Дуговой разряд. Тлеющий разряд. Коронный разряд. Искровой разряд. Типы разрядов

Один из видов стационарного самостоятельного электрического разряда в газах. Происходит при низкой темп-ре катода, отличается сравнительно малой плотностью тока на катоде (

Напряжение горения Т. р. зависит гл. обр. от двух параметров: произведения р на расстояние l между электродами (pl) и плотности тока на катоде j.При токах 10-5-10-4 А осуществляется переход от тёмного разряда к нормальному Т. р., формируется характерная для него структура (рис.). В области катодного тёмного пр-ва 4 образуется значительный , приводящий к существенному перераспределению потенциала вдоль разрядной трубки. В этого заряда ускоряются эл-ны, к-рые эмитируются из катода под воздействием гл. обр. ударов положит. ионов (ионно-электронная эмиссия) и быстрых или метастабильных нейтр. атомов, а также в результате фотоэлектронной эмиссии и т. п. Эмитируемые эл-ны ионизуют в области катодного (отрицательного) свечения 5. Потеряв энергию, они, а также образовавшиеся вторичные эл-ны дрейфуют к аноду. В пределах фарадеева тёмного пр-ва 6 они «термализуются» и набирают энергию, достаточную для «термич.» возбуждения и ионизации атомов, далее образуется ярко светящийся положит. столб 7. Концентрация эл-нов в положит. столбе определяется динамич. равновесием процессов объёмной ионизации, объёмной рекомбинации и ухода заряж. ч-ц на стенки разрядной трубки (чаще за счёт амбиполярной диффузии). В положит. столбе обычно возникают , имеющие вид иногда неподвижных, но чаще быстро перемещающихся ярких поперечных полос - страт.

В диапазоне токов от 10-4 до 10-1 А горения и тока на катоде остаются постоянными, площадь катодного свечения постепенно увеличивается и занимает весь катод. При токах101-1 - 1 A T. p. приобретает аномальный хар-р: плотность тока на катоде и напряжение горения резко возрастают; при дальнейшем повышении тока анодное свечение скачком стягивается в малое яркое пятно, напряжение горения резко падает, структура столба, типичная для Т. р., исчезает, Т. р. переходит в .

Особой формой Т. р. явл. (катод имеет форму полого цилиндра или двух параллельных пластин), к-рый отличается от обычного Т. р. значительно большими плотностью тока и яркостью свечения. Приборы Т. р. используются в релейных и автоматич, устройствах, в счётной технике, как источники света и т. д.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

- электрический разряд в газе, характеризующийся термодинамич. неравновесностью и квазинейтральностью возникающей плазмы. Эфф. темп-ра электронов в T. р. существенно выше темп-ры газа и электродов, термоэмиссия с к-рых отсутствует. T. р. делятся на 2 класса: самостоятельный и несамостоятельный (с внеш. ионизатором). Каждый из этих разрядов подразделяется на виды в зависимости от рода источника электрич. питания: импульсный, стационарный, переменного тока. Каждый вид T. р. может гореть в покоящемся газе и в потоке газа. Самостоятельные разряды отличаются геометрией: плоской и цилиндрической.

Наиб. подробно изучен T. р., горящий в стеклянных трубках, к-рый широко применяется в технике: лампы дневного света, разл. осветит. приборы, газовые лазеры малой и ср. мощности. T. р., горящий между плоскими электродами, используется в тиратроне и импульсных лазерах, T. р., горящий в потоке газа,- в плазмохим. реакторах и для накачки активной среды мощных непрерывных и импульсно-периодич. газовых лазеров.

Общие свойства. T. р. получил своё название из-за наличия на одном из электродов (катоде) т. н. тлеющего свечения (TC, рис. 1). Это свечение обусловлено большим падением потенциала в узком слое объёмного заряда вблизи катода. Вблизи анода также имеется тонкий слой объёмного заряда, наз. анодным слоем (AC). Остальная часть межэлектродного промежутка занята квазинейтральной плазмой. К зоне TC примыкает область фарадеева тёмного пространства (ФТП), переходящая в (ПС), к-рый является самостоят. частью разряда, не зависящей от др. слоев разряда.

Рис. 1. Внешний вид и напряжённости электрического поля в тлеющем разряде в трубке: 1 - катодный слой; 2- тлеющее свечение; 3- фарадеево тёмное ; 4 - положительный столб; 5 - анодный слой.

Толщина катодного слоя (КС) и его характерные времена весьма малы, поэтому он наиб. автономен и его свойства являются общими для большинства видов T. р. Наличие большого скачка потенциала на КС стационарного T. р. (200-400 В) обусловлено тем, что поле в КС должно обеспечивать интенсивную ионизацию и усиление ионного и электронного токов. Ширина КС d равна неск. длинам ионизации электроном атомов или молекул газа. Если ср. плотность тока на катоде меньше величины нормальной плотности тока j н, то TC покрывает лишь часть катода. При увеличении тока площадь, занятая током, увеличивается пропорционально току, а напряжение на КС постоянно и равно нормальному катодному падению. Это важное свойство T. р. наз. законом нормальной плотности тока. Гидродинамич. модель (Энгеля - Штеенбека) однородного вдоль катода КС постулирует, что величины U н и j н равны мин. напряжению и соответствующей ему плотности тока теоретич. вольт-амперной характеристики (BAX). Эта модель правильно описывает подобия законы, наблюдаемые экспериментально: j н /p 2 , pd н , U н зависят только от рода газа и материала катода. Однако количеств. совпадение теории с экспериментом носит скорее случайный характер. Постулат Энгеля - Штеенбека и закон нормальной плотности тока нашли подтверждение в рамках двумерных нестационарных гидродинамич. ур-ний, решённых численными методами (рис. 2).

Рис. 2. Распределение плотности тока на катоде в тлеющем разряде в азоте (расчёт) при давлении р = 5тор, межэлектродном расстоянии 1 см; а - при токе I =0,75 mА, б - при I =1,5 mA.

Аналогичные явления имеют место на аноде T. р. Электроны, выходящие из плазмы ПС, ускоряются на скачке потенциала AC и также, как и вблизи катода, производят ионизацию газа. Однако здесь не столь сильна, но она необходима, т. к. ионов с холодного анода отсутствует. В стационарном T. р. закон нормальной плотности тока проявляется в покоящемся газе, при отсутствии потока газа. Гидродинамич. модель плоского анодного слоя, учитывающая кинетич. эффекты, объясняет законы подобия: j н /p 2 , U н зависят только от рода газа. Неустойчивость плоского AC имеет теоретич. объяснение в рамках гидродинамич. ур-ний, в этом приближении структура стационарного анодного пятна определяется диффузией электронов.

Свойства др. областей T. p. (TC, ФТП и ПС) довольно сильно зависят от вида разряда. Рассмотрим их на примере классич. вида T. р.- разряда в трубке с электродами на концах.

T. р. постоянного тока в трубке. Поскольку толщина КС порядка длины ионизации, часть электронов, ускоряясь на катодном скачке потенциала, набирает энергию, равную этому потенциалу. В результате интенсивной ионизации газа этим пучком электронов в области TC образуется светящийся слой плазмы большой плотности. Величина электрич. поля здесь близка к нулю. По мере продвижения от области TC по направлению к аноду плотность плазмы падает из-за рекомбинации и амбиполярной диффузии, электрич. поле растёт, но ещё недостаточно для ионизации и возбуждения атомов (область ФТП). Далее, в области ПС электрич. поле достигает величины, при к-рой ионизация электронами, набирающими энергию в этом поле, становится существенной. Для электрич. поля в ПС справедлив закон подобия E/p=f(pR), вытекающий из равенства скоростей ионизации и потерь за счёт амбиполярной диффузии к стенкам (теория Шоттки). BAX ПС не зависит от тока, плотность плазмы пропорциональна плотности тока. Для молекулярных газов с ростом тока необходимо учитывать объёмной рекомбинации, приводящие к слабому росту напряжения на ПС, при дальнейшем увеличении тока происходит нагрев газа (для молекулярных газов). В атомарных газах при увеличении тока в первую очередь газ разогревается, плотность его уменьшается и, как следствие, уменьшается напряжение на ПС. BAX при этом падающая.

Электроны в ПС термодинамически неравновесны. Их эфф. темп-pa существенно превосходит темп-ру атомов и молекул и составляет 2-3 эВ. Это обстоятельство и однородность E/p в длинных трубках используются для создания инверсной населённости атомов и молекул в газовых лазерах.

Плоский самостоятельный T. р. Потребности практики в поддержании T. р. в больших объёмах привели к реализации плоских разрядов, где расстояния между боковыми стенками превышают межэлектродное расстояние L . Плоский разряд используют при средних (10-100 тор) и высоких (>100 тор) давлениях. Плоский T. р. сохраняет все осн. черты T. р. в трубке, однако область ФТП определяется балансом процессов амбиполярного дрейфа и рекомбинацией, а потери за счёт диффузии к боковым стенкам несущественны. Поскольку характерный размер ФТП L ф в этом случае не зависит от давления газа, T. р. оказывается существенно неоднородным и при ср. давлениях. Напр., для азота L ф [см ] =0,1/j . Вольт-амперная характеристика ФТП растущая:

В сильноточных разрядах повышенного давления все неоднородные области КС, AC, ФТП малы. При средних и высоких давлениях плотность тока на катоде существенно превышает плотности тока, используемые на практике. Для того чтобы избежать стягивания тока на катоде (см. Контракция газового разряда )и следующего за этим образования дуги, катод делят на секции, искусственно распределяя в среднем равномерно по катоду (рис. 3, а). Такой катод представляет из себя набор штырей, присоединённых через сопротивления к общей шине. При возрастании тока, стекающего на один штырь, напряжение на нём падает, что приводит к ограничению тока. Избежать контракции можно также за счёт поддержания разряда короткое (~1 мкс), чтобы неустойчивость не успела развиться, т. е. с помощью спец. системы питания реализуют импульсный T. р. Однако и в этом случае необходимо принимать спец. для однородного пробоя газа, т. плазменный катод, затем импульсный T. р. развивается в основном разрядном промежутке (рис. 3, б). Однородность квазистационарного и импульсного разрядов с секциониров. катодами зависит от расстояния между штырьками. Для стабилизации T. р. применяются также комбинир. T. р. и разряд переменного тока.



Рис. 3. Схемы возбуждения самостоятельного тлеющего разряда: а - импульсного, квазистационарного и стационарного разрядов в потоке газа, 1- анод, 2- штыри или узкие пластины для разряда в потоке газа, R б - балластные сопротивления; б- импульсного: 1- катодная пластина, 2- анод, 3- ёмкость вспомогательного разряда; в - ёмкостного самостоятельного разряда: 1 - диэлектрические пластины, 2 - электроды.

T. р. комбинированным и переменного тока. Хотя технически эти виды разряда отличаются весьма существенно, их роднит общность механизма протекания тока. В обоих разрядах ток течёт по рекомбинирующей плазме; ионизация осуществляется в течение короткого промежутка времени периодически с частотой, большей обратного времени рекомбинации. В т. н. комбинир. разряде ионизация происходит при подаче вспомогат. высоковольтных импульсов напряжения на штырьки. Осн. разряд поддерживается между катодом и анодом от источника пост. напряжения. Поскольку плотность плазмы не зависит от пост. напряжения, такой разряд в промежутке между импульсами является несамостоятельным. T. о., комбинир. T. р. состоит из 2 разрядов: самостоятельного и несамостоятельного.

В разряде переменного тока ионизация осуществляется в момент макс. напряжения на разрядном промежутке, остальное время такой T. р. также является несамостоятельным. Характерная особенность такого разряда - простота реализации секционирования катода: его покрывают изоляционным слоем с большой диэлектрич. проницаемостью (рис. 3, в), являющимся реактивным балластным сопротивлением. Использование такого балласта значительно повышает разряда по сравнению с разрядом пост. тока с активным сопротивлением (рис. 3, а). Механизм протекания тока в T. р. переменного тока существенно зависит от частоты источника питания и проводимости плазмы s. При низких частотах (10-100 кГц), когда w/4ps<<1, в каждом полупериоде происходит распад и формирование КС и AC. T. к. меньше времени рекомбинации плазмы, зона ФТП не успевает установиться в течение полупериода, поэтому низкочастотный T. р. более однородный по сравнению с T. р. пост. тока. При повышении частоты омический ток сравнивается с током смещения (w/4ps1). Это происходит прежде всего в КС, т. к. в нём s самая маленькая. Расчёты и эксперимент показывают, что и в этом случае на электродах ток может контрагировать. Здесь также проявляется закон нормальной плотности тока (см. выше). В таком разряде вблизи анода и катода образуются слои квазинейтральной плазмы повышенной плотности. Характерный размер этих слоев определяется амбиполярным дрейфом за счёт нарушения электронейтральности плазмы. Если межэлектродное расстояние L не превышает характерного размера приэлектродных слоев, то в ПС ионизация несущественна и BAX растущая: . Когда w/4ps>> 1 и замыкание тока КС и AC осуществляется токами смещения, необходимость в интенсивной ионизации отпадает, приэлектродные BAX обладают положит. дифференц. сопротивлением, и эти слои оказывают стабилизирующее влияние на разряд.

Несамостоятельный T. р. отличается от самостоятельного тем, что проводимость его поддерживается с помощью внеш. ионизатора (рис. 4). Поэтому важнейшей характеристикой T. p. E/p можно управлять в широких пределах и независимо от тока. Широко распространён несамостоятельный T. р., поддерживаемый пучком быстрых электронов (~200 кэВ). Чем больше ток пучка, тем выше разрядной плазмы. Структура несамостоятельного T. р. похожа на структуру самостоятельного T. р. На КС внеш. ионизация существ. влияния не оказывает, т. к. превосходит внешнюю. Этот слой может контрагировать, как и в самостоят. T. р. Однако характер контракции здесь иной. Разряд на катоде разбивается на пятен (рис. 5). Поскольку ПС несамостоятельного T. р. обладает большим положит. дифференц. сопротивлением, он оказывает стабилизирующее воздействие на КС и препятствует слиянию пятен. Как и в самостоят. разряде, контракция на катоде не возникает при использовании импульсов малой длительности (<= 1 мкс). В несамостоятельном T. р. пост. тока кол-во пятен пропорционально полному току. Внеш. ионизатор оказывает стабилизирующее влияние на AC, и анодным падением, как правило, можно пренебречь. Несамостоятельный T. р. может гореть в больших объёмах в широком диапазоне давлений и токов и используется для накачки мощных газовых лазеров.

Рис. 4. Схема возбуждения несамостоятельного разряда: 1 - анод; 2 - катод; 3 - электронный пучок.

Рис. 5. Светящаяся катода в несамостоятельном разряде; видны проводящие каналы, зарождающиеся на катодных пятнах.

T. р. в потоке газа наиболее важен для практич. применения. Поток газа прокачивают через разл. виды T. р. для того, чтобы увеличить охлаждение газовой среды. В покоящемся газе охлаждение за счёт теплопроводности часто оказывается недостаточным для практич. потребностей. Поток газа, проходя через разряд, ионизуется, и выносится потоком за пределы электродной системы. Кроме того, охлаждение потоком существенно изменяет температурное поле и соответственно величину E/N (N- концентрация нейтрального газа), последняя, в свою очередь, очень сильно влияет на проводимость самостоят. разряда. Часто используется схема поперечного разряда, когда вектор скорости потока газа нормален вектору напряжённости электрич. поля (рис. 3, 4). В таком разряде КС находится в глубине пограничного слоя и практически не отличается от КС T. р. в покоящемся газе. Весьма существенно поток изменяет свойства AC. Если поток ламинарный, то неустойчивость AC приводит к образованию на аноде полос, вытянутых вдоль потока. В турбулентном потоке наблюдаются хаотичное образование и размытие анодных пятен.

Поддержание фронта ионизации ПС T. р. при невысоких скоростях газа и давлениях возможно за счёт амбиполяр-ной диффузии, к-рая выносит плазму навстречу потоку. Без учёта рекомбинации и нагрева газа баланс плазмы определяется равенством скоростей ионизации и выноса плазмы потоком газа. Напряжение на разряде U не зависит от тока. При учёте рекомбинации BAX разряда U(j) - слабо растущая ф-ция, а при больших значениях тока, когда существен нагрев газа, U(j)- слабо падающая, неустойчивая. Остаётся неясным механизм поддержания в потоке газа ФТП, где нет ионизации. Возможно, здесь играют роль процессы амбиполярного дрейфа электронов из зоны TC. При пониженных давлениях в качестве катода используется охлаждаемая водой трубка, расположенная поперёк потока газа, анод - сплошная металлич. пластина. Для улучшения устойчивости такого разряда секционируют анод.

Рис. 6. Схема возбуждения комбинированного продольного разряда: 1 - катодный штырь; 2- анодная трубка; 3- диэлектрическая пластина; 4- электрод вспомогательного разряда.

Наряду с поперечным разрядом на практике применяют также продольный разряд, в к-ром электрич. поле направлено навстречу потоку газа (рис. 6). Для улучшения устойчивости этого разряда ионизацию создают с помощью повторяющихся высоковольтных импульсов, прикладываемых поперёк потока.

T. р. в электроотрицательных газах. В таких разрядах в целом сохраняется структура разряда в электроположит. газах. Наиб. существенно изменяются свойства ФТП, эта зона протяжённее, чем в обычном T. р., и может занимать весь разрядный промежуток. Важными здесь являются процессы рекомбинации положит. и отрицат. ионов.

Неустойчивости T. р., вызывающие и домены, можно приблизительно разбить на 3 больших класса: электродинамические, тепловые и доменные. Э л е к т р о д ин а м и ч е с к и е неустойчивости (упоминавшиеся выше) проявляются в виде шнурования тока на электродах в КС и AC и связаны с отрицат. дифференц. сопротивлением этих слоев. Во мн. случаях эти неустойчивости приводят к появлению т е п л о в ы х неустойчивостей из-за резкого увеличения скорости ионизации вследствие нагрева газа и его прорежения либо из-за возбуждения колебат. или электронных уровней молекул и атомов. На рис. 5 хорошо видно прорастание токового канала из катодного пятна в импульсном несамостоятельном T. р. Этот токовый канал может приводить к более быстрому замыканию межэлектродного канала по сравнению с неустойчивостью, однородной вдоль электрич. поля. Это связано с тем, что на головке канала может существенно усиливаться электрич. поле, как в обычном стримере, что приводит к ускоренному распространению канала. В T. р. в потоке газа такие шнуры выносятся потоком и снова возникают в межэлектродном пространстве. Они являются причиной низкочастотных (~кГц) колебаний.

Д о м е н н а я н е у с т о й ч и в о с т ь (см. Низкотемпературная плазма )в T. р. приводит к возбуждению высокочастотных (МГц) колебаний, связанных с образованием слоев с повышенным сопротивлением, бегущих вдоль электрич. поля. Из-за N -образной зависимости дрейфовой скорости электронов от поля могут возбуждаться домены, аналогичные доменам Тана в полупроводниках. В электро-отрицат. газах (имеющих отрицат. ионы) с увеличением E сильно растёт прилипания электронов, что приводит к возникновению неустойчивости. Эта неустойчивость во многом аналогична рекомбинационным доменам в полупроводниках. Домены большой амплитуды движутся от катода к аноду с большой скоростью (~ 10 6 см/с) и существенно изменяют нек-рые характеристики ПС T. р.: <E /p > и т. д.

По внеш. проявлению на доменную неустойчивость похожи страты. Однако они имеют др. природу и объясняются действием разл. механизмов усиления ионизации, напр. за счёт ступенчатой ионизации и электрон-электронных соударений.

Лит.: Браун С., Элементарные процессы в плазме газового разряда, [пер. с англ.], M., 1961; Грановский В. Л., Электрический ток в газе. Установившийся ток, M., 1971; Веденов А. А., Физика электроразрядных СО 2 -лазеров, M., 1982; Баранов В. Ю., Напартович А. П., Старостин A. H., Тлеющий разряд в газах повышенного давления, в кн.: Итоги науки и техники, сер. Физика плазмы, т. 5, M., 1984; Велихов E. П., Ковалев А. С., Рахимов А. Т., Физические явления в газоразрядной плазме, M., 1987; Райзер Ю. П., Физика газового разряда, M., 1987; Голубев В. С., Пашкин С. В., Тлеющий разряд повышенного давления, M., 1990; Королев Ю. Д., Месяц Г. А., Физика импульсного пробоя газов, M., 1991. Г. Г. Гладуш.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


  • Справочник технического переводчика
  • У этого термина существуют и другие значения, см. Разряд. Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии … Википедия

    Самостоятельный электрический разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положительных ионов и фотоэлектронной … Энциклопедический словарь

    тлеющий разряд - Glow Discharge Тлеющий разряд Один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд. В… … Толковый англо-русский словарь по нанотехнологии. - М. - самостоятельный электрич. разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положит. ионов и фотоэлектронной эмиссией … Естествознание. Энциклопедический словарь

    тлеющий разряд - Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением объемных зарядов, характеризуемый наличием катодного падения потенциала, значительно большего, чем ионизационный… … Политехнический терминологический толковый словарь

Книги

  • Эмиттирующие наноструктуры «металл-оксид металла»: физика и применение , Алексей Коржавый. В монографии освещены важнейшие с точки зрения современного материаловедения вопросы формирования эмиссионных токов в наноструктурах «металл–оксид металла», активно используемых в качестве… электронная книга

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

Основную роль в поддержании тлеющего разряда играют первые две области его катодной части. Характерной особенностью этого типа разряда является резкое падение потенциала вблизи катода, которое связано с большой концентрацией положительных ионов на границе I и II областей, обусловленной сравнительно малой скоростью движения ионов у катоду. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны из катода. В области тлеющего свечения электроны производят интенсивную ударную ионизацию молекул газа и теряют свою энергию. Здесь образуются положительные ионы, необходимые для поддержания разряда. Напряженность электрического поля в этой области мала. Тлеющее свечение в основном вызывается рекомбинацией ионов и электронов. Протяженность катодного темного пространства определяется свойствами газа и материала катода.

В области положительного столба концентрация электронов и ионов приблизительно одинакова и очень велика, что обуславливает большую электропроводность положительного столба и незначительное падение в нем потенциала. Свечение положительного столба определяется свечением возбужденных молекул газа. Вблизи анода вновь наблюдается сравнительно резкое изменение потенциала, связанное с процессом генерации положительных ионов. В ряде случаев положительный столб распадается на отдельные светящиеся участки - страты, разделенные темными промежутками.

Положительный столб не играет существенной роли в поддержании тлеющего разряда, поэтому при уменьшении расстояния между электродами трубки длина положительного столба сокращается и он может исчезнуть совсем. Иначе обстоит дело с длиной катодного темного пространства, которая при сближении электродов не изменяется. Если электроды сблизились настолько, что расстояние между ними станет меньше длины катодного темного пространства, то тлеющий разряд в газе прекратится. Опыты показывают, что при прочих равных условиях длина d катодного темного пространства обратно пропорциональна давлению газа. Следовательно, при достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные , или катодные лучи .

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления , т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

Процессы, рассмотренные выше, играют важную роль в возникновении и поддерживании так называемого тлеющего разряда (см. приложение 1.1).

Эту форму газового разряда удобно наблюдать при пониженном давлении газа. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сот вольт и затем постепенно откачивать воздух из трубки, то наблюдаются следующие явления. При атмосферном давлении приложенное напряжение недостаточно для пробоя газа и трубка остаётся тёмной. При уменьшении давления газа (около 5,3-6,7 кПа) в некоторый момент в трубке возникнет разряд, имеющий вид светящегося шнура, соединяющего анод и катод трубки. При дальнейшем уменьшении давления (около 1,3 Па) этот шнур расширяется и заполняет всё сечение трубки, а свечение вблизи катода ослабевает.

При давлениях газа порядка 0,1-0,01 мм. рт. ст. разряд имеет вид на рис. 3.1.1.

Непосредственно к катоду прилегает тонкий светящийся слой 1 (первое катодное свечение, или катодная плёнка), за которым следует тёмный слой 2, получивший название катодного тёмного пространства. Это тёмное пространство затем переходит в светящийся слой 3 (тлеющее свечение), который имеет резкую границу со стороны катода и постепенно исчезает со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. За тлеющим свечением наблюдается опять тёмный промежуток 4, называемый вторым или фарадеевым тёмным пространством. Указанные части называются катодными частями разряда. За вторым тёмным пространством лежит светящаяся область 5, простирающаяся до анода, или положительный столб. В некоторых случаях этот столб распадается на ряд слоёв, или страт.

Особое значение в тлеющем разряде имеют только две его части - катодное тёмное пространство и тлеющее свечение, в которых и происходят основные процессы, поддерживающие разряд. Если в газоразрядной трубке сделать анод подвижным и постепенно придвигать его к катоду (рис. 3.1.1), то все катодные части остаются неизменными, а укорачивается только положительный столб. При дальнейшем уменьшении длины разрядного промежутка начинает укорачиваться второе катодное тёмное пространство, и когда анод попадает в тлеющее свечение, оно исчезает вовсе. Однако при этом разряд продолжает существовать. Когда же анод при дальнейшем уменьшении расстояния подходит к границе между первым катодным пространством и тлеющим свечением, разряд гаснет.

Характерным для тлеющего разряда является особое распределение потенциала по длине трубки. Его можно определить, впаивая в трубку ряд дополнительных электродов - зондов, расположенных в различных местах трубки, и присоединяя между катодом и соответствующим зондом вольтметр с большим сопротивлением. Всё падение потенциала в разряде приходится на область катодного тёмного пространства. Эта разность потенциалов между катодом и границей тлеющего свечения получила название катодного падения потенциала. Опыт показывает, что если сила тока в разряде не очень велика, то величина катодного падения потенциала не зависит от силы тока (нормальное катодное падение потенциала). Изменение силы тока изменяет лишь величину светящейся поверхности на катоде, которая увеличивается с увеличением силы тока. Когда же сила тока достигает такой величины, что катодная плёнка покрывает всю поверхность катода, катодное падение потенциала начинает возрастать с увеличением силы тока (аномальное катодное падение потенциала).

Существенным для понимания процессов в тлеющем разряде является то обстоятельство, что величина нормального катодного падения потенциала зависит лишь от материала катода и рода газа, причём катодное падение потенциала оказывается пропорциональным работе выхода электронов из катода.

Рассмотренные свойства тлеющего разряда приводят к следующей картине процессов, поддерживающих разряд. Положительные ионы, образующиеся в результате ионизации электронными ударами (в тлеющем свечении и в положительном столбе), движутся к катоду и, проходя через область катодного падения потенциала, приобретают значительную энергию. Под действием интенсивной бомбардировки быстрыми положительными ионами (а также вследствие фотоэффекта, вызванного излучением разряда) с катодом вылетают электроны, которые движутся к аноду. Эти электроны в области катодного падения потенциала сильно ускоряются и при последующих соударениях с атомами газа их ионизируют. В результате опять появляются положительные ионы, которые, снова устремляясь на катод, производят новые электроны и т.д. Таким образом, основными процессами, поддерживающими разряд, являются ионизация электронными ударами в объёме и вторичная электронная эмиссия на катоде.

Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного тёмного пространства приблизительно равна средней длине свободного пробега электронов: она увеличивается с уменьшением давления газа. В катодном тёмном пространстве электроны, следовательно, движутся практически без соударений, образуя электронные, или катодные лучи. Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каналовых (или положительных) лучей, названных по знаку заряда, который они несут.

Распределение концентраций положительных ионов и электронов в различных частях разряда весьма неодинаково. Так как положительные ионы движутся гораздо медленнее, нежели электроны, то у катода концентрация ионов значительно больше, чем концентрация электронов. Поэтому вблизи катода возникает сильный пространственный положительный заряд, который и вызывает появление катодного падения потенциала. Напротив, в области положительного столба концентрации положительных ионов и электронов почти одинаковы и здесь пространственного заряда нет. Благодаря большой концентрации электронов положительный столб обладает хорошей электропроводностью и поэтому падение напряжения на нем весьма мало.

Так как в положительном столбе имеются и положительные ионы, и электроны, то здесь происходит интенсивная рекомбинация ионов, чем и объясняется свечение положительного столба.

Мы видим, что катодное падение потенциалов необходимо для поддержания тлеющего разряда. Именно благодаря его наличию положительные ионы приобретают необходимую энергию для образования интенсивной вторичной электронной эмиссии с катода, без которой тлеющий разряд не мог бы существовать. Поэтому катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм.

Тлеющий разряд широко используют в качестве источника света в различных газосветных трубках. В лампах дневного света излучение тлеющего разряда поглощается слоем специальных веществ, нанесённых на внутреннюю поверхность трубки, которые под действием поглощённого излучения в свою очередь начинают светиться. Подходящим подбором этих веществ (люминофоров)испускаемое ими излучение можно сделать близким к дневному свету. Такие трубки оказываются более экономичными, нежели обычные лампы накаливания.

Газосветные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв. Наполняя трубки различными газами, можно получить свечение различной окраски (красное у неона, синевато-зеленое у аргона).

Пользуясь тем, что катодное падение потенциала зависит от материала катода, можно сделать газосветные трубки с малым напряжением зажигания. Так, например, в неоновой лампе, в которой электродами служат два железных листочка, покрытых слоем бария, вследствие малости работы выхода электронов у бария, катодное падение потенциала составляет только около 70 В. Поэтому лампа зажигается уже при включении в обычную осветительную сеть. Такие лампы употребляют для целей сигнализации в различной аппаратуре (индикаторные лампы).

В лабораторной практике используют тлеющий разряд для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в парообразное состояние и оседает в виде металлического налёта на стенках трубки.

Причина катодного распыления, по всей вероятности, заключается в том, что каждый положительный ион при соударении с катодом передаёт свою энергию сначала небольшой группе атомов катода. Это приводит к сильному местному повышению температуры, возникающему в отдельных микроскопических областях катода, которое и приводит к испарению металла в этих местах. Помещая в тлеющем разряде против катода различные предметы, оказывается возможным покрыть их равномерным и прочным слоем металла. Этим способом, в частности, пользуются для изготовления металлических зеркал высокого качества.

Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке длиной около 0,5 м, с впаянными у концов плоскими металлическими электродами (рис. 85.1). На электроды подается напряжение порядка 1000 В. При атмосферном давлении тока в трубке практически нет. Если понижать давление, то примерно при 50 мм рт. ст. возникает разряд в виде светящегося извилистого тонкого шнура, соединяющего анод с катодом. По мере понижения давления шнур утолщается и приблизительно при 5 мм рт. ст. заполняет все сечение трубки - устанавливается тлеющий разряд. Его основные части показаны на рис. 85.1. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой.

Между катодом и светящейся пленкой находится астоново темное пространство. По другую сторону светящейся пленки помещается слабо светящийся слой, по контрасту кажущийся темным и называемый катодным (или круксовым) темным пространством. Этот слой переходит в светящуюся область, которую называют тлеющим свечением. Все перечисленные слои образуют катодную часть тлеющего разряда.

С тлеющим свечением граничит темный промежуток - фарадеево темное пространство. Граница между ними размыта. Вся остальная часть трубки заполнена светящимся газом; ее называют положительным столбом. При понижении давления катодная часть разряда и фарадеево темное пространство расширяются, а положительный столб укорачивается. При давлении порядка 1 мм рт. ст. положительный столб распадается на ряд чередующихся темных и светлых изогнутых слоев - страт.

Измерения, осуществленные с помощью зондов (тоненьких проволочек, впаянных в разных точках вдоль трубки), а также другими методами, показали, что потенциал изменяется вдоль трубки неравномерно (см. график на рис. 85.1).

Почти все падение потенциала приходится на первые три участка разряда по катодное темное пространство включительно. Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала. В области тлеющего свечения потенциал не изменяется - здесь напряженность поля равна нулю. Наконец, в фарадеевом темном пространстве и положительном столбе потенциал медленно растет. Такое распределение потенциала вызвано образованием в области катодного темного пространства положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

Основные процессы, необходимые для поддержания тлеющего разряда, происходят в его катодной части. Остальные части разряда не существенны, они могут даже отсутствовать (при малом расстоянии между электродами или при низком давлении). Основных процессов два - вторичная электронная эмиссия из катода, вызванная бомбардировкой его положительными ионами, и ударная ионизация электронами молекул газа.

Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны ускоряются электрическим полем. Приобретя достаточную энергию, они начинают возбуждать молекулы газа, в результате чего возникает катодная светящаяся пленка. Электроны, пролетевшие без столкновений в область катодного темного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают (см. графики на рис. 83.1). Таким образом, интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы вначале имеют очень малую скорость. Поэтому в катодном темном пространстве создается положительный пространственный заряд, что приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

Электроны, возникшие в катодном темном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов и суммарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. Благодаря высокой концентрации электронов и ионов в области тлеющего свечения идет интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом тлеющее свечение есть в основном свечение рекомбинации.

Из области тлеющего свечения в фарадеево темное простран ство электроны и ионы проникают за счет диффузии (на границе между этими областями поле отсутствует, но зато имеется большой градиент концентрации электронов и ионов).

Виды разрядов в газах

Тлеющий разряд

Тлеющим разрядом обычно называют самостоятельный разряд, в котором катод испускает электроны вследствие бомбардировки его положительными ионами и фотонами, образующимися в газе.

В отличие от таунсендновского разряда, где плотности электрического тока невелики, а влияние пространственного заряда несущественно, в тлеющем разряде плотности тока значительно больше, а пространственные заряды, возникающие из-за большого различия в массах электронов и положительных ионов, делают электрическое поле в газе неоднородным. Для тлеющего разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода (катодное падение).

Уменьшение давления до 0,1÷0,01 мм рт. ст. приводит к появлению в различных частях объема газа характерных областей, хотя и не всегда отчетливо выраженных. Основными и наиболее заметными из них в порядке следования со стороны катода (рис. 7.8) являются:

1) катодный слой – это тонкая светящаяся пленка, где происходит возбуждение атомов и молекул ударами электронов, но еще нет ионизации. Возвращаясь в нормальное состояние, возбужденные атомы излучают кванты света, чем и объясняется свечение;

2) темное катодное пространство (темное круксовое или темное гитторфовое пространство). На самом деле оно не совсем темное, но кажется таковым лишь на фоне примыкающих к нему более светлых областей разряда. В этой части пространства начинается ионизация атомов и молекул и нарастание электронных лавин. Из-за возможности ионизации уменьшается вероятность возбуждения атомов и молекул, с чем связано ослабление свечения газа. Область темного катодного пространства наиболее важна для поддержания разряда, так как созданные здесь положительные ионы обеспечивают необходимую эмиссию электронов с катода;

3) отрицательное тлеющее свечение (тлеющее свечение), в которое переходит темное катодное пространство. Это свечение резко ограничено только со стороны катода. Свечение возникает из-за рекомбинации электронов с положительными ионами, а также вследствие квантовых переходов возбужденных атомов на более низкие энергетические уровни;

4) при продвижении к аноду яркость тлеющего свечения ослабевает, и оно постепенно переходит в так называемое фарадеево темное пространство, в которое уже не долетают быстрые электроны электронных лавин (см. рис. 7.8);

5) остов разряда – это столб ионизованного светящегося газа в более или менее узких трубках. Иногда его называют положительным свечением или положительным столбом разряда. Обычно он простирается до самой поверхности анода. При некоторых условиях между положительным столбом и анодом видно темное анодное пространство, а на самой поверхности – анодное свечение, или анодная светящаяся пленка. Положительный столб иногда разделяется на отдельные чередующиеся светлые и темные полосы (страты). В этом случае разряд называют сложным. Наличие положительного столба несущественно для поддержания разряда, хотя он и имеет большое значение в применениях разряда.

Свечение в положительном столбе происходит в основном за счет рекомбинации электронов с положительными ионами. На последних нескольких свободных пробегах (в области так называемого анодного падения) электроны могут накопить достаточную кинетическую энергию, чтобы вызвать возбуждение атомов, в то время как положительные ионы оттягиваются от анода. Это приводит к анодному свечению.

Перечисленные первые четыре области называются катодными частями разряда. В них происходят все процессы, необходимые для поддержания разряда.

При больших внешних сопротивлениях, когда сила тока в разрядной трубке невелика, поверхность катода, покрытая свечением и принимающая участие в разряде, пропорциональна силе тока в трубке (закон Геля). При изменении тока плотность его остается приблизительно постоянной. Вместе с ней остается постоянным и катодное падение потенциала. В этом случае оно называется нормальным катодным падением. В большинстве случаев оно лежит в пределах 100 - 300 В. Температура катода не оказывает влияния на величину нормального катодного падения, пока не возрастет термоэлектронная эмиссия с поверхности катода. С хорошим приближением нормальное катодное падение пропорционально работе выхода электрона из катода. Это используется для устройства трубок с очень малым потенциалом зажигания. Такова, например, неоновая лампочка, в которой электродами служат два железных листочка, покрытых слоем бария для уменьшения работы выхода. Катодное падение составляет в этом случае всего 70 В, и тлеющий разряд зажигается в неоновой лампочке уже при включении в обычную осветительную сеть.

Когда с увеличением тока вся поверхность катода оказывается покрытой свечением, начинает возрастать и катодное падение. В этом случае оно называется аномальным катодным падением, а разряд – аномальным тлеющим разрядом.

Электроны, выбиваемые с поверхности катода положительными ионами, ускоряются в области катодного падения потенциала. При уменьшении давления газа увеличивается средняя длина свободного пробега электронов, а с ней – и темное катодное пространство. При давлении 0,01÷0,001 мм рт. ст. (в зависимости от размеров трубки) темное катодное пространство заполняет почти всю трубку, и электронный пучок движется в ней почти без столкновений. Такие электронные пучки получили название катодных лучей. Они были открыты Круксом еще до установления их физической природы (до открытия самого электрона). Если на пути катодных лучей поставить металлический экран, то за ним на противоположной стороне трубки наблюдается его тень. При поднесении магнита пучок лучей и образуемая им тень смещаются в сторону. Электроны катодных лучей, вышедшие с катода, ускоряются электрическим полем вблизи его поверхности и далее движутся перпендикулярно к ней по инерции. Попадая на стенки трубки, электроны сообщают им отрицательный заряд. Однако катод нейтрализуется положительными ионами, подтекающими из газа к стенкам трубки, а отрицательные ионы газа попадают на анод. Если поверхности катода придать вогнутую сферическую форму, то катодные лучи сфокусируются в центре этой сферы. Когда давление в трубке настолько мало, что область темного катодного пространства захватывает анод, тлеющий разряд в трубке прекращается. Вместе с ним прекращается также испускание катодных лучей и свечение стенок трубки.

Катодные лучи используются в так называемых ионных рентгеновских трубках для получения рентгеновских лучей. Ионные рентгеновские трубки обладают тем недостатком, что в результате различных процессов количество газа в трубке уменьшается с течением времени. Когда давление газа в трубке становится меньше 0,001 ¸ 0,0001 мм рт. ст., тлеющий разряд в них не зарождается и трубка перестает работать. В настоящее время применяются почти исключительно электронные рентгеновские трубки, обладающие большой устойчивостью в работе, чем ионные. В них тлеющий разряд не используется.

Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия, попадут в за катодное пространство и там будут распространяться в виде прямолинейных лучей. Эти лучи были названы положительными, или каналовыми, лучами, поскольку они выходят из отверстий катода, как из каналов. Каналовые лучи заметны в трубке в виде слабо светящихся пучков.

Они, как и катодные лучи, вызывают свечение стекла трубки. Из-за наличия процессов перезарядки в пучке каналовых лучей имеются не только положительные, но и отрицательные ионы, а также быстрые, отчасти возбужденные нейтральные частицы. В магнитном поле такой пучок разделяется на три пучка: положительные ионы отклоняются в одну сторону, отрицательные в противоположную сторону, а нейтральные молекулы и атомы не испытывают никакого отклонения. При повторном прохождении пучков через магнитное поле каждый из них снова распадается на три пучка. Отсюда следует, что процессы перезарядки происходят не только перед катодом, но и продолжаются в закатодном пространстве.

Искровой разряд

Искровой разряд характеризуется прерывистой формой даже при использовании источников постоянного тока. Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молнии. По внешнему виду он представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постепенно сменяющих друг друга (рис. 7.9). Эти полоски называются искровыми каналами. Они начинаются как на положительном электроде, так и на отрицательном электродах, а также в любой точке между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательного электрода имеют диффузные края и более мелкое ветвление.

Так как искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. Однако после того как разрядный промежуток "пробит" искровым каналом, сопротивление этого промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала. Время t нарастания напряжения тем больше, чем больше емкость C между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последовательными искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При больших емкостях канал искры ярко светится и имеет вид широких полос. То же происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или конденсированной искре. Максимальная сила тока в импульсе при искровом разряде меняется в широких пределах в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе, образование цилиндрической ударной волны, температура, на фронте которой ~10 4 К. Происходит быстрое расширение канала искры со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновением ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии.

В момент существования канала, особенно при высоких давлениях, наблюдается наиболее яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала и имеет максимум в его центре.

Механизм искрового разряда, с точки зрения современной, общепринятой теории, так называемой стримерной теории искрового пробоя, которая подтверждается экспериментально, заключается в том, что если вблизи катода зародилась электронная лавина, то на ее пути происходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скоростью света, сами производят ионизацию газа и дают начало новым электронным лавинам. Таким путем во всем объеме газа проявляются слабо светящиеся скопления ионизованного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому мостику в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояния от катода к аноду. Развитие отрицательного стримера показано на рис. 7.10. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Надо отметить, что это теория объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной.

Коронный разряд

Коронный разряд возникает при сравнительно высоких давлениях газа (порядка атмосферного) в сильно неоднородном электрическом поле, которое можно получить между двумя электродами, поверхность одного из которых имеет большую кривизну (тонкая проволочка, острие). Схема получения коронного разряда показана на рис. 7.11. Надо отметить, что наличие второго электрода необязательно, его роль могут играть окружающие заземленные электроды. При достижении напряженности электрического поля вблизи электрода с большой кривизной значения порядка 3×10 4 В/м вокруг этого электрода возникает свечение, имеющее вид оболочки или короны, откуда и произошло название разряда. Если корона возникает вокруг отрицательного электрода, то она называется отрицательной. В противоположном случае корона называется положительной. Вид положительной короны показан на рис. 7.12 слева, вид отрицательной короны – справа. Механизм возникновения разряда в этих двух случаях – разный.

В случае отрицательной короны положительные ионы, образуемые электронными лавинами, ускоряются в сильно неоднородном электрическом поле вблизи катода. Попадая на катод, они выбивают из него электроны (вторичная электронная эмиссия). Выбитые электроны, провзаимодействовав с катодом, на своем пути порождают новые электронные лавины. Так как электрическое поле убывает при удалении от электрода, то на некотором расстоянии электронные лавины обрываются, электроны попадают в "темную" область и там прилипают к нейтральным молекулам газа. Образовавшиеся отрицательные ионы и являются основными носителями тока в "темной" области. Пространственный отрицательный заряд этих ионов вблизи анода ограничивает общий разрядный ток. В случае чистых электроположительных газов отрицательные ионы не образуются, а носителями зарядов в "темной" области являются сами электроны. В "темной" области разряд носит несамостоятельный характер.

В положительной короне, когда катодом служит электрод с большим радиусом кривизны, электрическое поле у катода слабое. Поэтому электронные лавины не могут порождаться электронами, выбиваемыми из катода вследствие вторичной эмиссии. Электронные лавины порождаются электронами, возникающими вблизи анода при объемной ионизации газа фотонами, излучаемыми коронирующим слоем. Они зарождаются на внешней границе коронирующего слоя и распространяются к положительному электроду (обладающему большей кривизной). Положительные ионы, двигаясь через "темную" область к катоду, образуют пространственный заряд, который снова ограничивает силу разрядного тока.

При увеличении напряжения между электродами "темная" область коронного разряда исчезает, и возникает искровой разряд с полным пробоем разрядного промежутка.

Корона иногда возникает в естественных условиях под влиянием атмосферного электричества на верхушках деревьев, корабельных мачт и пр.

С возникновением коронного разряда приходится считаться в технике высоких напряжений. Образуясь вокруг проводов высоковольтных линий передач электроэнергии, корона ионизует окружающий воздух, вследствие чего возникают вредные токи утечки. Для уменьшения этих токов утечки провода высоковольтных линий, а также подводящие провода к высоковольтным установкам должны быть достаточно толстыми. Коронные разряды, поскольку они носят прерывистый характер, являются источниками значительных радиопомех.

Коронный разряд используется в электрофильтрах, предназначенных для очистки промышленных газов от примесей твердых и жидких частиц (дыма в производстве серной кислоты, в литейных цехах заводов и т.д.).

Дуговой разряд

Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами (или сопротивление внешней цепи), то разряд из прерывистого становится непрерывным. Возникает новая форма газового разряда, называемая дуговым разрядом. При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт.

Дуговой разряд можно получить от источников низкого напряжения, минуя стадию искры. Для этого электроды сближают до соприкосновения, в результате они сильно нагреваются (раскаляются) электрическим током, после чего их разводят, получая при этом яркую электрическую дугу. Именно таким путем электрическая дуга была впервые получена в 1802 г. русским физиком В.В. Петровым.

В настоящее время электрическая дуга, горящая при атмосферном давлении, чаще всего получается между специальными угольными электродами, изготовленными из прессованного графита со связывающими веществами (рис. 7.13).

Согласно В.Ф. Миткевичу, дуговой разряд поддерживается главным образом за счет термоэлектронной эмиссии с поверхности катода. Подтверждением этой точки зрения может служить установленный на опыте факт, что во многих случаях устойчивая дуга получается только при условии, что температура катода достаточно высока. При охлаждении катода дуга горит неустойчиво, периодически гаснет и снова зажигается. Охлаждение же анода не вызывает нарушения устойчивого режима горения дуги.

С возрастанием разрядного тока сопротивление дуги R сильно уменьшается из-за увеличения термоэлектронной эмиссии с катода и ионизации газа в разрядном промежутке. При этом сопротивление убывает сильнее, чем возрастает ток. Вследствие этого с увеличением тока напряжение на разрядном промежутке не возрастает, а убывает. Говорят, что дуга имеет падающую вольтамперную характеристику, т.е. такую характеристику, когда напряжение на разрядном промежутке уменьшается с возрастанием тока. Поэтому для поддержания устойчивого горения дуги при случайных изменениях тока, например вследствие охлаждения катода, напряжение на электродах дуги должно быть повышено. С этой целью в цепь дуги включают последовательно балластное сопротивление. При случайном уменьшении тока напряжение на балластном сопротивлении уменьшается. Поэтому при неизменном подводимом общем напряжении напряжение на газоразрядном промежутке должно увеличиваться, чем и обеспечивается стабильное горение дуги.

Наряду с дуговыми разрядами, обусловленными термоэлектронной эмиссией, существуют и разряды другого типа. Примером могут служить дуговые разряды в ртутных лампах. Ртутная лампа представляет собой предварительно откачанный кварцевый или стеклянный баллон, пропускающий ультрафиолетовые лучи, наполненный парами ртути (рис.7.14). Дуговой разряд зажигается электрической искрой между двумя столбиками ртути, служащими электродами лампы. Ртутная дуга является мощным источником ультрафиолетовых лучей. Поэтому такие лампы применяют в медицине и в научных исследованиях.

Исследования показали, что источником мощной эмиссии электронов в ртутной лампе является небольшое, ярко светящееся пятно, возникающее на катоде и непрерывно бегающее по его поверхности (так называемое катодное пятно). Плотность тока в катодном пятне огромна и может достигать 10 6 ¸10 7 А/см 2 . Катодное пятно может возникнуть не только у поверхности ртутного, но и любого другого металлического электрода.

Ртутные дуги и аналогичные дуги с металлическими электродами получили название электрических дуг с холодным катодом. Дело в том, что раньше считалось, что катод действительно является холодным по всей его поверхности. Поэтому термоэлектронная эмиссия с катода не происходит или практически не играет никакой роли. Ленгмюр высказал предположение, что в случае холодного катода дуговой разряд поддерживается автоэлектронной эмиссией с катода. Действительно, катодное падение потенциала (~10 В) происходит на протяжении порядка длины свободного пробега электрона. Поэтому вблизи катода возникает сильное электрическое поле, достаточное, чтобы вызвать заметную автоэлектронную эмиссию. Несомненно, автоэлектронная эмиссия в дугах с "холодным" катодом играет существенную роль. Позднее появились указания на возможность нагрева таких катодов в отдельных точках до температур, при которых происходит большая термоэлектронная эмиссия, которая вместе с автоэлектронной эмиссией и поддерживает дуговой разряд. Хотя данный вопрос еще недостаточно исследован.


7.4. Понятие о плазме. Плазменная частота.
Дебаевская длина. Электропроводность плазмы

Плазмой называется ионизованный квазинейтральный газ, занимающий настолько большой объем, что в нем не происходит сколько-нибудь заметного нарушения квазинейтральности из-за тепловых флуктуаций. Квазинейтральность плазмы означает, что количества положительных и отрицательных зарядов в нем почти одинаковы. Нейтральным является каждый физически бесконечно малый элемент объема (объем малый макроскопический, но содержащий еще большое количество электронов и ионов). Заряды положительных и отрицательных ионов одинаковы и равны заряду электрона.

Достаточно сильное воздействие на плазму может привести к разделению зарядов в некоторой ее области. Такое воздействие может оказать на плазму, например, быстрая заряженная частица из числа электронов или ионов самой плазмы (при достаточно высокой температуре – тепловые флуктуации) или пришедшая извне.

Разделение положительных и отрицательных зарядов в плазме аналогично процессу поляризации диэлектрика. Однако в диэлектриках заряженные частицы не могут двигаться на большие расстояния (~10 -10 м), а в плазме возможны любые перемещения частиц.

Если из-за тепловых флуктуаций отрицательные заряды сместились на расстояние x, то на границах плазмы возникнут макроскопические заряды противоположных знаков с поверхностной плотностью

где n – концентрация частиц одного знака заряда.

С учетом того что , то в рассматриваемом случае

, (7.31)

где P – электрический дипольный момент единицы объема плазмы.

Если плазма бесконечна и в ней отсутствуют свободные электрические заряды, являющиеся источниками вектора D, имеем

. (7.32)

Из формулы (7.32) для напряженности электрического поля, возникшего в плазме, получим

Для плотности энергии электрического поля

. (7.34)

Сила, действующая на каждый электрон,

. (7.35)

Из выражения (7.35) видно, что сила пропорциональна смещению и направлена в сторону, противоположную смещению, т.е. она подобна квазиупругой силе. Следовательно, сила, действующая на электроны в плазме, вызывает гармонические колебания с частотой

где m – масса электрона.

Эта частота называется плазменной частотой.

Колебания электронов, возникшие в определенном месте плазмы, создадут волну той же частоты, распространяющуюся через плазму.

Поскольку энергия электрического поля черпается из кинетической энергии теплового движения частиц газа, величина w 0 не может превосходить 3nkT. На долю отрицательных частиц единицы объема приходится в среднем кинетическая энергия (и такая же энергия – на долю положительных). Следовательно, если опустить численный коэффициент 3, то должно выполняться соотношение

(nxe) 2 <(nkT)×2e 0 ,

. (7.37)

Величина D называется дебаевской длиной или дебаевским радиусом. Таким образом, чтобы плазма сохраняла квазинейтральность, ее линейные размеры должны намного превосходить дебаевский радиус.

В зависимости от степени ионизации a различают: слабо ионизованную плазму (при a порядка долей процента), умеренно ионизованную плазму (a нескольких процентов) и полностью ионизованную плазму. В земных природных условиях плазма встречается довольно редко (например, в канале молнии). В верхних слоях атмосферы, которые в большей степени подвержены воздействию ионизующих факторов (ультрафиолетовые и космические лучи), постоянно присутствует слабо ионизованная плазма (ионосфера). Ионосфера отражает радиоволны и делает возможной радиосвязь на больших расстояниях (порядка расстояния между диаметрально противоположными точками земного шара). В космическом пространстве плазма представляет собой наиболее распространенное состояние вещества. Солнце и горячие звезды, имеющие высокие температуры, состоят из полностью ионизованной плазмы. Поэтому многие проблемы астрофизики связаны с изучением физических свойств плазмы. На почве астрофизики возникла магнитная гидродинамика, в которой плазма, движущаяся в магнитных полях, рассматривается как сплошная жидкая среда, обладающая высокой проводимостью. Плазма образуется в различных формах газового разряда, например в положительном столбе тлеющего разряда, а также в главном канале искрового разряда. Физика плазмы – сравнительно новый, быстро развивающийся раздел физики, которому посвящены специальные курсы.

Оценим удельную проводимость g полностью ионизованной плазмы, состоящей из электронов и положительно заряженных ионов, каждый из которых обладает зарядом Ze. Движение ионов, ввиду их больших масс, можно не учитывать и считать, что весь ток создается движением легких электронов. Величина g определяется столкновением электронов с ионами. Столкновение электронов между собой на величину тока не влияют, поскольку при таких столкновениях полный импульс электронов не изменяется. От этих столкновений можно отвлечься. Между ионами и электронами плазмы действуют кулоновские силы притяжения – это дальнодействующие силы. Электрон сравнительно редко подходит к иону на такие малые расстояния, чтобы направление его движения изменилось резко и имело характер скачка. Гораздо большее значение имеют взаимодействия электрона сразу с очень большим количеством ионов, при которых направление траектории электрона меняется плавно и непрерывно. Отклонение электрона на большие углы от первоначального направления движения происходит в результате накопления малых отклонений при взаимодействии его с "далекими" ионами. Поэтому о столкновениях, длине и времени свободного пробега можно говорить лишь в условном смысле. Промежуток времени t , в течение которого направление движения электрона меняется на угол порядка 90 о, принято считать временем свободного пробега.

Для оценки величины i предположим, что электрон движется в поле положительного иона с зарядом Ze. Если v – скорость электрона на бесконечности, а r п - прицельный параметр, то при прохождении мимо иона траектория электрона отклоняется на угол Q, определяемый формулой

, (7.38)

где m – масса электрона.

Прицельный параметр r п, для которого Q = 90 о, определяется выражением

Ему соответствует "эффективное поперечное сечение":

. (7.40)

Учет далеких взаимодействий приводит к тому же результату, но увеличенному в L раз:

. (7.41)

Коэффициент L называется кулоновским логарифмом. Он почти не зависит от температуры и плотности плазмы. Для плазмы, состоящей из полностью ионизованного дейтерия, при kT ~ 10 кэВ и концентрации электронов n ~ 10 12 ¸10 15 см -3 , L » 15. Так как каждый положительный ион содержит Z элементарных зарядов, то концентрация таких ионов будет , а средняя длина и время "свободного пробега"Большое различие в массах электронов и ионов плазмы делает возможным в плазме существование таких квазиравновесных состояний, которые в известном приближении могут быть характеризованы двумя температурами. Действительно, предположим, что начальное распределение скоростей электронов и ионов плазмы изотропное, но не максвелловское. При столкновении электрона с другим электроном они обмениваются энергией, величина которой соответствует порядку начальной энергии самих электронов. Поэтому время установления распределения электронов по энергиям (т.е. максвелловского распределения) из-за столкновений между ними можно оценить по формуле (7.41), если в ней массу электрона m заменить приведенной массой . Это время, называемое электронным временем релаксации , пропорционально квадратному корню из массы электрона .

Точно так же определяется ионное время релаксации, за которое успевает устанавливаться распределение по энергиям между ионами из-за столкновений между ними: .

При столкновении электронов с ионами быстрая частица передает медленной лишь незначительную долю своей энергии, которая в среднем соответствует доле порядка от первоначальной энергии быстрой частицы. Для выравнивания энергий потребуется релаксационное время большее, чем . Таким образом,

. (7.45)

Из (7.45) следует:

.

Если плазму предоставить самой себе, то сначала установится максвелловское распределение скоростей электронов, затем ионов. Возникает квазиравновесное состояние, в котором электроны будут иметь температуру T e , а ионы – температуру T i . При этом T e ¹ T i . В этом случае плазму называют неизотермической или двухтемпературной. Затем в результате обмена энергиями между электронами и ионами установится максвелловское распределение для всей плазмы, характеризующейся общей температурой электронов и ионов (изотермическая плазма).

Когда плазма находится в электрическом поле, то в ней начинает существовать электрический ток и выделяться джоулево тепло. При этом энергию от поля получают почти исключительно электроны как наиболее подвижные частицы. Ионы нагреваются главным образом за счет энергии, которую они получают от "горячих" электронов при кулоновских взаимодействиях с ними. Так как последний процесс происходит сравнительно медленно, то температура электронов в плазме оказывается выше температуры ионов. Различие между ними может быть весьма значительным. Так, в положительном столбе тлеющего разряда при давлениях порядка 0,1 мм рт.ст. температура электронов может достигать 50 000 о С и выше, тогда как температура ионов не превышает нескольких сотен градусов.

Основной практический интерес, который представляет физика плазмы, связан с решением проблемы управляемого термоядерного синтеза. Для того чтобы в веществе начались достаточно интенсивные термоядерные реакции, его необходимо нагреть до температуры в несколько кэВ или десятков кэВ, а при таких температурах всякое вещество находится в состоянии плазмы. Наиболее перспективными "рабочими веществами" для термоядерного реактора являются изотопы водорода: дейтерий и тритий. Термоядерную реакцию синтеза легче получить не в чистом дейтерии, а в его смеси с тритием. Полное количество дейтерия в океанах ~ 4×10 13 т, что эквивалентно энергии ~ 10 20 кВт×лет (полная потребляемая на всем земном шаре мощность составляет ~ 10 10 кВт). Тритий как сильно радиоактивный элемент в природных условиях не встречается, а получается искусственно. В будущих термоядерных реакторах расход трития должен с избытком пополняться воспроизводством (регенерацией) его в результате облучения Li 6 нейтронами, получающимися в самих термоядерных реакторах.

Так как термоядерные реакции должны происходить сравнительно плавно и медленно, то возникает необходимость достаточно длительного удержания горячей плазмы в ограниченном объеме рабочей камеры и изоляции ее от стенок этой камеры. Для этого предлагается использовать магнитную термоизоляцию, т.е. помещать плазму в сильное магнитное поле, препятствующее ионам и электронам перемещаться в поперечном направлении и уходить на стенки камеры.

Необходимое требование, которому должен удовлетворять всякий термоядерный реактор, состоит в том, чтобы энергия, выделяющаяся в ядерных реакциях, с избытком компенсировала затраты энергии от внешних источников. Основными источниками потерь энергии является тормозное излучение электронов при кулоновских столкновениях последних, а также магнитотормозное (циклотронное или бетатронное) излучение, возникающее вследствие ускоренного движения электронов в магнитном поле. Для самоподдерживающихся термоядерных реакций требуется нагреть плазму до некоторой "критической" температуры (~50 кэВ). При этом должен выполняться так называемый критерий Лоусона (nt>10 16 с/см 3), где n – концентрация ионов плазмы (одного знака), а t – среднее время удержания плазмы.

Основная трудность, стоящая на пути создания управляемого термоядерного синтеза, связана с получением спокойной, или устойчивой, плазмы. Дело в том, что из-за дальнодействующего характера кулоновских сил в плазме происходят разные коллективные процессы, например самопроизвольно возникающие шумы и колебания, делающие плазму неустойчивой. Основные усилия при решении проблемы управляемого термоядерного синтеза направлены на подавление этих неустойчивостей.