением газов, вырывающихся из недр земли, дно кратера взрывается. На тысячи метров выбрасываются густые черные тучи газов и паров воды, смешенных с пеплом, погружая во мрак окрестность. Одновременно со взрывом из кратера летят куски раскаленных камней, образуя гигантские снопы искр. Из черных, густых туч на землю сыплется пепел, иногда выпадают ливневые дожди, образуя потоки грязи, скатывающейся по склонам и заливающие окрестности. Блеск молний непрерывно прорезывает мрак. Вулкан грохочет и дрожит, а по жерлу его поднимется раскаленная лава. Она бурлит, переливается через край кратера и устремляется огненным потоком по склонам вулкана, уничтожая все на своем пути.При некоторых вулканических извержениях лава не изливается.

Извержение вулканов происходит также на дне морей и океанов. Об этом узнают мореплаватели, когда внезапно видят столб пара над водой или плавающую на поверхности “каменную пену ” – пемзу. Иногда суда наталкиваются на неожиданно проявившиеся мели, образованные новыми вулканами на дне моря. Со временем эти мели – изверженные массы – размываются морскими волнами и бесследно исчезают. Некоторые подводные вулканы образуют конусы, выступающие над поверхностью воды в виде островов. В древности люди не умели объяснить причины извержения вулканов. Поэтому это грозное явление природы повергало человека в ужас.

География вулканов

В настоящее время на земном шаре выявлено свыше 4тыс. вулканов. К действующим относят вулканы извергающиеся и проявляющие сольфатарную активность (выделение горячих газов и воды) за последние 3500 лет исторического периода. На 1980 год их насчитывали 947. К потенциально действующим относятся голоценовые вулканы, извергающиеся 3500-13500 лет назад. Их примерно 1343 шт. К условно потухшим вулканам относят не проявляющими активности в голоцене, но сохранившие свои внешние формы (возрастом моложе 100тыс. лет). Потухшие вулканы существенно переработанные эрозией, полуразрушенные, не проявляющие активности в течении последних 100тыс. лет. Современные вулканы известны во всех крупных геолого-структурных элементах и геологических районах Земли. Однако распределены они неравномерно. Подавляющее большинство вулканов расположено в экваториальной, тропической и умеренной областях. В полярных областях, за Северным и Южным полярными кругами, отмечены чрезвычайно редкие участки относительно слабой вулканической активности, обычно ограничивающиеся выделением газов.

Наблюдается прямая зависимость между их количеством, и тектонической активностью района: наибольшее количество действующих вулканов в расчете на единицу площади приходится на островные дуги (Камчатка, Курильские острова, Индонезия) и другие горные сооружения (Южная и Северная Америка). Здесь сосредоточены также наиболее активные вулканы мира, характеризующиеся наибольшей частотой извержения. Наименьшая плотность вулканов характерна для океанов и континентальных платформ; здесь они связаны с рифтовыми зонами - узкими и протяженными областями расколов и просадки земной коры (Восточно-Африканская рифтовая система), Срединно-Атлантический хребет.

Установлено, что вулканы приурочены к тектонически-активным поясам , где происходит большинство землятресение. Области развития вулканов характеризуются сравнительно большой раздробленностью литосферы, аномально высоким тепловым потоком (в 3-4 раза больше фоновых значений), повышенными магнитными аномалиями, возрастанием теплопроводности горных пород с глубиной. К областям ювенильных источников термальных вод тина гейзеров. Вулканы расположенные на суше, хорошо изучены; для них точно определены даты прошлых извержений, известен характер вылившихся продуктов. Однако большая часть активных вулканических проявлений, по-видимому, происходит в морях и океанах, покрывающих более двух третей поверхности планеты. Изучение этих вулканов и продуктов их извержений затруднены, хотя при мощном извержении этих продуктов может оказаться так много, что сформированный ими вулканический конус показывается из воды, образуя новый остров. Так, например, в Атлантическом океане, южнее Исландии, 14 ноября 1963г., рыбаки заметили поднимающиеся над поверхностью океана клубы дыма, а также вылетающие из под воды камни. Через 10 дней на месте извержения уже образовался остров длиной около 900м, шириной до 650м и высотой до 100м, получивший название Суртсей. Извержение продолжалось более полутора лет и завершилось лишь весной 1965г., образовав новый вулканический остров площадью 2,4км2 и высотой 169м над уровнем моря. Геологические исследования островов показывают, что многие из них имеют вулканическое происхождение. При частой повторяемости извержений, их большой продолжительности и обилии выделяемых продуктов могут создаваться весьма внушительные сооружения. Так, цепочка Гавайских островов вулканического происхождения представляет собой систему конусов высотой 9,0-9,5км (относительно дна Тихого океана), т.е превышающей высоту Эвереста!

Известен случай, когда вулкан вырос не из под воды, как было рассмотрено в предыдущем случае, а из под земли, прямо на глазах у очевидцев. Произошло это в Мексике 20 февраля 1943г.; после многодневных слабых толчков на вспаханном поле появилась трещина и из нее началось выделение газов и пара, извержение пепла и вулканических бомб - сгустков лавы причудливой формы, выброшенных газами и остывших в воздухе. Последующие излияние лавы привели к активному росту вулканического конуса, высота которого в 1946г. достигла уже 500м (вулкан Парикутин).

Продукты вулканических извержений

При извержении вулкана выделяются продукты вулканической деятельности, которые могут быть жидкими, газообразными и твердыми. Газообразные - фумаролы и софиони, играют важную роль в вулканической деятельности. Во время кристаллизации магмы на глубине выделяющиеся газы поднимают давление до критических значений и вызывают взрывы, выбрасывая на поверхность сгустки раскаленной жидкой лавы. Также при извержении вулканов происходит мощное выделение газовых струй, создающих в атмосфере огромные грибовидные облака. Такое газовое облако состоящее из капелек расплавленной (свыше 7000с) пепла и газов, образовавшееся из трещин вулкана Мон-Пеле, в 1902г., уничтожило город Сен-Пьер и 28000 его жителей. Состав газовых выделений во многом зависит от температуры. Различают следующие типы фумарол:

a) Сухие - температура около 5000с, почти не содержит водяных паров; насыщен хлористыми соединениями. b) Кислые, или хлористо-водородно-сернистые - температура приблизительно равна 300-4000с. c) Щелочные, или аммиачные - температура не больше 1800с. d) Сернистые, или сольфатары - температура около 1000с, главным образом состоит из водяных паров и сероводорода. e) Углекислые, или моферы - температура меньше 1000с,преимущественно углекислый газ.

Жидкие - характеризуются температурами в пределах 600-12000с. Представлена именно лавой. Вязкость лавы обусловлена ее составом и зависит главным образом от содержания кремнезема или диоксида кремния. При высоком ее значении (более 65%) лавы называют кислыми, они сравнительно легкие, вязкие, малоподвижные, содержат большое количество газов, остывают медленно. Меньшее содержание кремнезема (60-52%) характерно для средних лав; они как и кислые более вязкие, но нагреты обычно сильнее (до 1000-12000с) по сравнению с кислыми (800-9000с). Основные лавы содержат менее 52% кремнезема и поэтому более жидкие, подвижные, свободно текут. При их застывании на поверхности образуется корочка, под которой происходит дальнейшее движение жидкости. Твердые продукты включают в себя вулканические бомбы, лапилли, вулканический песок и пепел. В момент извержения они вылетают из кратера со скоростью500-600м/c .

Вулканические бомбы - крупные куски затвердевшей лавы размером в поперечнике от нескольких сантиметров до 1м и более, а в массе достигают нескольких тонн (во время извержения Везувия в 79г., вулканические бомбы "слезы Везувия" достигали десятков тонн). Они образуются при взрывном извержении, которое происходит при быстром выделении из магмы содержащихся в ней газов. Вулканические бомбы бывают 2-х категорий: 1-ая, возникшие из более вязкой и менее насыщенной газами лавы; они сохраняют правильную форму даже при ударе о землю из-за корочки закаливания, образовавшейся при их остывании. 2-ая, формируются из более жидкой лавы, во время полета они приобретают самые причудливые формы, дополнительно усложняющиеся при ударе. Лапилли - сравнительно мелкие обломки шлака величиной 1,5-3см, имеющие разнообразные формы. Вулканический песок - состоит из сравнительно мелких частиц лавы (і 0,5см). Еще более мелкие обломки, размером от 1мм и менее образуют вулканический пепел, который оседая на склонах вулкана или на некотором расстоянии от него образует вулканический туф.

Вулканизм

По современным представлениям, вулканизм является внешней, так называемой эффузивной формой магматизма - процесса, связанного с движением магмы из недр Земли к ее поверхности. На глубине от 50 до 350км, в толще нашей планеты образуются очаги расплавленного вещества - магмы. По участкам дробления и разломов земной коры, магма поднимается и изливается на поверхность в виде лавы (отличается от магмы тем, что почти не содержит летучих компонентов, которые при падении давления отделяются от магмы и уходят в атмосферу. При этих излияниях магмы на поверхность и образуются вулканы. Вулканы бывают трех типов:

2.1. Площадные вулканы.

В настоящее время такие вулканы не встречаются, или можно сказать не существуют. Так как эти вулканы приурочены к выходу большого количества лавы на поверхность большой площади; т.е отсюда мы видим, что они существовали на ранних этапах развития земли, когда земная кора была довольно тонкой и на отдельных участках она могла целиком быть расплавленной.

2.2. Трещинные вулканы.

Они проявляются в излиянии лавы на земную поверхность по крупным трещинам или расколам. В отдельные отрезки времени, в основном на доисторическом этапе, этот тип вулканизма достигал довольно широких масштабов, в результате чего на поверхность Земли выносилось огромное количество вулканического материала - лавы. Мощные поля известны в Индии на плато Декан, где они покрывали площадь в 5.105 км2 при средней мощности от 1 до 3км. Также известны на северо-западе США, в Сибири. В те времена базальтовые породы трещинных излияний были обеднены кремнеземом (около 50%) и обогащены двухвалентным железом (8-12%). Лавы подвижные, жидкие, и поэтому прослеживались на десятки километров от места своего излияния. Мощность отдельных потоков была 5-15м. В США, также как и в Индии накапливались многокилометровые толщи, это происходило постепенно, пласт за пластом, в течении многих лет. Такие плоские лавовые образования с характерной ступенчатой формой рельефа получили название платобазальтов или траппов. В настоящее время трещинный вулканизм распространен в Исландии (вулкан Лаки), на Камчатке (вулкан Толбачинский), и на одном из островов Новой Зеландии. Наиболее крупное извержение лавы на острове Исландия вдоль гигантской трещины Лаки, длиной 30 км, произошло в 1783 г., когда лава в течении двух месяцев поступала на дневную поверхность. За это время излилось 12км 3 базальтовой лавы, которая затопила почти 915км2 прилегающей низменности слоем мощностью в 170м. Сходное извержение наблюдалось в 1886г. на одном из островов Новой Зеландии. В течении двух часов на отрезке 30км действовала 12 небольших кратеров диаметром в несколько сотен метров. Извержение сопровождалось взрывами и выбросом пепла, который покрыл площадь в 10 тыс.км2 , около трещины мощность покрова достигала 75м. Взрывной эффект усиливался мощным выделением паров из озерных бассейнов, прилегавших к трещине. Такие взрывы, обусловленные наличием воды, получили название фреатические. После извержения на месте озер образовалась грабенообразная впадина длиной в 5км и шириной 1,5-3км.

2.3. Центральный тип.

Типы извержения

В зависимости от количеств, соотношения извергаемых вулканических продуктов (газовые, жидкие или твердые) и вязкости лав выделены четыре главных типа извержений: гавайский(эффузивный), стромболианский(смешанный), купольный(экструзивный) и вулканский.

3.1. Гавайский тип. Гавайский - вулканические горы имеют пологие склоны; их конуса сложены слоями остывшей лавы. В кратере действующих гавайских вулканов находится жидкая лава основного состава с очень небольшим содержанием газов. Она бурно кипит в кратере - небольшом озере на вершине вулкана, представляя собой великолепное зрелище, особенно ночью.

Строение Вулкана 1 - вулканическая бомба; 2 – канонический вулкан; 3 – слой пепла золы и лавы; 4 – дайка; 5 – жерло вулкана; 6 – силь; 7 – магматический очаг; 8 – щитовой вулкан.

Тусклую красновато-коричневую поверхность лавового озера периодически прорывают ослепительные струи лавы, взлетающие вверх. При извержении уровень лавового озера начинает спокойно, почти без толчков и взрывов, подниматься и доходит до краев кратера, затем лава переливается через край и, имея весьма жидкую консистенцию, растекается на обширной территории, со скоростью около 30км/ч, на десятки километров. Периодические извержения вулканов Гавайских островов приводят к постепенному увеличению их объема за счет наращивания склонов застывшей лавы. Так, объем вулкана Мауна-Лоа достигает 21.103 км3 ; он больше, чем объем любого из известных вулканов на земном шаре. По гавайскому типу происходит извержение вулканов на островах Самоа в восточной части Африки, на Камчатке и на самих Гавайских островах - Мауна-Лоа и Килауэа.

3.2. Стромболианский тип. Эталоном стромболианского типа является извержение вулкана Стромболи (Липарские острова) в Средиземном море. Обычно вулканы этого типа - это страто-вулканы и извержения происходящие в них сопровождаются сильными взрывами и подземными толчками, выбросами паров и газов, вулканического пепла, лапиллей. Иногда отмечается излияние лавы на поверхность, но в следствии значительной вязкости протяженность потоков бывает небольшой. Извержения подобного типа наблюдаются у вулкана Ицалько в центральной Америке; у вулкана Михара в Японии; у ряда вулканов Камчатки (Ключевской, Толбачек и других). Схожееизвержение, по последовате-льности событий и выделяемым продуктам, но в более крупных размерах произошло в 79 году.Это извержение можно отнести к подтипу стромболианского извержения и назвать его - Везувианский. Извержению вулкана Везувий, отчасти Этны и Вулкано (Средиземное море), предшествовало сильное землятресение. Затем из кратера вырвался расширяющийся кверху столб белого пара. Постепенно выбрасываемые пепел и обломки пород придали "облаку" черный цвет и начали падать на землю вместе со страшным ливнем. Излияние лавы было сравнительно небольшим. Лава имела средний состав и стекала по склону горы со скоростью 7км/ч. Основные разрушения были причинены землятресением и падающими на землю вулканическим пеплом и бомбами, представляющие собой обломки пород и застывшие сгустки лавы. Потоки ливня с пеплом образовали жидкую грязь, с которой были погребены расположенные на склонах Везувия города - Помпея (на юге), Геркуланум (на юго-западе) и Стабия (на юго-востоке). 3.3. Вулканы России и другие типы.

Для купольного типа характерно выжимание и выталкивание вязкой (андезитовой, дацитовой или риолитовой) лавы сильным напором из канала вулкана и образование куполов (Пюи-де-Дом в Оверни, Франция; Центральный Семячик, на Камчатке), криптокуполов (Сева-Синдзан на острове Хоккайдо, Япония) и обелисков (Шивелуч на Камчатке). В вулканском типе большую роль играют газы, производящие взрывы и выбросы огромных туч, переполненным большим количеством обломков горных пород, лав и пепла. Лавы вязкие, образуют небольшие потоки (Авачинская Сопка и Карымская сопка на Камчатке). Каждый из главных типов извержения разделяют на несколько подтипов (стромболианский тип, подтип - Везувианский).

Из них особо выделяются Пелейский, Кракатау, Маар, которые в той или иной степени являются промежуточными между купольным и вулканским типами. Пелейский подтип выделен по извержению вулкана Монтань-Пеле (Лысая гора) весной 1902 года на острове Мартиника в Атлантическом океане. Весной 1902г. гору Монтань-Пеле, которая в течении многих лет считалась потухшим вулканом и на склонах которой вырос город Сен-Пьер, неожиданно потряс мощный взрыв. Первый и последующие взрывы сопровождались появлением трещин на стенках вулканического конуса, из которого вырывались черные палящие тучи, состоящие из капелек расплавленной лавы, раскаленного (свыше 7000с) пепла и газов. 8 мая одна из таких туч устремилась к югу и в течении нескольких минут буквально уничтожила город Сен-Пьер. Погибло около 28000 жителей; спаслись только те, кто успел отплыть от берега. Не успевшие отшвартовать суда сгорели или были перевернуты, вода в гавани закипела. В городе спасся только один человек, защищенный толстыми стенами городской тюрьмы. Извержение вулкана завершилось лишь в октябре. Чрезвычайно вязкая лава медленно выдавила из вулканического канала пробку высотой 400м, образовавшую уникальный природный обе- лиск. Однако вскоре верхняя часть его откололась по косой трещине; высота оставшейся остроугольной иглы составляла около 270м, но и она под действием процессов выветривания была разрушена уже в 1903 году. Эталоном типа Кракатау взято извержение одноименного вулкана находящегося между островами Суматра и Ява. 20 мая 1883 года с немецкого военного судна, шедшего зондским проливом (между островами Ява и Суматра), увидели громадное пиниеобразное облако, поднимавшееся с группы островов Кракатау. Были отмечены огромная высота облака - около 10-11км, и частые - каждые 10-15 мин взрывы, сопровождавшиеся выбросом пепла на высоту 2-3км. После майского извержения активность вулкана несколько стихла и лишь в середине июля произошло новое мощное извержение. Однако основная катастрофа разыгралась 26 августа. В этот день после полудня на судне "Медея" заметили столб пепла высотой уже 27-33км, а мельчайший вулканический пепел был поднят на высоту 60-80км и в течении 3 лет после извержения находился в верхних слоях атмосферы. Звук взрыва был слышен в Австралии (за 5тыс. километров от вулкана), а взрывная волна трижды обежала планету. Даже 4 сентября, т.е через 9 дней после взрыва, самопишущие барометры продолжали отмечать незначительные колебания атмосферного давления. К вечеру на окрестных островах выпал дождь с пеплом. Пепел падал всю ночь; на кораблях, находившихся в Зондском проливе, толщина его слоя достигала 1,5м. К 6 часам утра в проливе разразилась страшная буря - море вышло из берегов, высота волн достигала 30-40м. Волнами были разрушены приближенные города и дороги на островах Ява и Суматра; население ближайших к вулкану островов погибло полностью. Общее число жертв, по официальным данным, достигло 40000.

Мощным вулканическим взрывом на две трети был разрушен главный остров архипелага Кракатау - Раката: в воздух была выброшена часть острова 4ґ6км2 с двумя вулканическими конусами Данан и Пербуатан. На их месте образовался провал, глубина моря в котором достигала 360м. Волна цунами за несколько часов достигла берегов Франции и Панамы, у берегов Южной Америки скорость ее распространения еще составляла 483 км/ч. Извержения типа Маар происходили в прошлые геологические эпохи. Они отличались сильными газовыми взрывами, выбрасывалось значительное количество газообразных и твердых продуктов. Излияние лавы не происходило из-за очень кислого состава магмы, которая в силу своей вязкости закупоривала жерло вулкана и приводила к взрывам. В результате возникали воронки взрыва диаметром от сотен метров до нескольких километров. Эти углубления иногда окружались невысоким валом, образовавшимся из выброшенных продуктов, среди которых встречаются обломки лав.Похожие на трубки взрыва типа маар - диатмеры. Их расположение известно в Сибири, в Южной Африке и в других местах. Это цилиндрические трубки, вертикально пересекающие пласты и заканчивающиеся воронкообразным расширением. Диатмеры заполнены брекчией - породой с обломками сланцев и песчаников. Брекчии алмазоносны, из них производится промышленная добыча алмазов.

Обширные пространства России в Европе и Азии принадлежат к малоподвижным участкам земной коры - платформам - и только на окраинах (Кавказ, Средняя Азия, Дальний Восток) существуют геосинклинальные зоны, отличающиеся большой сейсмичностью и активным вулканизмом. Из недавно потухших вулканов в Главном Кавказском хребте находятся упоминавшиеся уже Эльбрус и Казбек. в Закавказье, Восточном Саяне, Прибайкалье, Забайкалье, на Дальнем Востоке и Северо-востоке России известны молодые излияния эффузивных пород, а местами сохранились и вулканы - признаки недавнего здесь вулканизма. Действующие вулканы на территории России находятся лишь на самой восточной окраине: на п-ове Камчатка и Курильских островах. Исследования русских вулканов начал еще в XVIII в. друг и современник М. В. Ломоносова путешественник и географ С. П. Крашенинников, посетивший и изучавший Камчатку в 1737-1741 гг. Его талантливая книга «Oписание Земли Камчатки», где две главы «о огнедышащих горах» и «0 горячих ключах» впервые посвящены описанию камчатских вулканов и гейзеров, является первым научным трудом по исследованию вулканов и началом русской вулканологии. Позднее поступали редкие отрывочные сведения о вулканах Камчатки от моряков и путешественников и несколько более подробные сведения от участников некоторых экспедиций прошлого столетия: А. Постельса, А. Эрмана, К. Дитмара, К. И. Богдановича и других. Наиболее глубокие исследования вулканов Камчатки начал в 1931 г. А. Н. Заварицкий, который выявил связь линейного расположения вулканов с внутренним строением полуострова, с вероятными по этим направлениям глубокими разломами в земной коре.

В 1935 г. по инициативе Ф. Ю. Левинсон-Лессинга была организована у подножия Ключевской Сопки вулканологическая станция Академии наук СССР для систематических научно-исследовательских наблюдений современной деятельности камчатских вулканов. О вулканической деятельности на Курильских островах были опубликованы в конце прошлого и начале текущего столетий отрывочные сведения путешественников Б. Р. Головина и Ф. Крузенштерна, Д. Мильна и Г. Снoу. После Bеликой Отечественной войны вулканы Курильских островов более детально изучали Г. Б. Корсунская и Б. И. Bлодавец, а в настоящее время их изучение продолжают научные сотрудники Камчатской вулканологической станции.П-ов Камчатка представляет собой один из немногих участков земной поверхности, обильно насыщенный вулканами. в настоящее время здесь насчитывается не менее 180 вулканов, из которых 14 активно действующих, 9 вулканов затухающих и более 157 вулканов потухших. Кроме вулканов Камчатка изобилует гейзерами, горячими источниками и вулканическими сальзами. П-ов Камчатка расположен в подвижной зоне земной коры, захваченной альпийской складчатостью и вулканизмом, и относится к вулканическому Тихоокеанскому «огненному кольцу». Интенсивный вулканизм Камчатки u u v сочетается с высокой сейсмичностью, с частыми землетрясениями силой до 9 баллов. Оба этих геологических процесса играли и играют значительную роль в образовании, как внутреннего строения, так и рельефа полуострова. Характер поверхности полу.острова типичен для горно-вулканической страны. Bдоль полуострова вытянуты в северо-восточном направлении два горных хребта: в западной части проходит Срединный хребет, а вдоль восточного пoбepeжья - Bосточно-Камчатский.

По современным представлениям, вулканизм является внешней, так называемой эффузивной формой магматизма - процесса, связанного с движением магмы из недр Земли к ее поверхности. На глубине от 50 до 350км, в толще нашей планеты образуются очаги расплавленного вещества - магмы. По участкам дробления и разломов земной коры, магма поднимается и изливается на поверхность в виде лавы отличается от магмы тем, что почти не содержит летучих компонентов, которые при падении давления отделяются от магмы и уходят в атмосферу.

При этих излияниях магмы на поверхность и образуются вулканы.

Вулканы бывают трех типов:

  • 1) Площадные вулканы. В настоящее время такие вулканы не встречаются, или можно сказать не существуют. Так как эти вулканы приурочены к выходу большого количества лавы на поверхность большой площади; т. е отсюда мы видим, что они существовали на ранних этапах развития земли, когда земная кора была довольно тонкой и на отдельных участках она могла целиком быть расплавленной.
  • 2) Трещинные вулканы. Они проявляются в излиянии лавы на земную поверхность по крупным трещинам или расколам. В отдельные отрезки времени, в основном на доисторическом этапе, этот тип вулканизма достигал довольно широких масштабов, в результате чего на поверхность Земли выносилось огромное количество вулканического материала - лавы. Мощные поля известны в Индии на плато Декан, где они покрывали площадь в 5,105 км2 при средней мощности от 1 до 3км. Также известны на северо - западе США, в Сибири. В те времена базальтовые породы трещинных излияний были обеднены кремнеземом (около 50%) и обогащены двухвалентным железом (8-12%). Лавы подвижные, жидкие, и поэтому прослеживались на десятки километров от места своего излияния. Мощность отдельных потоков была 5-15м. В США, также как и в Индии накапливались многокилометровые толщи, это происходило постепенно, пласт за пластом, в течении многих лет. Такие плоские лавовые образования с характерной ступенчатой формой рельефа получили название платобазальтов или траппов.

В настоящее время трещинный вулканизм распространен в Исландии (вулкан Лаки), на Камчатке (вулкан Толбачинский), и на одном из островов Новой Зеландии. Наиболее крупное извержение лавы на острове Исландия вдоль гигантской трещины Лаки, длиной 30 км, произошло в 1783 г., когда лава в течении двух месяцев поступала на дневную поверхность. За это время излилось 12км 3 базальтовой лавы, которая затопила почти 915км2 прилегающей низменности слоем мощностью в 170м. Сходное извержение наблюдалось в 1886г. на одном из островов Новой Зеландии. В течении двух часов на отрезке 30км действовала 12 небольших кратеров диаметром в несколько сотен метров. Извержение сопровождалось взрывами и выбросом пепла, который покрыл площадь в 10 тыс. км2, около трещины мощность покрова достигала 75м. Взрывной эффект усиливался мощным выделением паров из озерных бассейнов, прилегавших к трещине. Такие взрывы, обусловленные наличием воды, получили название фреатические. После извержения на месте озер образовалась грабенообразная впадина длиной в 5км и шириной 1,5-3км. Центральный тип. Это самый распространенный тип эффузивного магматизма. Он сопровождается образованием конусообразных вулканических гор; высота их контролируется гидростатическими силами. Дело в том, что высота h, на которую способна подняться жидкая лава плотностью pl, из первичного магматического очага, обусловлена давлением на него твердой литосферы мощностью H и плотностью ps.

Строение вулкана:

Корни вулкана, т. е его первичный магматический очаг располагается на глубине 60-100км в астеносферном слое. В земной коре на глубине 20-30км находится вторичный магматический очаг, который непосредственно и питает вулкан через жерло. Конус вулкана сложен продуктами его извержения. На вершине располагается кратер-чашеобразное углубление, которое иногда заполняется водой. Диаметры кратеров могут быть различны, например у Ключевской сопки - 675м, а у известного вулкана Везувий, погубившего Помпею - 568м. После извержения кратер разрушается и образуется впадина с вертикальными стенками - кальдеры. Диаметр некоторых кальдер достигает многих километров, например кальдера вулкана Аниакчан на Аляске равно 10км.

При извержении вулкана выделяются продукты вулканической деятельности, которые могут быть жидкими, газообразными и твердыми.

Газообразные - фумаролы и софиони, играют важную роль в вулканической деятельности. Во время кристаллизации магмы на глубине выделяющиеся газы поднимают давление до критических значений и вызывают взрывы, выбрасывая на поверхность сгустки раскаленной жидкой лавы. Также при извержении вулканов происходит мощное выделение газовых струй, создающих в атмосфере огромные грибовидные облака. Такое газовое облако состоящее из капелек расплавленной (свыше 7000с) пепла и газов, образовавшееся из трещин вулкана Мон-Пеле, в 1902г., уничтожило город Сен-Пьер и 28000 его жителей.

Состав газовых выделений во многом зависит от температуры. Различают следующие типы фумарол:

a) Сухие - температура около 5000с, почти не содержит водяных паров; насыщен хлористыми соединениями.

b) Кислые, или хлористо-водородно-сернистые - температура приблизительно равна 300-4000с.

c) Щелочные, или аммиачные - температура не больше 1800с.

d) Сернистые, или сольфатары - температура около 1000с, главным образом состоит из водяных паров и сероводорода.

e) Углекислые, или моферы - температура меньше 1000с, преимущественно углекислый газ.

Жидкие - характеризуются температурами в пределах 600-12000с. Представлена именно лавой.

Вязкость лавы обусловлена ее составом и зависит главным образом от содержания кремнезема или диоксида кремния. При высоком ее значении (более 65%) лавы называют кислыми, они сравнительно легкие, вязкие, малоподвижные, содержат большое количество газов, остывают медленно. Меньшее содержание кремнезема (60-52%) характерно для средних лав; они как и кислые более вязкие, но нагреты обычно сильнее (до 1000-12000с) по сравнению с кислыми (800-9000с). Основные лавы содержат менее 52% кремнезема и поэтому более жидкие, подвижные, свободно текут. При их застывании на поверхности образуется корочка, под которой происходит дальнейшее движение жидкости.

Твердые продукты включают в себя вулканические бомбы, лапилли, вулканический песок и пепел. В момент извержения они вылетают из кратера со скоростью 500-600м/c.

Вулканические бомбы - крупные куски затвердевшей лавы размером в поперечнике от нескольких сантиметров до 1м и более, а в массе достигают нескольких тонн (во время извержения Везувия в 79г., вулканические бомбы "слезы Везувия" достигали десятков тонн). Они образуются при взрывном извержении, которое происходит при быстром выделении из магмы содержащихся в ней газов. Вулканические бомбы бывают 2-х категорий: 1-ая, возникшие из более вязкой и менее насыщенной газами лавы; они сохраняют правильную форму даже при ударе о землю из-за корочки закаливания, образовавшейся при их остывании.2-ая, формируются из более жидкой лавы, во время полета они приобретают самые причудливые формы, дополнительно усложняющиеся приударе.

Лапилли - сравнительно мелкие обломки шлака величиной 1,5-3см, имеющие разнообразные формы.

Вулканический песок - состоит из сравнительно мелких частиц лавы (0,5см).

Еще более мелкие обломки, размером от 1мм и менее образуют вулканический пепел, который оседая на склонах вулкана или на некотором расстоянии от него образует вулканический туф.

Вулканы - это геологические образования на поверхности земной коры или коры другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы, камни (вулканические бомбы) и пирокластические потоки.

Слово «вулкан» пришло от древнеримской мифологии и происходит от имени древнеримского бога огня Вулкана.

Наука, изучающая вулканы, - вулканология, геоморфология.

Вулканы классифицируются по форме (щитовидные, стратовулканы, шлаковые конусы, купольные), активности (действующие, спящие, потухшие), местонахождению (наземные, подводные, подледниковые) и др.

Вулканическая активность

Вулканы делятся в зависимости от степени вулканической активности на действующие, спящие, потухшие и дремлющие. Действующим вулканом принято считать вулкан, извергавшийся в исторический период времени или в голоцене. Понятие активный достаточно неточное, так как вулкан, имеющий действующие фумаролы, некоторые учёные относят к активным, а некоторые к потухшим. Спящими считаются недействующие вулканы, на которых возможны извержения, а потухшими - на которых они маловероятны.

Вместе с тем, среди вулканологов нет единого мнения, как определить активный вулкан. Период активности вулкана может продолжаться от нескольких месяцев до нескольких миллионов лет. Многие вулканы проявляли вулканическую активность несколько десятков тысяч лет назад, но в настоящее время не считаются действующими.

Астрофизики, в историческом аспекте, считают, что вулканическая активность, вызванная, в свою очередь, приливным воздействием других небесных тел, может способствовать появлению жизни. В частности, именно вулканы внесли вклад в формирование земной атмосферы и гидросферы, выбросив значительное количество углекислого газа и водяного пара. Учёные также отмечают, что слишком активный вулканизм, как например, на спутнике Юпитера Ио, может сделать поверхность планеты непригодной для жизни. В то же время слабая тектоническая активность ведёт к исчезновению углекислого газа и стерилизации планеты. «Эти два случая представляют собой потенциальные границы обитаемости планет и существуют наряду с традиционными параметрами зон жизни для систем маломассивных звезд главной последовательности», - пишут учёные.

Типы вулканических построек

В общем виде вулканы подразделяются на линейные и центральные, однако это деление условно, так как большинство вулканов приурочены к линейным тектоническим нарушениям (разломам) в земной коре.

Линейные вулканы или вулканы трещинного типа, обладают протяжёнными подводящими каналами, связанными с глубоким расколом коры. Как правило, из таких трещин изливается базальтовая жидкая магма, которая растекаясь в стороны, образует крупные лавовые покровы. Вдоль трещин возникают пологие валы разбрызгивания, широкие плоские конусы, лавовые поля. Если магма имеет более кислый состав (более высокое содержание диоксида кремния в расплаве), образуются линейные экструзивные валы и массивы. Когда происходят взрывные извержения, то могут возникать эксплозивные рвы протяжённостью в десятки километров.

Формы вулканов центрального типа зависят от состава и вязкости магмы. Горячие и легкоподвижные базальтовые магмы создают обширные и плоские щитовые вулканы (Мауна-Лоа, Гавайские острова). Если вулкан периодически извергает то лаву, то пирокластический материал, возникает конусовидная слоистая постройка, стратовулкан. Склоны такого вулкана обычно покрыты глубокими радиальными оврагами - барранкосами. Вулканы центрального типа могут быть чисто лавовыми, либо образованными только вулканическими продуктами - вулканическими шлаками, туфами и т. п. образованиями, либо быть смешанными - стратовулканами.

Различают моногенные и полигенные вулканы. Первые возникли в результате однократного извержения, вторые - многократных извержений. Вязкая, кислая по составу, низкотемпературная магма, выдавливаясь из жерла, образует экструзивные купола (игла Монтань-Пеле, 1902 г.).

Кроме кальдер существуют и крупные отрицательные формы рельефа, связанные с прогибанием под воздействием веса извергнувшегося вулканического материала и дефицитом давления на глубине, возникшим при разгрузке магматического очага. Такие структуры называются вулканотектоническими впадинами,депрессиями. Вулканотектонические впадины распространены очень широко и часто сопровождают образование мощных толщ игнимбритов - вулканических пород кислого состава, имеющих различный генезис. Они бывают лавовыми или образованными спёкшимися или сваренными туфами. Для них характерны линзовидные обособления вулканического стекла, пемзы, лавы, называемых фьямме и туфовая или тофовидная структура основной массы. Как правило, крупные объёмы игнимбритов связаны с неглубоко залегающими магматическими очагами, сформировавшимися за счёт плавления и замещения вмещающих пород. Отрицательные формы рельефа , связанные с вулканами центрального типа, представлены кальдерами - крупными провалами округлой формы, диаметром в несколько километров.

Классификация вулканов по форме

Форма вулкана зависит от состава извергаемой им лавы; обычно рассматривают пять типов вулканов:

  • Щитовидные вулканы, или «щитовые вулканы». Образуются в результате многократных выбросов жидкой лавы. Эта форма характерна для вулканов, извергающих базальтовую лаву низкой вязкости: она длительное время вытекает как из центрального жерла, так и из боковых кратеров вулкана. Лава равномерно растекается на многие километры; постепенно из этих наслоений формируется широкий «щит» с пологими краями. Пример - вулкан Мауна-Лоа на Гавайях, где лава стекает прямо в океан ; его высота от подножия на дне океана составляет примерно десять километров (при этом подводное основание вулкана имеет длину 120 км и ширину 50 км).
  • Шлаковые конусы. При извержении таких вулканов крупные фрагменты пористых шлаков нагромождаются вокруг кратера слоями в форме конуса, а мелкие фрагменты формируют у подножия покатые склоны; с каждым извержением вулкан становится всё выше. Это - самый распространённый тип вулканов на суше. В высоту они - не больше нескольких сотен метров. Пример - вулкан Плоский Толбачик на Камчатке, который взорвался в декабре 2012 года.
  • Стратовулканы, или «слоистые вулканы». Периодически извергают лаву (вязкую и густую, быстро застывающую) и пирокластическое вещество - смесь горячего газа, пепла и раскалённых камней; в результате отложения на их конусе (остром, с вогнутыми склонами) чередуются. Лава таких вулканов вытекает также из трещин, застывая на склонах в виде ребристых коридоров, которые служат опорой вулкана. Примеры - Этна, Везувий, Фудзияма.
  • Купольные вулканы. Образуются, когда вязкая гранитная магма, поднимаясь из недр вулкана, не может стечь по склонам и застывает вверху, образуя купол. Она закупоривает его жерло, как пробка, которую со временем вышибают накопившиеся под куполом газы. Такой купол формируется сейчас над кратером вулкана Сент-Хеленс на северо-западе США, образовавшегося при извержении 1980 г.
  • Сложные (смешанные, составные) вулканы.

Извержение вулкана

Извержения вулканов относятся к геологическим чрезвычайным ситуациям, которые могут привести к стихийным бедствиям. Процесс извержения может длиться от нескольких часов до многих лет. Среди различных классификаций выделяются общие типы извержений:

  • Гавайский тип - выбросы жидкой базальтовой лавы, часто образуются лавовые озёра, должны напоминать палящие тучи или раскалённые лавины.
  • Гидроэксплозивный тип - извержения, происходящие в мелководных условиях океанов и морей, отличаются образованием большого количества пара, возникающего при контакте раскалённой магмы и морской воды.

Поствулканические явления

После извержений, когда активность вулкана либо прекращается навсегда, либо он «дремлет» в течение тысяч лет, на самом вулкане и его окрестностях сохраняются процессы, связанные с остыванием магматического очага и называемые поствулканическими. К ним относят фумаролы, термы, гейзеры.

Во время извержений иногда происходит обрушение вулканического сооружения с образованием кальдеры - крупной впадины диаметром до 16 км и глубиной до 1000 м. При подъеме магмы внешнее давление ослабевает, связанные с ней газы и жидкие продукты вырываются на поверхность, и происходит извержение вулкана. Если на поверхность выносятся древние горные породы, а не магма, и среди газов преобладает водяной пар, образовавшийся при нагревании подземных вод, то такое извержение называют фреатическим.

Поднявшаяся к земной поверхности лава не всегда на эту поверхность выходит. Она лишь поднимает слои осадочных пород и застывает в виде компактного тела (лакколита), образуя своеобразную систему невысоких гор. В Германии к таким системами относятся области Рён и Эйфель. На последней наблюдается и другое поствулканическое явление в виде озёр, заполняющих кратеры бывших вулканов, которым не удалось сформировать характерный вулканический конус (так называемые маары).

Источники тепла

Одной из нерешённых проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твёрдом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объёмов твёрдого материала. Например, в США в бассейне реки Колумбия (штаты Вашингтон и Орегон) объём базальтов более 820 тыс. км³; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует ещё одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твёрдом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.

Районы вулканической активности

Основные районы вулканической активности - Южная Америка , Центральная Америка, Ява, Меланезия, Японские острова, Курильские острова, Камчатка, северо-западная часть США, Аляска, Гавайские острова, Алеутские острова, Исландия, Атлантический океан .

Грязевые вулканы

Грязевые вулканы - небольшие вулканы, через которые на поверхность выходит не магма, а жидкая грязь и газы из земной коры. Грязевые вулканы намного меньше по размерам, чем обыкновенные. Грязь, как правило, выходит на поверхность холодной, но газы, извергаемые грязевыми вулканами, часто содержат метан и могут загореться во время извержения, создавая картину, похожую на извержение обыкновенного вулкана в миниатюре.

В нашей стране грязевые вулканы более всего распространены на Таманском полуострове, встречаются также в Сибири, около Каспийского моря и на Камчатке. На территории других стран СНГ грязевых вулканов больше всего в Азербайджане, имеются они в Грузии и в Крыму.

Вулканы на других планетах

Вулканы в культуре

  • Картина Карла Брюллова «Последний день Помпеи»;
  • Кинофильмы «Вулкан», «Пик Данте» и сцена из фильма «2012».
  • Вулкан близ ледника Эйяфьядлайёкюдль в Исландии во время своего извержения стал героем огромного числа юмористических программ, сюжетов теленовостей, сводок и народного творчества, обсуждающего события в мире.

(Visited 774 times, 1 visits today)

Т.И.ФРОЛОВА
Вулканические породы являются продуктами глубинного процесса - вулканизма. По определению известного вулканолога А. Джаггара, вулканизм - это совокупность явлений, протекающих в земной коре и под нею, приводящих к прорыву расплавленных масс через твердую кору. Вулканизм связан с потоком горячих глубинных газов - флюидов из недр Земли. Флюиды способствуют разуплотнению и локальному подъему глубинного вещества, которое в результате понижения давления (декомпрессии) начинает частично плавиться, образуя глубинные диапиры - источники магматических расплавов. В зависимости от интенсивности прогрева образование расплавов происходит на разных уровнях мантии и земной коры, начиная с глубин 300 - 400 км.

Вулканология - это наука о вулканах и их продуктах (вулканических породах), о причинах вулканизма, обусловленных геодинамическими, тектоническими и физико-химическими процессами, совершающимися в недрах Земли. Помимо собственно геологических наук: исторической геологии, геотектоники, петрографии, минералогии, литологии, геохимии и геофизики, вулканология использует данные географии, геоморфологии, физической химии, а отчасти и астрономии, поскольку вулканизм представляет собою общепланетарное явление. Будучи продуктами глубинных (эндогенных) процессов, вулканы, образующиеся на поверхности Земли, оказывают влияние на окружающую среду, атмосферу и гидросферу, образование осадков. Вулканология как бы фокусирует проблемы, связывающие процессы внутренней и внешней энергетики Земли.

Общая классификация всех магматических пород, в том числе и вулканических, основана на их химическом составе и в первую очередь на содержании и соотношении в породах кремнезема и щелочей (рис. 1). По содержанию кремнезема, самого распространенного оксида в магматических породах, последние разделяются на четыре группы: ультраосновные (30 - 44% SiO2), основные (44 - 53%), средние (53 - 64%), кислые (64 - 78%). Другой важный признак классификации - щелочность пород, оценивается суммой содержаний Na2O + K2O. По этому признаку выделяются горные породы нормальной щелочности и щелочные.

Наиболее широко среди вулканических пород Земли распространены основные породы - базальты, которые являются производными вещества мантии и встречаются как в океанах, так и на континентах. Их можно сравнить с "кровью" нашей планеты, которая появляется при любом нарушении земной коры. В зависимости от геологического положения базальты различаются по составу. Большая их часть относится к породам нормальной щелочности. Это богатые известью низкощелочные (толеитовые) и известково-щелочные базальты. Реже встречаются щелочные базальты, недонасыщенные кремнеземом. Базальтовые магмы при дифференциации дают серии пород (толеитовые, известково-щелочные и щелочные), объединенные происхождением из единой магмы, сохраняющие общие признаки с родоначальными базальтовыми магмами, вплоть до крайне кислых. Среди интрузивных пород наиболее распространены граниты. Они относятся к группе кремнекислых пород, в образовании которых существенную роль играет вещество земной коры. Средние по составу породы, которые представлены преимущественно вулканическими андезитами, встречаются реже и лишь в подвижных поясах Земли. В то же время средний состав земной коры отвечает андезитам, а не базальтам или гранитам, соответствуя смеси этих последних в отношении 2: 1.

КАК ЭВОЛЮЦИОНИРОВАЛ ВУЛКАНИЗМ В ИСТОРИИ ЗЕМЛИ

Самые ранние процессы вулканизма синхронны со временем становления Земли как планеты. По всей вероятности, уже на стадии аккреции (концентрации планетного вещества за счет газово-пылевых туманностей и соударения твердых космических обломков - планетозималей) происходил ее разогрев. Выделение энергии за счет аккреции и гравитационного сжатия оказалось достаточным для ее начального, частичного или полного плавления, с последующей дифференциацией Земли на оболочки. Несколько позднее к этим источникам разогрева присоединилось выделение тепла радиоактивными элементами. Концентрация железокаменной массы Земли, как и на других планетах Солнечной системы, сопровождалась обособлением газовой, преимущественно водородной оболочки, которую она в дальнейшем потеряла в период максимальной активности Солнца, в отличие от крупных, удаленных от Солнца планет группы Юпитера. Об этом говорит обеднение современной земной атмосферы редкими инертными газами - неоном и ксеноном по сравнению с космическим веществом.

Согласно представлениям А.А. Маракушева, дифференциация железокаменной массы Земли, близкой по составу метеоритам - хондритам и полностью расплавленной под большим давлением водородной газовой оболочки, привела к высокой концентрации существенно водородных флюидов (летучих компонентов в надкритическом состоянии) в начавшем обособляться металлическом (железо-никелевом) ядре. Таким образом, Земля приобрела большой флюидный запас в своих недрах, определивший ее последующую, уникальную по своей длительности, по сравнению с другими планетами, эндогенную активность. По мере консолидации Земли в направлении от ее внешних оболочек к центру возрастало внутреннее флюидное давление и наступала периодическая дегазация, сопровождаемая образованием магматических расплавов, поступающих на поверхность при растрескивании застывшей земной коры. Таким образом, самый ранний вулканизм, который характеризовался взрывным, высокоэксплозивным характером, был связан с началом остывания Земли и сопровождался образованием атмосферы. Согласно другим представлениям, первичная атмосфера, образовавшаяся на стадии аккреции, в дальнейшем сохранилась, постепенно эволюционируя в своем составе. Так или иначе, примерно 3,8 - 3,9 млрд. лет назад, когда температура на поверхности Земли и в прилегающих частях атмосферы опустилась ниже точки кипения воды, образовалась гидросфера. Наличие атмосферы и гидросферы сделало возможным в дальнейшем развитие жизни на Земле. Сначала атмосфера была бедна кислородом, пока не появились продуцирующие ее простейшие формы жизни, что произошло около 3 млрд. лет назад (рис. 2).

О составе самых ранних вулканических пород Земли, в настоящее время полностью переработанных последующими процессами, можно судить при сравнении ее с другими планетами земной группы, в частности с относительно хорошо изученным нашим спутником - Луной. Луна - планета более примитивного развития, рано израсходовавшая свой флюидный запас и потерявшая вследствие этого эндогенную активность. В настоящее время это "мертвая" планета. Отсутствие в ней металлического ядра говорит о рано прекратившихся процессах ее дифференциации на оболочки, а пренебрежимо слабое магнитное поле - о полном застывании ее недр. В то же время о наличии флюидов на ранних этапах развития Луны свидетельствуют пузырьки газа в лунных вулканических породах, которые состоят в основном из водорода, что говорит об их высокой восстановленности.

Наиболее древние, известные в настоящее время породы Луны, развитые на поверхности лунной коры на так называемых лунных материках, имеют возраст 4,4 - 4,6 млрд. лет, что близко к предполагаемому возрасту образования Земли. Они представляют собою кристаллизовавшиеся на малых глубинах или на поверхности богатые высококальциевым полевым шпатом - анортитом - светлоцветные основные породы, которые принято называть анортозитами. Породы лунных материков подвергались интенсивной метеоритной бомбардировке с образованием обломков, частично переплавленных и смешанных с метеоритным веществом. В результате образовались многочисленные ударные кратеры, сосуществующие с кратерами вулканического происхождения. Предполагается, что нижние части лунной коры сложены породами более основного, низкокремнеземистого состава, близкими к каменным метеоритам, а непосредственно подстилают анортозиты анортитовые габбро (эвкриты). На Земле ассоциация анортозитов и эвкритов известна в так называемых расслоенных интрузивах основного состава и является результатом дифференциации базальтовой магмы. Поскольку физико-химические законы, определяющие дифференциацию, одинаковы во всей Вселенной, логично предположить, что и на Луне древнейшая кора лунных метеоритов образовалась в результате раннего плавления и последующей дифференциации магматического расплава, слагавшего верхнюю оболочку Луны в виде так называемого "лунного океана магмы". Отличия в процессах дифференциации лунных магм от земных заключаются в том, что на Луне она чрезвычайно редко доходит до образования высококремнеземистых кислых пород.

Позднее на Луне образовались крупные депрессии, названные лунными морями, выполненные более молодыми (3,2 - 4 млрд. лет) базальтами. По составу эти базальты в целом близки к базальтам Земли. Они отличаются низким содержанием щелочей, особенно натрия, и отсутствием оксидов же леза и минералов, содержащих гидроксильную группу ОН, что подтверждает потерю расплавом летучих компонентов и восстановительную обстановку вулканизма. Бесполевошпатовые породы, известные на Луне, - пироксениты и дуниты, вероятно, слагают лунную мантию, являясь либо остатком от выплавления базальтовых пород (так называемым реститом), или же их тяжелым дифференциатом (кумулатом). Ранняя кора Марса и Меркурия аналогична кратерированной коре лунных материков. На Марсе, кроме того, широко развит более поздний базальтовый вулканизм. Базальтовая кора есть и на Венере, однако данные по этой планете пока очень ограниченны.

Привлечение данных сравнительной планетологии позволяет утверждать, что формирование ранней коры планет земной группы происходило в результате кристаллизации магматических расплавов, претерпевших большую или меньшую дифференциацию. Растрескивание этой застывшей протокоры с образованием депрессий сопровождалось позднее базальтовым вулканизмом.

В отличие от других планет, на Земле не сохранилось самой ранней коры. Более или менее достоверно историю вулканизма Земли можно проследить лишь с раннего архея. Самые древние из известных возрастных датировок принадлежат архейским гнейсам (3,8 - 4 млрд. лет) и зернам минерала циркона (4,2 - 4,3 млрд. лет) в метаморфизованных кварцитах. Эти датировки на 0,5 млрд. лет моложе, чем образование Земли. Можно предположить, что все это время Земля развивалась аналогично другим планетам земной группы. Примерно с 4 млрд. лет на Земле формировалась континентальная протокора, состоящая из гнейсов, преимущественно магматического происхождения, отличающихся от гранитов меньшими содержаниями кремнезема и калия и получивших название "серых гнейсов" или ассоциации ТТГ, по названию трех главных магматических пород, соответствующих составу этих гнейсов: тоналитов, трондьемитов и гранодиоритов, подвергнутых впоследствии интенсивному метаморфизму. Однако "серые гнейсы" вряд ли представляли первичную кору Земли. Неизвестно также, насколько широко они были распространены. В отличие от значительно менее кремнеземистых пород лунных материков (анортозитов), такие большие объемы кислых пород не могут получиться при дифференциации базальтов. Образование "серых гнейсов" магматического происхождения теоретически возможно лишь при переплавлении пород базальтового или коматит-базальтового состава, вследствие своей тяжести опустившихся на глубокие уровни планеты. Таким образом, мы приходим к выводу о базальтовом составе коры, более ранней, чем известная нам "серогнейсовая". Наличие ранней базальтовой коры подтверждается находками в архейских "серых" гнейсах более древних метаморфизованных блоков основного состава. Неизвестно, претерпела ли родоначальная магма базальтов, слагавших раннюю кору Земли, дифференциацию с образованием анортозитов, подобных лунным, хотя теоретически это вполне возможно. Интенсивная многостадийная дифференциация планетного вещества, которая привела к образованию кислых гранитоидных пород, стала возможной благодаря водному режиму, установившемуся на Земле в связи с большим флюидным запасом в ее недрах. Вода способствует дифференциации и очень важна для образования кислых пород.

Таким образом, в течение самого раннего (катархейского) и архейского времени, преимущественно в результате процессов магматизма, к которым после образования гидросферы присоединилось осадконакопление, сформировалась земная кора. Она начала интенсивно перерабатываться продуктами активной дегазации ранней Земли с привносом кремнезема и щелочей. Дегазация была обусловлена формированием твердого внутреннего ядра Земли. Она вызывала процессы метаморфизма вплоть до плавления с общим покислением состава коры. Итак, уже в архее Земля имела все присущие ей твердые оболочки - кору, мантию и ядро.

Нарастающие различия в степени проницаемости коры и верхней мантии, которые были обусловлены различиями в их тепловом и геодинамическом режиме, привели к неоднородности состава коры и к формированию разных ее типов. В областях сжатия, где была затруднена дегазация и подъем на поверхность возникающих расплавов, последние испытывали интенсивную дифференциацию, а ранее образовавшиеся основные вулканические породы, уплотняясь, опускались на глубину и переплавлялись. Формировалась протоконтинентальная двухслойная кора, имевшая контрастный состав: верхняя ее часть была сложена преимущественно кислыми вулканическими и интрузивными породами, переработанными метаморфическими процессами в гнейсы и гранулиты, нижняя - породами основного состава, базальтами, коматитами и габброидами. Такая кора была свойственна протоконтинентам. В областях растяжения формировалась протоокеаническая кора, имевшая преимущественно базальтовый состав. По расколам в протоконтинентальной коре и в зонах ее сочленения с протоокеанической образовывались первые подвижные пояса Земли (протогеосинклинали), отличавшиеся повышенной эндогенной активностью. Уже тогда они имели сложное строение и состояли из менее мобильных приподнятых зон, претерпевших интенсивный высокотемпературный метаморфизм, и зон интенсивного растяжения и прогибания. Последние получили название зеленокаменных поясов, так как слагающие их породы приобретали зеленый цвет в результате процессов низкотемпературного метаморфизма. Обстановка растяжения ранних этапов формирования подвижных поясов сменялась по мере эволюции обстановкой преобладающего сжатия, что приводило к появлению кислых пород и первых пород известково-щелочных серий с андезитами (см. рис. 1). Подвижные пояса, закончившие свое развитие, причленялись к областям развития континентальной коры и увеличивали ее площадь. По современным представлениям, от 60 до 85% современной континентальной коры было сформировано в архее, и мощность ее была близка к современной, то есть составляла около 35 - 40 км.

На рубеже архея и протерозоя (2700 - 2500 млн. лет) в развитии вулканизма на Земле наступил новый этап. Стали возможными процессы плавления в сформированной к этому времени мощной коре, появилось больше кислых пород. Состав их существенно изменился, в первую очередь за счет увеличения содержания кремнезема и калия. Широкое распространение получили настоящие калиевые граниты, которые выплавлялись из коры. Интенсивная дифференциация мантийных базальтовых расплавов под воздействием флюидов в подвижных поясах, сопровождаемая взаимодействием с материалом коры, привела к увеличению объемов андезитов (см. рис. 1). Таким образом, помимо мантийного вулканизма, все большее значение приобретал коровый и смешанный мантийно-коровый вулканизм. В то же время в связи с ослаблением процессов дегазации Земли и связанного с ними теплового потока оказались невозможными столь высокие степени плавления в мантии, которые могли привести к образованию ультраосновных коматитовых расплавов (см. рис. 1), а если они и возникали, то редко поднимались на поверхность вследствие своей высокой плотности по сравнению с земной корой. Они претерпевали дифференциацию в промежуточных камерах и на поверхность попадали их производные - менее плотные базальты. Стали менее интенсивными также процессы высокотемпературного метаморфизма и гранитизации, которые приобрели не площадной, а локальный характер. По всей вероятности, в это время окончательно были сформированы два типа земной коры (рис. 3), соответствующие континентам и океанам. Однако время образования океанов пока окончательно не определено.

В последующий этап развития Земли, который начался 570 млн. лет назад и носит название фанерозойского, те тенденции, которые появились в протерозое, получили дальнейшее развитие. Вулканизм становится все более разнообразным, приобретая четкие различия в океанических и континентальных сегментах. В зонах растяжения в океанах (срединно-океанических рифтовых хребтах) изливаются толеитовые базальты, а в аналогичных зонах растяжения на континентах (континентальных рифтах) к ним присоединяются и часто над ними превалируют щелочные вулканические породы. Подвижные пояса Земли, получившие название геосинклинальных, являются магматически активными десятки и сотни миллионов лет, начиная с раннего толеит-базальтового вулканизма, образующего совместно с ультраосновными интрузивными породами офиолитовые ассоциации в условиях растяжения. Позднее, по мере смены растяжения сжатием, они сменяются контрастным базальт-риолитовым и известково-щелочным андезитовым вулканизмом, достигшим расцвета в фанерозое. После складчатости,образования гранитов и орогенеза (роста гор) вулканизм в подвижных поясах становится щелочным. Таким вулканизмом обычно и заканчивается их эндогенная активность.

Эволюция вулканизма в фанерозойских подвижных поясах повторяет таковую в развитии Земли: от однородных базальтовых и контрастных базальт-риолитовых ассоциаций, господствовавших в архее, к непрерывным по кремнекислотности с большими объемами андезитов и, наконец, к щелочным ассоциациям, которые практически отсутствуют в архее. Эта эволюция как в отдельных поясах, так и на Земле в целом отражает общее уменьшение проницаемости и возрастание жесткости земной коры, что определяет более высокую степень дифференциации мантийных магматических расплавов и их взаимодействия с материалом земной коры, углубление уровня образования магм и уменьшение степени плавления. Сказанное выше связано с изменением внутренних параметров планеты, в частности с общим уменьшением глобального теплового потока из ее недр, который оценивается в 3 - 4 раза меньшим, чем на ранних этапах развития Земли. Соответственно уменьшаются и локальные восходящие потоки флюидов, возникающие в результате периодической дегазации недр. Именно они вызывают разогрев отдельных областей (подвижных поясов, рифтов и др.) и их магматическую активность. Эти потоки образуются в связи с накоплением на фронте кристаллизации внешнего жидкого ядра легких компонентов в отдельных выступах-ловушках, которые всплывают, образуя конвективные струи.

Эндогенная активность периодична. Она обусловила наличие крупных пульсаций Земли с попеременным преобладанием основного и ультраосновного магматизма, фиксирующего растяжение, и известково-щелочного вулканизма, гранитообразования и метаморфизма, фиксирующих преобладание сжатия. Эта периодичность определяет наличие магматических и тектонических циклов, которые как бы наложены на необратимое развитие Земли.

ГДЕ ПРОИСХОДЯТ ВУЛКАНИЧЕСКИЕ ЯВЛЕНИЯ В КАЙНОЗОЕ?

Геологические структуры, где образуются вулканические породы в самый молодой, кайнозойский, этап развития Земли, начавшийся 67 млн. лет назад, находятся как в пределах океанических, так и континентальных сегментов Земли. К первым относятся срединные океанические хребты и многочисленные вулканы океанического дна, наиболее крупные из которых образуют океанические острова (Исландия, Гавайи и др.). Всем им свойственна обстановка высокой проницаемости земной коры (рис. 4). На континентах в аналогичной обстановке извергаются вулканы, связанные с крупными зонами растяжения - континентальными рифтами (Восточно-Африканский, Байкальский и др.). В обстановках преимущественного сжатия возникает вулканизм в горных сооружениях, представляющих собою в настоящее время активные внутриконтинентальные подвижные пояса (Кавказ, Карпаты и др.). Своеобразны подвижные пояса на окраинах континентов (так называемые активные окраины). Они развиты преимущественно по периферии Тихого океана, причем в западной его окраине в них, как и в древних подвижных поясах, сочетаются зоны преимущественного сжатия - островные дуги (Курило-Камчатская, Тонга, Алеутская и др.) и зоны интенсивного растяжения - тыловые окраинные моря (Японское, Филиппинское, Коралловое и др.). В подвижных поясах восточной окраины Тихого океана растяжение менее значительно. На краю Американского континента находятся горные цепи (Анды, Кордильеры), являющиеся аналогами островных дуг, в тылу которых расположены континентальные депрессии - аналоги окраинных морей, где господствует обстановка растяжения. В условиях высокой проницаемости, как всегда в истории Земли, изливаются мантийные расплавы, причем в океанических структурах они обладают преимущественно нормальной щелочностью, а в континентальных - повышенной и высокой. В обстановках преобладающего сжатия на континентальной коре, помимо мантийных, широко распространены породы смешанного мантийно-корового (андезиты) и корового (некоторые кислые эффузивы и граниты) происхождения (рис. 5).

Если учесть особенности современного этапа развития Земли, к которым относятся высокая интенсивность процесса формирования океанов и широкое развитие рифтовых зон на континентах, то становится ясным, что в кайнозойский этап развития преобладает растяжение и, как следствие, широко распространен связанный с ним мантийный, преимущественно базальтовый вулканизм, особенно интенсивный в океанах.

КАК ПРОЦЕССЫ ВУЛКАНИЗМА ПРЕОБРАЗУЮТ ЗЕМНУЮ КОРУ

Еще в начале прошлого столетия было замечено, что горные породы образуют закономерно повторяющиеся ассоциации, получившие название геологических формаций, более тесно связанных с геологическими структурами, чем отдельные породы. Ряды формаций, сменяющие друг друга во времени, получили название временных, а сменяющие друг друга в пространстве - латеральных формационных рядов. Совместно они дают возможность расшифровать основные этапы развития геологических структур и являются важными индикаторами при восстановлении геологических обстановок прошлого. Вулканогенные формации, включающие в себя вулканические породы, продукты их перемыва и переотложения, а нередко и осадочные породы, удобнее использовать для указанных целей, чем интрузивные, поскольку они являются членами слоистых разрезов, что позволяет точно определить время их формирования.

Существует два типа рядов вулканогенных формаций. Первый, называемый гомодромным, начинается основными породами - базальтами, сменяясь формациями с постепенно возрастающими объемами средних и кислых пород. Второй ряд - антидромный, начинается с формаций преимущественно кислого состава с возрастанием роли основного вулканизма к концу ряда . Первый, таким образом, связан с мантийным вулканизмом и с высокой проницаемостью коры, и лишь по мере уменьшения проницаемости и прогрева коры глубинным теплом последняя начинает участвовать в магмообразовании. Антидромный ряд свойствен геологическим структурам с мощной, слабо проницаемой континентальной корой, когда затруднено непосредственное проникновение на поверхность мантийных расплавов. Они взаимодействуют с материалом земной коры тем более интенсивно, чем она больше прогревается. Базальтовые формации появляются лишь впоследствии, когда кора растрескивается под напором мантийных магм.

Гомодромные ряды вулканических формаций свойствены океанам и геосинклинальным подвижным поясам и отражают соответственно формирование океанической и континентальной земной коры. Антидромные ряды характерны для структур, закладывающихся на прогретой после предшествующего цикла магматизма континентальной коре. Характерными примерами являются окраинные моря и континентальные рифты, возникающие непосредственно после орогенеза (эпиорогенные рифты). В них с начала магматических циклов возникают мантийно-коровые и коровые породы среднего и кислого состава, сменяясь основными по мере разрушения (деструкции) континентальной коры. В случае если этот процесс заходит достаточно далеко, как, например, в окраинных морях, то континентальная кора в результате сложного комплекса процессов, включающих растяжение, сменяется океанической.

Наиболее разнообразными и разнонаправленными являются процессы преобразования коры в длительно развивающихся подвижных поясах геосинклинального типа, весьма разнородных по входящим в них структурам. В них присутствуют структуры и с режимом растяжения, и с режимом сжатия, и тип преобразования коры зависит от преобладания тех или иных процессов. Однако господствуют, как правило, процессы формирования новой континентальной коры, которая причленяется к ранее образованной, увеличивая ее площадь. Но это происходит отнюдь не всегда, так как, несмотря на огромные площади, занимаемые подвижными поясами разного возраста, подавляющая часть континентальной коры имеет архейский возраст. Следовательно, и в пределах подвижных поясов происходило разрушение уже сформированной континентальной коры. Об этом свидетельствует и срезание структур окраин континентов океанической корой.

Вулканизм отражает эволюцию Земли в течение ее геологической истории. Необратимость развития Земли выражается в исчезновении или резком уменьшении объемов одних типов пород (например, коматитов) наряду с появлением или увеличением объемов других (например, щелочных пород). Общая тенденция эволюции свидетельствует о постепенном затухании глубинной (эндогенной) активности Земли и увеличении процессов переработки континентальной коры при магмообразовании.

Вулканизм - индикатор геодинамических обстановок растяжения и преобладающего сжатия, существующих на Земле. Типоморфным для первых является мантийный вулканизм, для вторых - мантийно-коровый и коровый.

Вулканизм отражает наличие цикличности на фоне общего необратимого развития Земли. Цикличность определяет повторяемость формационных рядов в одной отдельно взятой и в разновременных, но однотипных геологических структурах.

Эволюция вулканизма в геоструктурах Земли является индикатором формирования земной коры и ее разрушения (деструкции). Эти два процесса непрерывно преобразуют земную кору, осуществляя обмен веществом между твердыми оболочками Земли - корой и мантией.

* * *
Татьяна Ивановна Фролова - профессор кафедры петрологии геологического факультета Московского государственного университета им. М.В. Ломоносова, заслуженный профессор МГУ, действительный член Академии естественных наук (РАЕН) и Международной Академии наук высшей школы; специалист в области вулканизма подвижных поясов Земли - древних (Урал) и современных (Западно-Тихоокеанская активная окраина); автор монографий: "Геосинклинальный вулканизм" (1977), "Происхождение вулканических серий островных дуг" (1987), "Магматизм и преобразование земной коры активных окраин" (1989) и др.