Электрическая проводимость. Абсолютная скорость и подвижность ионов. Скорость движения ионов при электролизе, опыт

Жидкости, как и твердые тела, могут быть проводниками, диэлектриками (спирт, вода) и полупроводниками (расплавленный селен, теллур). Растворы веществ, которые проводят электрический ток, называются электролитами. Электролитами являются, например водные растворы солей, кислот и щелочей. Их (молекулы состоят из двух частей, обладающих противоположными и равными по величине зарядами, т. е. из двух ионов. Когда они попадают в воду, диэлектрическая проницаемость которой ε = 81 , сила электрического взаимодействия между ними уменьшается в 81 раз. При таком уменьшении силы притяжения между ионами, составляющими молекулы растворяемого вещества, последние от столкновения с молекулами воды в процессе теплового движения распадаются на ионы, т. е. происходит электролитическая диссоциация. Ионы водорода и металлов положительные.

Некоторое количество противоположно заряженных ионов при своем движении может оказаться настолько близко друг к другу, что силы электрического притяжения объединяют их снова в нейтральную молекулу. Величина заряда иона (валентность) определяется числом потерянных или приобретенных атомом (или группой атомов, составляющих ион) электронов. Электролитическую диссоциацию записывают в виде уравнений, как и любые другие химические реакции:

Итак, в электролите имеются свободные носители заряда, ими? являются положительные и отрицательные ионы. Они находятся в тепловом движении.

Опустим в электролит два электрода и присоединим их к полюсам источника постоянного тока. Под действием электрического поля, образованного источником тока в электролите, свободные ионы помимо теплового движения начинают двигаться в противоположные стороны: положительные - к отрицательному электроду, а отрицательные - к положительному электроду. Поток положительных и отрицательных ионов в электролите поп действием электрического поля источника тока есть ток в электролите. Чем больше ионов содержится в 1 см 3 электролита и чем больше скорость их движения, тем больше сила тока. Скорость непрерывного движения ионов, образующих ток в электролите, невелика. Даже самый быстрый ион водорода при напряженности электрического поля Е = 100 в / м имеет скорость примерно 12 см / ч , а ион натрия - 1,6 см / ч . Для электролитов справедлив закон Ома.

При прохождении тока через электролит ионы, достигая электродов, нейтрализуются и выделяются на них в виде нейтральных молекул вещества. Значит, прохождение тока через электролиты всегда сопровождается переносом вещества. Из этого следует, что в электролитах, в отличие от металлических проводников, носителями тока являются не свободные электроны, а ионы. В отличие от металлов электролиты имеют ионную проводимость. Через электролит электрический ток проходит до тех пор, пока растворенное вещество в растворителе полностью не выделится на электродах, после этого ток прекратится.

Движение ионов в электрическом поле используется для введения их в организм с лечебной целью через неповрежденную кожу. Например, при введении в руку ионов кальция ее кисть помещают в ванну с водным раствором хлористого кальция, предплечье соединяют с отрицательным полюсом источника тока, а электрод, погруженный в электролит, с положительным полюсом (рис. 107). Под действием электрического поля положительные ионы кальция входят в тело и распространяются по всей руке.

Выясним, как зависит сопротивление электролита от температуры. Соберем электрическую цепь из источника тока, амперметра и пробирки с электролитом, в который погружены электроды (рис. 108). Нагревая электролит, мы замечаем увеличение силы тока в цепи. Значит, при нагревании электролитов их сопротивление уменьшается. Скорость молекул при этом становится большей, кинетическая энергия их увеличивается, что вызывает более частые и сильные соударения между молекулами электролита, в результате происходит больший распад молекул растворенного вещества на ионы. Рост числа ионов, образующих ток, увеличивает его силу. С возрастанием температуры повышается сопротивление электролита направленному движению свободных ионов, но рост их числа вызывает большее увеличение силы тока, чем уменьшение его за счет возрастания числа соударений ионов с молекулами электролита. В конечном итоге от нагревания сопротивление электролита уменьшается.

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.

Рис. 2.

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, Na 2 SO 4) и фенолфталеина и поместим на стеклянную пластинку (рис. 2).

Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток.

Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но, в общем, она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.

Теория электролитической диссоциации

Сванте Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электропроводности раствора можно рассчитать величину его осмотического давления, а, следовательно, и поправочный коэффициент i. Значения i, вычисленные им из электропроводности, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а, следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой, -- ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами; к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация НСl выразится уравнением:

НСl = Н + + Сl -

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля. В качестве примера можно привести понижение температуры замерзания раствора NaCl. Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na + и Сl - . При этом из одного моля NaCl получается не 6,02 * 10 23 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем, если бы хлорид бария находился в нем в виде молекул ВаСl 2 .

ВаСl 2 =Ва 2+ + 2Сl -

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И. А. Каблукову, впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

Электропроводность электролитов зависит от числа ионов в единице объема и от подвижности ионов.

Подвижность ионов определенного сорта выражается скоростью их перемещения в растворителе под действием электрического поля с падением потенциала в I в на I см.

Движение ионов можно обнаружить, например, проводя электролиз бесцветного раствора азотнокислого калия в -образной трубке, на дно которой посредством особой воронки осторожно введен ярко окрашенный раствор марганцовокислого калия причем этот раствор взят такой концентрации, чтобы его плотность по возможности не отличалась от плотности раствора азотнокислого калия. При включении тока движение ионов сообщающих раствору окраску, проявляется в перемещении к аноду границы окрашенной части электролита (рис. 134). Это перемещение ионов происходит со скоростью около когда напряженность поля в электролите составляет примерно 3 в/см.

Рис. 134. Прибор для демонстрации движения ионов при электролизе.

В подобных опытах можно непосредственно измерить подвижность различных окрашенных (или окрашивающих индикаторы) разновидностей ионов. Однако удобнее пользоваться другими, окольными, но более точными методами измерения подвижностей. Результаты этих измерений представлены в таблице на стр. 186. Численные значения экстраполированы для бесконечно больших разведений соответствующих электролитов. (Иногда подвижностью ионов называют произведение приведенных в данной таблице чисел на заряд, равный фарадею, т. е. на 96 500 кулонов.)

Как видно из таблицы, подвижности различных ионов независимо от знака и величины их зарядов имеют близкие значения (несколько десятитысячных долей сантиметра в секунду, или, что тоже,

Подвижности некоторых ионов в водном растворе при

(см. скан)

доли миллиметра в минуту для поля 1 в/см). Но подвижности гидроксония и гидроксила превосходят остальные в несколько раз. Это явление связано, по-видимому, с тем, что ионы гидроксила и гидроксония построены из тех же элементов из которых построены молекулы растворителя (воды), и механизм их движения в растворе несколько иной, чем в случае других ионов; их перемещение к электродам осуществляется, по-видимому, «эстафетным» путем. Так, в случае гидроксония его протон передается близлежащей незаряженной молекуле воды, которая сама теперь становится ионом гидроксония, и таким же порядком эстафета идет далее, по направлению к катоду, так, как это наглядно представлено на рис. 135. Вполне очевидно, что такое фиктивное движение гидроксония должно происходить быстрее, чем если бы гидроксоний, подобно другим ионам, перемещался сам. Любопытно, что приблизительно так представлял себе вначале механизм электролиза основатель теории электролиза выдающийся литовский физик и химик Гроттус, еще не знавший о существовании в растворах свободных ионов.

Рис. 135. Фиктивное движение ионов гидроксония при электролизе.

Покажем, как при помощи таблицы подвижностей ионов вычисляется электропроводность растворов, настолько разбавленных, чтобы ионы были достаточно удалены друг от друга и вследствие этого, с одной стороны, не сцеплялись в молекулы, а с другой, - не тормозили движения друг друга своими собственными электрическими полями. Пусть в растворе содержится по положительных и отрицательных ионов в каждом кубическом сантиметре и имеется

падение потенциала 1 в/см; катод находится слева, анод - справа. Подвижности анионов и катионов обозначим, как в вышеприведенной таблице, через Представим себе площадку размером перпендикулярную к направлению силовых линий. В течение 1 сек. эту площадку пересекут, двигаясь слева направо, все анионы, которые в начальный момент были удалены от нее не далее чем на сантиметров, т. е. содержались в объеме слоя, основанием которого служит выбранная площадка, а высотой Объем этого слоя в нем содержится анионов, и если заряд каждого равен то количество отрицательного электричества, которое они перенесут с собой через рассматриваемое сечение, равно

Рассуждая аналогично, для катионов мы найдем, что количество положительного электричества, ежесекундно переносимого ими через ту же площадку, но в противоположном направлении, составляет

Согласно определению удельная электропроводность раствора (как и всякого проводника) есть количество электричества, переносимое через поперечного сечения проводника в течение секунды, при падении потенциала в 1 в на 1 см. При этом, с формальной точки зрения, перенос положительного электричества справа налево эквивалентен переносу такого же количества отрицательного электричества слева направо. Следовательно, удельная электропроводность раствора

В этой формуле есть заряд всех ионов одного знака, находящихся в раствора. Между тем нам известно, что заряд числа Авогадро каких-либо ионов равен 96 500 кулонам. Обозначим через С концентрацию ионов, выраженную числом грамм-эквивалентов в т. е. выраженную сопоставлением имеющейся концентрации ионов с концентрацией ионов в нормальном растворе (стр. 180). В случае полной диссоциации С указывает, во сколько раз число ионов одного знака, содержащихся в раствора, превышает числа Авогадро. Очевидно, что в этом случае

а следовательно,

Если в растворе не два вида ионов, а больше, то вообще

т. е. доля участия каждого вида ионов в электропроводности пропорциональна их концентрации, с одной стороны, и подвижности, -

с другой. Например, электропроводность раствора азотной кислоты

Здесь мы воспользовались правом считать сильные электролиты (какова азотная кислота) в разбавленных растворах ( полностью диссоциированными и считать поэтому заданное значение концентрации 0,001 одинаково относящимся как к концентрации самой азотной кислоты, так и каждого из ее ионов.

Формула (6) показывает, что удельная электропроводность достаточно разбавленных растворов должна возрастать пропорционально увеличению концентрации раствора.

У достаточно разбавленных растворов такая пропорциональность между удельной электропроводностью и концентрацией действительно имеется. Примером могут служить числа, приведенные в таблице.

Электропроводность растворов хлористого калия при 18° С

(см. скан)

В более концентрированных растворах пропорциональность между концентрацией и удельной электропроводностью, требуемая найденным выше соотношением, нарушается. Наблюденная электропроводность у обычно оказывается менее вычисленной т. е. 1. Это имеет две причины. Прежде всего в случае мало разбавленных растворов нет полной диссоциации электролита; в каждый данный момент часть ионов связана в молекулы и не участвует в проведении электрического тока. Поэтому отношение - должно быть равно степени диссоциации а электролита в данном растворе. В связи с этим измерение электропроводности растворов является весьма простым, удобным и широко применяемым способом определения степени диссоциации; полученные таким способом значения а согласуются со значениями а, вычисленными для тех же растворов на основании закона Оствальда (т. I, § 121). Однако согласование с законом Оствальда имеет место только для слабых электролитов.

Изменение электропроводности сильных электролитов с концентрацией происходит не так, как можно было бы ожидать на основании закона действующих масс. Здесь при высоких концентрациях уменьшается не число ионов, фактически участвующих в проведении тока, а уменьшаются е. их подвижности. Противоположно заряженные ионы притягиваются, что уменьшает их подвижность, и соответственно уменьшается электропроводность, Полный расчет этих влияний очень сложен; он выполнен Дебаем»

Рис. 136 показывает, какая сложная зависимость существует между удельной электропроводностью растворов сильных электролитов и концентрацией, выраженной в единицах нормального раствора. Аналогичный вид имеют кривые, характеризующие зависимость электропроводности от концентрации» выраженной в процентах по весу. Эти графики показывают, что удельная электропроводность электролитов возрастает до определенной концентрации раствора и потом убывает. Например, среди растворов соляной кислоты наибольшую электропроводность имеет примерно пятинормальный раствор (около 20% по весу). В таблице на стр. 190 приведены значения удельного сопротивления и удельной электропроводности для растворов различной концентрации. Мы видим, что удельное сопротивление наиболее электропроводных электролитов почти в миллион раз превышает удельное сопротивление меди.

Рис. 136. Зависимость удельной электропроводности сильных электролитов от концентрации, выраженной в грамм-эквивалентах на литр.

По формуле (6), которая, впрочем, справедлива только для слабых электролитов и при достаточно больших разбавлениях, отношение удельной электропроводности к грамм-эквивалентной концентрации раствора должно быть одинаковым для растворов всех концентраций. Указанное отношение, увеличенное в 1000 раз, называют эквивалентной электропроводностью:

По формуле (6) эквивалентная электропроводность должна выражаться как произведение суммы подвижностей ионов на заряд Фарадея:

Для удобства сопоставления различных электролитов и для выявления того, в какой мере свойства какого-либо электролита отличаются от свойств слабого, разбавленного, полностью диссоциированного электролита, в электрохимии результаты измерения электропроводности растворов почти всегда выражают в виде значений эквивалентной электропроводности.

Из определения эквивалентной электропроводности как нетрудно сообразить, следует, что для нормального раствора (1 грамм-эквивалент в литре, эквивалентная электропроводность представляет собой электропроводность одного литра раствора, налитого в виде слоя между плоскими электродами, раздвинутыми на расстояние 1 см один от другого. Для двухнормального

Удельное сопротивление и электропроводность некоторых электролитов (водных растворов) при 18° С

(см. скан)

раствора из той же формулы для X следует, что X представляет собой электропроводность литра раствора, налитого в виде слоя между плоскими электродами, раздвинутыми по-прежнему на 1 см. Стало быть, и в этом случае берется слой, содержащий один грамм-эквивалент раствора. Вообще, эквивалентная электропроводность есть электропроводность такого слоя раствора, который содержит один грамм-эквивалент растворенного вещества между электродами, отстоящими друг от друга на 1 см.

Удельная электропроводность - это электропроводность неизменного количества раствора содержащего в зависимости от концентрации разные количества растворенного вещества. В противоположность этому эквивалентная электропроводность - это электропроводность различных количеств раствора, содержащих неизменное количество (1 грамм-эквивалент) растворенного вещества, причем в обоих случаях расстояние между электродами равно 1 см

Эквивалентная электропроводность как сильных, так и слабых электролитов возрастает с уменьшением концентрации. На рис. 137 показан характерный для большинства электролитов вид кривых, определяющих зависимость эквивалентной электропроводности от концентрации. В таблице приведены значения эквивалентной электропроводности для некоторых электролитов.

Эквивалентная электропроводность некоторых электролитов в водных растворах при 18° С

(см. скан)

Обратимся к вопросу о пределах применимости закона Ома к электролитам. Из теории движения тел в вязкой среде известно, что скорость установившегося (стационарного) движения в вязкой среде пропорциональна действующей на тело силе. Движущийся к электроду ион удовлетворяет тем условиям, для которых выведено это соотношение; поэтому скорость движения иона должна быть пропорциональна действующей на ион силе, т. е. произведению напряженности поля на заряд иона. Если напряжение тока а следовательно, и напряженность поля увеличатся в раз, то во столько же раз увеличится скорость движения всех присутствующих в растворе ионов, во столько же раз увеличится и количество ежесекундно переносимого ими через любое поперечное сечение проводника электричества, т. е. величина тока.

Рис. 137. Изменение эквивалентной электропроводности с изменением концентрации.

Таким образом, в случае элек тролитов закон Ома должен быть справедлив в тех пределах, в которых сохраняется пропорциональность между скоростью движения ионов и действующей на них электрической силой. Эти пределы очень широки, В недавнее время доказано, что отклонения от закона Ома становятся заметными лишь при напряжениях порядка 106 в/см. При этих напряжениям скорости движения ионов становятся сравнимы со скоростью движения пас сажирских поездов.

Материал из Юнциклопедии


Один из способов определения того, с какой скоростью движутся ионы в растворе под действием электрического поля, состоит в следующем. Вырежьте полоску фильтровальной бумаги длиной 10 см и шириной 2 см и укрепите её на стекле или другой изолирующей подставке. Концы полоски должны соприкасаться с проводящими контактами, а вся электрическая цепь состоять из выпрямителя или батареи с напряжением 15–20 В (можно соединить несколько батарей последовательно), ключа и полоски, соединенных последовательно (см. рис.). Теперь займемся приготовлением электролита. Лекарство пурген (фенолфталеин) надо растворить в спирте или одеколоне и добавить несколько капель к раствору поваренной соли в воде. Пропитайте бумагу раствором и замкните ключ. У катода образуется красное пятнышко, которое разрастается и начинает перемещаться к аноду. В результате электролиза у катода происходит выделение водорода и образование ионов OH − . Они вызывают окрашивание фенолфталеина и под действием электрического поля движутся к аноду. Определив скорость перемещения красного цвета, можно оценить скорость движения ионов в электролите. Она составляет несколько миллиметров в минуту.

Следует позаботиться о том, чтобы за время опыта фильтровальная бумага не высохла, и закрыть её сверху еще одним стеклом.

Меняя напряжение на зажимах и концентрацию солевого раствора, вы можете выяснить ряд закономерностей движения ионов.