Детерминированное моделирование факторных систем. Мультипликативная индексная двухфакторная модель

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.

Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.

При построении экономических моделей выявляются существенные факторы и отбрасываются детали несущественные для решения поставленной задачи.

К экономическим моделям могут относится модели:

  • экономического роста
  • потребительского выбора
  • равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса.

Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса.

Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель

В управлении хозяйственными процессами наибольшее значение имеют прежде всего экономико-математические модели , часто объединяемые в системы моделей.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей
  • Экстраполяционные модели
  • Факторные эконометрические модели
  • Оптимизационные модели
  • Балансовые модели, модель МежОтраслевогоБаланса (МОБ)
  • Экспертные оценки
  • Теория игр
  • Сетевые модели
  • Модели систем массового обслуживания

Экономико-математические модели и методы, применяемые в экономическом анализе

R a = ЧП / ВА + ОА ,

В обобщенном виде смешанная модель может быть представлена такой формулой:

Итак, вначале следует построить экономико-математическую модель, описывающую влияние отдельных факторов на обобщающие экономические показатели деятельности организации. Большое распространение в анализе хозяйственной деятельности получили многофакторные мультипликативные модели , так как они позволяют изучить влияние значительного количества факторов на обобщающие показатели и тем самым достичь большей глубины и точности анализа.

После этого нужно выбрать способ решения этой модели. Традиционные способы : способ цепных подстановок, способы абсолютных и относительных разниц, балансовый способ, индексный метод, а также методы корреляционно-регрессионного, кластерного, дисперсионного анализа, и др. Наряду с этими способами и методами в экономическом анализе используются и специфически математические способы и методы.

Интегральный метод экономического анализа

Одним из таких способов (методов) является интегральный. Он находит применение при определении влияния отдельных факторов с использованием мультипликативных, кратных, и смешанных (кратно-аддитивных) моделей.

В условиях применения интегрального метода имеется возможность получения более обоснованных результатов исчисления влияния отдельных факторов, чем при использовании метода цепных подстановок и его вариантов. Метод цепных подстановок и его варианты, а также индексный метод имеют существенные недостатки: 1) результаты расчетов влияния факторов зависят от принятой последовательности замены базисных величин отдельных факторов на фактические; 2) дополнительный прирост обобщающего показателя, вызванный взаимодействием факторов, в виде неразложимого остатка присоединяется к сумме влияния последнего фактора. При использовании же интегрального метода этот прирост делится поровну между всеми факторами.

Интегральный метод устанавливает общий подход к решению моделей различных видов, причем независимо от числа элементов, которые входят в данную модель, а также независимо от формы связи между этими элементами.

Интегральный метод факторного экономического анализа имеет в своей основе суммирование приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках.

В процессе применения интегрального метода необходимо соблюдение нескольких условий. Во-первых, должно соблюдаться условие непрерывной дифференцируемости функции, где в качестве аргумента берется какой-либо экономический показатель. Во-вторых, функция между начальной и конечной точками элементарного периода должна изменяться по прямой Г е . Наконец, в третьих, должно иметь место постоянство соотношения скоростей изменения величин факторов

d y / d x = const

При использовании интегрального метода исчисление определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования осуществляется по имеющейся стандартной программе с применением современных средств вычислительной техники.

Если мы осуществляем решение мультипликативной модели, то для расчета влияния отдельных факторов на обобщающий экономический показатель можно использовать следующие формулы:

ΔZ(x) = y 0 * Δ x + 1/2 Δ x * Δ y

Z(y)= x 0 * Δ y +1/2 Δ x * Δ y

При решении кратной модели для расчета влияния факторов воспользуемся такими формулами:

Z=x /y ;

Δ Z(x) = Δ x y Ln y1/y0

Δ Z(y)= Δ Z - Δ Z(x)

Существует два основных типа задач, решаемых при помощи интегрального метода: статический и динамический. При первом типе отсутствует информация об изменении анализируемых факторов в течение данного периода. Примерами таких задач могут служить анализ выполнения бизнес-планов либо анализ изменения экономических показателей по сравнению с предыдущим периодом. Динамический тип задач имеет место в условиях наличия информации об изменении анализируемых факторов в течение данного периода. К этому типу задач относятся вычисления, связанные с изучением временных рядов экономических показателей.

Таковы важнейшие черты интегрального метода факторного экономического анализа.

Метод логарифмирования

Кроме этого метода, в анализе находит применение также метод (способ) логарифмирования. Он используется при проведении факторного анализа, когда решаются мультипликативные модели. Сущность рассматриваемого метода заключается в том, что при его использовании имеет место логарифмически пропорциональное распределение величины совместного действия факторов между последними, то есть эта величина распределяется между факторами пропорционально доле влияния каждого отдельного фактора на сумму обобщающего показателя. При интегральном же методе упомянутая величина распределяется между факторами в одинаковой мере. Поэтому метод логарифмирования делает расчеты влияния факторов более обоснованными по сравнению с интегральным методом.

В процессе логарифмирования находят применение не абсолютные величины прироста экономических показателей, как это имеет место при интегральном методе, а относительные, то есть индексы изменения этих показателей. К примеру, обобщающий экономический показатель определяется в виде произведения трех факторов — сомножителей f = x y z .

Найдем влияние каждого из этих факторов на обобщающий экономический показатель. Так, влияние первого фактора может быть определено по следующей формуле:

Δf x = Δf · lg(x 1 / x 0) / lg(f 1 / f 0)

Каким же было влияние следующего фактора? Для нахождения его влияния воспользуемся следующей формулой:

Δf y = Δf · lg(y 1 / y 0) / lg(f 1 / f 0)

Наконец, для того, чтобы исчислить влияние третьего фактора, применим формулу:

Δf z = Δf · lg(z 1 / z 0)/ lg(f 1 / f 0)

Таким образом, общая сумма изменения обобщающего показателя расчленяется между отдельными факторами в соответствии с пропорциями отношений логарифмов отдельных факторных индексов к логарифму обобщающего показателя.

При применении рассматриваемого метода могут быть использованы любые виды логарифмов — как натуральные, так и десятичные.

Метод дифференциального исчисления

При проведении факторного анализа находит применение также метод дифференциального исчисления. Последний предполагает, что общее изменение функции, то есть обобщающего показателя, подразделяется на отдельные слагаемые, значение каждого из которых исчисляется как произведение определенной частной производной на приращение переменной, по которой определена эта производная. Определим влияние отдельных факторов на обобщающий показатель, используя в качестве примера функцию от двух переменных.

Задана функция Z = f(x,y) . Если эта функция является дифференцируемой, то ее изменение может быть выражено следующей формулой:

Поясним отдельные элементы этой формулы:

ΔZ = (Z 1 - Z 0) - величина изменения функции;

Δx = (x 1 - x 0) — величина изменения одного фактора;

Δ y = (y 1 - y 0) -величина изменения другого фактора;

- бесконечно малая величина более высокого порядка, чем

В данном примере влияние отдельных факторов x и y на изменение функции Z (обобщающего показателя) исчисляется следующим образом:

ΔZ x = δZ / δx · Δx; ΔZ y = δZ / δy · Δy.

Сумма влияния обоих этих факторов — это главная, линейная относительно приращения данного фактора часть приращения дифференцируемой функции, то есть обобщающего показателя.

Способ долевого участия

В условиях решения аддитивных, а также кратно-аддитивных моделей для исчисления влияния отдельных факторов на изменение обобщающего показателя используется также способ долевого участия. Его сущность состоит в том, что вначале определяется доля каждого фактора в общей сумме их изменений. Затем эта доля умножается на общую величину изменения обобщающего показателя.

Предположим, что мы определяем влияние трех факторов — а ,b и с на обобщающий показатель y . Тогда для фактора, а определение его доли и умножение ее на общую величину изменения обобщающего показателя можно осуществить по следующей формуле:

Δy a = Δa/Δa + Δb + Δc*Δy

Для фактора в рассматриваемая формула будет иметь следующий вид:

Δy b =Δb/Δa + Δb +Δc*Δy

Наконец, для фактора с имеем:

Δy c =Δc/Δa +Δb +Δc*Δy

Такова сущность способа долевого участия, используемого для целей факторного анализа.

Метод линейного программирования

См.далее:

Теория массового обслуживания

См.далее:

Теория игр

Находит применение также теория игр. Так же, как и теория массового обслуживания, теория игр представляет собой один из разделов прикладной математики. Теория игр изучает оптимальные варианты решений, возможные в ситуациях игрового характера. Сюда относятся такие ситуации, которые связаны с выбором оптимальных управленческих решений, с выбором наиболее целесообразных вариантов взаимоотношений с другими организациями, и т.п.

Для решения подобных задач в теории игр используются алгебраические методы, которые базируются на системе линейных уравнений и неравенств, итерационные методы, а также методы сведения данной задачи к определенной системе дифференциальных уравнений.

Одним из экономико-математических методов, применяемых в анализе хозяйственной деятельности организаций, является так называемый анализ чувствительности. Данный метод зачастую применяется в процессе анализа инвестиционных проектов, а также в целях прогнозирования суммы прибыли, остающейся в распоряжении данной организации.

В целях оптимального планирования и прогнозирования деятельности организации необходимо заранее предусматривать те изменения, которые в будущем могут произойти с анализируемыми экономическими показателями.

Например, следует заранее прогнозировать изменение величин тех факторов, которые влияют на размер прибыли: уровень покупных цен на приобретаемые материальные ресурсы, уровень продажных цен на продукцию данной организации, изменение спроса покупателей на эту продукцию.

Анализ чувствительности состоит в определении будущего значения обобщающего экономического показателя при условии, что величина одного или нескольких факторов, оказывающих влияние на этот показатель, изменится.

Так, например, устанавливают, на какую величину изменится прибыль в перспективе при условии изменения количества продаваемой продукции на единицу. Этим самым мы анализируем чувствительность чистой прибыли к изменению одного из факторов, влияющих на нее, то есть в данном случае фактора объема продаж. Остальные же факторы, влияющие на величину прибыли, являются при этом неизменными. Можно определить величину прибыли также и при одновременном изменении в будущем влияния нескольких факторов. Таким образом анализ чувствительности дает возможность установить силу реагирования обобщающего экономического показателя на изменение отдельных факторов, оказывающих влияние на этот показатель.

Матричный метод

Наряду с вышеизложенными экономико-математическими методами в анализе хозяйственной деятельности находят применение также . Эти методы базируются на линейной и векторно-матричной алгебре.

Метод сетевого планирования

См.далее:

Экстраполяционный анализ

Кроме рассмотренных методов, используется также экстраполяционный анализ. Он включает в себя рассмотрение изменений состояния анализируемой системы и экстраполяцию, то есть продление имеющихся характеристик этой системы на будущие периоды. В процессе осуществления этого вида анализа можно выделить такие основные этапы: первичная обработка и преобразование исходного ряда имеющихся данных; выбор типа эмпирических функций; определение основных параметров этих функций; экстраполяция; установление степени достоверности проведенного анализа.

В экономическом анализе используется также метод главных компонент. Они применяется в целях сравнительного анализа отдельных составных частей, то есть параметров проведенного анализа деятельности организации. Главные компоненты представляют собой важнейшие характеристики линейных комбинаций составных частей, то есть параметров проведенного анализа, которые имеют самые значительные величины дисперсии, а именно, наибольшие абсолютные отклонения от средних величин.

Использование в анализе хозяйственной деятельности экономико-математических методов.

Способы пропорционального деления и интегральный способ.

Способы цепной подстановки, абсолютных и относительных разниц.

Приемы и способы, используемые в анализе хозяйственной деятельности

Л3. Приемы и способы, используемые в АХД.

Сравнение – сопоставление изучаемых данных и фактов хозяйственной жизни. Различают горизонтальный сравнительный анализ, который применяется для определения абсолютных и относительных отклонений фактического уровня исследуемых показателей от базового; вертикальный сравнительный анализ, используемый для изучения структуры экономических явлений; трендовый анализ, применяемый при изучении относительных темпов роста и прироста показателей за ряд лет к уровню базисного года, т.е. при исследовании рядов динамики.

Обязательным условием сравнительного анализа является сопоставимость сравниваемых показателей, предполагающая:

· единство объемных, стоимостных, качественных, структурных показателей;

· единство периодов времени, за которые производится сравнение;
· сопоставимость условий производства;

· сопоставимость методики исчисления показателей.

Средние величины – исчисляются на основе массовых данных о качественно однородных явлениях. Они помогают определять общие закономерности и тенденции в развитии экономических процессов.

Группировки – используются для исследования зависимости в сложных явлениях, характеристика которых отражается однородными показателями и разными значениями (характеристика парка оборудования по срокам ввода в эксплуатацию, по месту эксплуатации, по коэффициенту сменности и т.д.)

Балансовый метод состоит в сравнении, соизмерении двух комплексов показателей, стремящихся к определенному равновесию. Он позволяет выявить в результате новый аналитический (балансирующий) показатель.

Например, при анализе обеспеченности предприятия сырьем сравнивают потребность в сырье, источники покрытия потребности и определяют балансирующий показатель – дефицит или избыток сырья.

Графический способ. Графики являются масштабным изображением показателей и их зависимости с помощью геометрических фигур.

Графический способ не имеет в анализе самостоятельного значения, а используется для иллюстрации измерений.

Индексный метод основывается на относительных показателях, выражающих отношение уровня данного явления к его уровню, взятому в качестве базы сравнения. Статистика называет несколько видов индексов, которые применяются при анализе: агрегатные, арифметические, гармонические и т.д.



Использовав индексные пересчеты и построив временной ряд, характеризующий, например, выпуск промышленной продукции в стоимостном выражении, можно квалифицированно проанализировать явления динамики.

Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями не находящимися в функциональной зависимости, т.е. связь проявляется не в каждом отдельном случае, а в определенной зависимости.

С помощью корреляции решаются две главные задачи:
· составляется модель действующих факторов (уравнение регрессии);
· дается количественная оценка тесноты связей (коэффициент корреляции).

Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

Математическое программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

Теория игр как раздел исследования операций - это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину. Сущность моделирования заключается в том, что взаимосвязь исследуемого показателя с факторными передается в форе конкретного математического уравнения.

В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные). С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Фактор3ы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность. Факторные модели, которые отражают причинно-следственные отношения между показателями, имеют значительно большее познавательное значение, чем модели, созданные при помощи приемов математической абстракции.

Последнее можно проиллюстрировать следующим образом. Возьмем две модели:

1) ВП = КР* ГВ;

2) ГВ = ВП/КР,

где ВП - валовая продукция предприятия; КР - численность (количество) работников на предприятии; ГВ - среднегодовая выработка продукции одним работником.

В первой системе факторы находятся в причинной связи с результативным показателем, а во второй - в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.

3. Все показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:

1. Аддитивные модели используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

У = Х1+Х2+Х3+…+Хп

2. Мультипликативные модели применяются тогда, когда результативный показатель представляет собой произведение нескольких факторов.

У = Х1*Х2*Х3*…*Хп

3. Кратные модели применяются тогда, когда результативный показатель получают делением одного факторного на величину другого.

4. Смешанные модели – это сочетание в различных комбинациях предыдущих моделей.

У = (а+в)/с; У = а/(в+с); У = (а*в)/с; У = (а+в)*с.

Моделирование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как:

ВП=КР*ГВ; ВП=КР*Д*ДВ; ВП=КР*Д*П*СВ

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей, а пределах установленных правил.

За счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от целей исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его основные элементы.

Например: VРП= VВП-ВИ (объем внутрихозяйственного использования). В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом: VРП= VВП–(С+К).

К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3 ) и объема выпуска продукции (VВП ). Исходная модель этой факторной системы будет иметь вид: С=З/ VВП

Если общую сумму затрат (3 ) заменить отдельными их элементами, такими, как оплата труда (ОТ ), сырье и материалы (СМ ), амортизация основных средств (А ), накладные затраты (НЗ ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:

С=ОТ/ VВП+ СМ/ VВП+ А/ VВП+ НЗ/ VВП=х1+х2+х3+х4,

где X1- трудоемкость продукции; Х2 - материалоемкость продукции; Х3 - фондоемкость продукции; Х4- уровень накладных затрат.

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если b = l + m + n + p, то у=а/в=а/ l + m + n + p.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р): Р=П/З

Где П - сумма прибыли от реализации продукции; 3 - сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид: Р=П/ОТ+СМ+А+НЗ.

Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (3 ) и от его среднегодовой выработки (ГВ ). Исходная модель этой системы будет иметь вид: C т/км = 3 / ГВ. Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов: C т/км = 3 / ГВ=3 /Д*П*СВ.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель у=а/в ввести новый показатель с , то модель примет вид: у=а/в=а*с/в*с=а/с*с/в=х1*х2.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (åД), то получим следующую модель годовой выработки:

ГВ = ВП *åД / åД *КР= ВП/åД * åД/ КР = ДВ*Д

где ДВ – среднедневная выработка, Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (åТ) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П).

ГВ = ВП *åД *åТ / åД КР * åТ = ВП/åТ * åТ / КР * åТ /åТ = СВ*Д*П

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:

у=а/в=а:с/в:с=х1/х2.

Фондоотдача определяется отношением валовой (ВП)или товарной продукции (ТП)к среднегодовой стоимости основных производственных фондов (ОПФ):

ФО=ВП/ОПФ

Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда, и фондовооруженности труда (Фв):

ФО=ВП:КР/ОПФ:КР=ГВ/Фв

Необходимо заметить, что на практике для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:

ФО=РП/ОПФ=(П+СБ)/ОПФ=П/ОПФ+СБ/ОПФ= П/ОПФ+ОС/ОПФ*СБ/ОС

где РП – объем реализованной продукции(выручка); СБ – себестоимость реализованной продукции, П – прибыль, ОС – средние остатки основных средств.

В этом случае для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель, которая имеет большую познавательную ценность, т.к. учитывает причинно-следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияет на фондоотдачу рентабельность основных средств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.

Т.о., результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также профессиональных знаний и навыков исследователя.

Одним из важнейших методологических вопросов в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном анализе для этого используются следующие способы: цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления и интегральный метод.

Первых четыре способа основываются на методе элиминирования. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. при неизменности остальных. Это позволяет определить влияние каждого фак­тора на величину исследуемого показателя в отдельности.

Наиболее универсальным из них является прием цепной подстановки . Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминироваться (устранять, исключать) от влияния всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя.

ВП=ЧР*Д*П*ЧВ

ВПп=ЧРп*Дп*Пп*ЧВп ∆ ВПчр= ВПусл 1 - ВПп

ВП усл 1 = ЧРф*Дп*Пп*ЧВп ∆ ВПд= ВПусл 2 - ВПусл 1

ВП усл 2 = ЧРф*Дф*Пп*ЧВп ∆ ВПп= ВП усл 3 - ВПусл 2

ВП усл 3 = ЧРф*Дф*Пф*ЧВп ∆ ВПчв= ВПф - ВП усл 3

ВП ф= ЧРф*Дф*Пф*ЧВф

∆ ВПобщ =∆ ВПчр+ ∆ ВПд + ∆ ВПп +∆ ВПчв

∆ ВПобщ = ВП ф - ВПп

дробная модель:

ФО = ВП / ОПФ

ФОп = ВПп / ОПФп ∆ФОвп = ФОусл-ФОп

ФОусл = ВПф / ОПФп ∆ФОопф = ФОф-ФОусл

ФОф = ВПф / ОПФф

∆ФОобщ = ∆ФОвп +∆ФОопф

∆ФОобщ = ФОф-ФОп

Мультипликативная модель.

Пример 2. Выручка от реализации продукции (объем продукции - V) может быть выражена как произведение комплекса факторов: численность персонала (Чп), доля рабочих в общей численности персонала (dр); среднегодовая выработка одного рабочего (Вр)

V = Чп * dр * Вр


Смешанная (комбинированная) модель представляет собой сочетание в различных комбинациях предыдущих моделей: Пример 4. Рентабельность предприятия (Р) определяется как частное от деления балансовой прибыли (Пбал) на среднегодовую стоимость основных (ОС) и нормируемых оборотных (ОБ) средств:

Ø Преобразования детерминированных факторных моделей

Для моделирования различных ситуаций в факторном анализе применяются специальные методы преобразования типовых факторных моделей. Все они основаны на приеме детализации . Детализация – разложение более общих факторов на менее общие. Детализация позволяет на основе знания экономической теории упорядочить анализ, содействует комплексному рассмотрению факторов, указывает значимость каждого из них.

Развитие детерминированной факторной системы достигается, как правило, за счет детализации комплексных факторов. Элементные (простые) факторы не раскладываются.

Пример 1. Факторы

Большая часть традиционных (специальных) приемов детерминированного факторного анализа основана на элиминировании . Прием элиминирования используется для определения изолированного фактора путем исключения воздействия всех остальных. Исходной посылкой данного приема является следующая: Все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, затем изменяются два, три и т.д. при неизменности остальных. Прием элиминирования является в свою очередь основой для других приемов детерминированного факторного анализа, цепных подстановок, индексных, абсолютных и относительных (процентных) разниц.

Ø Прием цепных подстановок

Цель.

Область применения . Все виды детерминированных факторных моделей.

Ограничение на использование.

Порядок применения . Рассчитывается ряд скорректированных значений результативного показателя путем последовательной замены базисных значений факторов на фактические.

Расчет влияния факторов целесообразно проводить в аналитической таблице.

Исходная модель: П = А х В х С х Д

А

Ø Прием абсолютных разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения. Детерминированные факторные модели; в том числе:

1. Мультипликативные

2. Смешанные (комбинированные)

типа Y = (A-B)C и Y = A(B-C)

Ограничения на использование. Факторы в модели должны быть последовательно расположены: от количественных к качественным, от более общих к более частным.

Порядок применения. Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения абсолютного прироста исследуемого фактора на базисную (плановую) величину факторов, которые в модели находятся справа от него, и на фактическую величину факторов, расположенных слева.

В случае исходной мультипликативной модели П = А х В х С х Д получим: изменение результативного показателя

1. За счет фактора А:

DП А = (А 1 – А 0) х В 0 х С 0 х Д 0

2. За счет фактора В:

DП В = А 1 х (В 1 - В 0) х С 0 х Д 0

3. За счет фактора С:

DП С = А 1 х В 1 х (С 1 - С 0) х Д 0

4. За счет фактора Д:

DП Д = А 1 х В 1 х С 1 х (Д 1 - Д 0)

5. Общее изменение (отклонение) результативного показателя (баланс отклонений)

D П = D П а + D П в + D П с + D П д

Баланс отклонений должен соблюдаться (так же как в приеме цепных подстановок).

Ø Прием относительных (процентных) разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, включая:

1) мультипликативные;

2) комбинированные типа Y = (А – В) С,

целесообразно применять, когда известны определенные ранее относительные отклонения факторных показателей в процентах или коэффициентах.

Требования к последовательности расположения факторов в модели отсутствуют.

Исходная посылка . Результативный признак изменяется пропорционально изменению факторного признака.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения базисного (планового)значения результативного показателя на относительный прирост факторного признака.



Исходная модель:

Изменение результативного показателя:

1. За счет фактора А:


За счет фактора В:

2. За счет фактора С:


Баланс отклонений . Общее отклонение результативного показателя складывается из отклонений по факторам:

D Y = Y 1 - Y 0 = D Y A + D Y B + D Y C

Ø Индексный метод

Цель. Измерение относительного и абсолютного изменения экономических показателей и влияния на него различных факторов.

Область применения .

1. Анализ динамики показателей, в том числе агрегированных (сложенных).

2. Детерминированные факторные модели; включая мультипликативные и кратные.

Порядок применения . Абсолютное и относительное изменение экономических явлений.

Агрегатный индекс стоимости продукции (товарооборота)


I pq – характеризует относительное изменение стоимости продукции в действующих ценах (ценах соответствующего периода)

Разность числителя и знаменателя (åp 1 q 1 - åp o q 0) – характеризует абсолютное изменение стоимости продукции в отчетном периоде по сравнению с базисным.

Агрегатный индекс цен:


I p – характеризует относительное изменение средней цены на совокупность видов продукции (товаров).

Разность числителя и знаменателя (åp 1 q 1 - åp o q 1) – характеризует абсолютное изменение стоимости продукции вследствие изменения цен на отдельные ее виды.

Агрегатный индекс физического объема продукции:

характеризует относительное изменение объема продукции в фиксированных (сопоставимых) ценах.

åq 1 p 0 - åq 0 p 0 – разность числителя и знаменателя характеризует абсолютное изменение стоимости продукции вследствие изменения физических объемов различных ее видов.

На основе индексных моделей проводится факторный анализ.

Так, классической аналитической задачей является определение влияния на стоимость продукции фактора количества (физического объема) и цен:

В абсолютных величинах

å p 1 q 1 - å p 0 q 0 = (å q 1 p 0 - å q 0 p 0) + (å p 1 q 1 - å p 0 q 1).

Аналогично, используя индексную модель, можно определить влияние на полную себестоимость продукции (zq) факторов ее физического объема (q) и себестоимости единицы продукции различных видов (z)

В абсолютном выражении

å z 1 q 1 - å z 0 q 0 = (å q 1 z 0 - å q 0 z 0) + (å z 1 q 1 - å z 0 q 1)

Ø Интегральный метод

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, в том числе

· Мультипликативные

· Кратные

· Смешанные типа


Преимущества. По сравнению с приемами, основанными на элиминировании, дает более точные результаты, поскольку дополнительный прирост результативного показателя за счет взаимодействия факторов распределяется пропорционально их изолированному воздействию на результативный показатель.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется на основе формул для разных факторных моделей, выведенных с применением дифференцирования и интегрирования в факторном анализе.


Изменение результативного показателя за счет фактора х

D¦ х = D ху 0 +DхDу / 2

за счет фактора у

D¦ у = D ух 0 +DуDх / 2

Общее изменение результативного показателя: D¦ = D¦ х + D¦ у

Баланс отклонений

D¦ = ¦ 1 - ¦ 0 = D¦ х +D¦ у