Энергетические зоны. Свободные носители зарядов: электроны и дырки. Полупроводники - материалы для подготовки к егэ по физике

В кристалле чистого германия и кремния связь между атомами осуществляется за счет вращения двух электронов, принадлежащих двум рядом расположенным атомам, по од­ной общей орбите. Такая связь называется парноэлектронной , или ковалентной (рис. 10, а). Германии и кремний являются четырехвалентными элементами, их атомы имеют по 4 валентных электрона, и ковалентные связи образуются между четырьмя соседними атомами, как показано на рис. 10, б. На этом рисунке парные ковалентные связи обозначены параллельными линиями, соединяющими два соседних атома, а электроны, образующие эти связи, - черными точками (1) Электроны, связанные ковалентными связями, не участвуют в электропроводности полупроводника. Чтобы появилась электропроводность (т.е. чтобы полупроводник стал способным проводить электрический ток), необходимо разорвать часть ковалентных связей. Освобожденные от ковалентных связей электроны смогут свободно перемещаться по кристаллу полупроводника и участвовать в электропроводности. Такие электроны называют свободными , или электронами проводимости (рис.10, в). Разрушение ковалентных связей происходит при сообщении электронам дополнительной энергии за счет повышения температуры (нагрева) полупроводника, облучения светом и других энергетических воздействий. В результате энергия свободных электронов увеличивается, и их энергетические уровни соответствуют энергетическим уровням зоны проводимости.

Место на внешней орбите атома, где ранее находился электрон (или, иными словами, разорванная ковалентная связь), называется дыркой. На энергетической диаграмме

Рис.10. Плоская модель кристаллической решетки германия и кремния (а, б, в) и их энергетическая диаграмма (г)

дырке соответствует свободный энергетический уровень (2) в валентной зоне, с которого электрон перешел в зону проводимости (рис. 10, г). Атом, лишившийся одного из электронов, обладает положительным зарядом, равным абсолютному значению заряда электрона. Следовательно, образование дырки эквивалентно возникновению положительного заряда р= +q(q ≈ 1,6 *10 -19 Кл - заряд электрона).

Образование свободных электронов в зоне проводимости и дырок в валентной зоне называют генерацией носителей заряда , или генерацией пар электрон-дырка , поскольку у абсолютно чистых (собственных) полупроводников появление свободного электрона в зоне проводимости обязательно сопровождается появлением дырки в валентной зоне.

Свободный электрон может, теряя часть своей энергии, из зоны проводимости перейти в валентную зону, заполнив собой одну из имеющихся в ней дырок. При этом восстанавливается ковалентная связь. Этот процесс называют рекомбинацией . Таким образом, рекомбинация всегда сопровождается потерей пары электрон-дырка.

Рекомбинация всегда означает переход электрона в состояние с более низкой энергией. Выделяющаяся при этом энергия может излучаться в виде кванта света (фотона) или превращаться в тепловую энергию.

Промежуток времени от момента генерации носителя заряда до его рекомбинации называют временем жизни, а расстояние, пройденное им за время жизни, - диффузионной длиной .

Концентрация носителей зарядов в собственном полупроводнике.

При температурах, превышающих -273,16 °С, в полупроводнике всегда имеются разорванные ковалентные связи, т.е. некоторое количество свободных электронов и равное им число дырок. Число, или концентрация, свободных электронов и дырок зависит от ширины запрещенной зоны ∆Wn температуры: оно тем больше, чем меньше ∆W и выше температура. При заданной температуре процесс генерации носителей заряда уравновешивается процессом рекомбинации. Такое состояние полупроводника называют равновесным . Для полупроводника, находящегося в равновесном состоянии, концентрация свободных электронов n ,равна концентрации дырок р , (индексы / соответствуют чистому, или собственному, полупроводнику) в валентной зоне, и можно записать

ni pi = ni2 = pi2 = const.

Цель работы - ознакомление с физическими процессами в ЭДП, изучение вольтамперных характеристик диодов из германия и кремния и их зависимости от ширины запрещенной зоны полупроводника и температуры, определение ширины запрещенной зоны германия, изучение p-n-перехода как приемника света (фотодиода).

ЭЛЕКТРОНЫ И ДЫРКИ В ПОЛУПРОВОДНИКАХ

В твердом теле атомы находятся друг от друга на расстоянии порядка атомного размера, поэтому в нем валентные электроны могут переходить от одного атома к другому. Однако этот процесс не приводит непосредственно к электропроводности, так как в целом распределение электронной плотности жестко фиксировано. Например, в германии и кремнии два электрона осуществляют ковалентную связь между двумя соседними атомами в кристалле. Чтобы создать проводимость, необходимо разорвать хотя бы одну из связей, удалить с нее электрон и перенести его в какую-либо другую ячейку кристалла, где все связи заполнены, и этот электрон будет лишним. Такой электрон в дальнейшем переходит из ячейки в ячейку. Являясь лишним, он переносит с собой излишний отрицательный заряд, т.е. становится электроном проводимости.

Разорванная связь становится блуждающей по кристаллу дыркой, поскольку электрон соседней связи быстро занимает место ушедшего. Недостаток электрона у одной из связей означает наличие у пары атомов единичного положительного заряда, который переносится вместе с дыркой. Электроны и дырки - свободные носители заряда в полупроводниках. В идеальных кристаллах, не имеющих ни примесей, ни дефектов, возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрация обоих типов носителей равны между собой.

Для образования электронно- дырочной пары необходимо затратить энергию, превышающую ширину запрещенной зоны Eд; например, для германия Ед=0,66 эВ. для кремния Ед=1,11 эВ.

Помимо процесса образования электронов и дырок идет обратный процесс - их исчезновение, или рекомбинация. Электрон проводимости, оказавшись рядом с дыркой, восстанавливает разорванную связь. При этом исчезают один электрон проводимости и одна дырка. При отсутствии внешних воздействий, например света, устанавливается динамическое равновесие процессов, протекающих в обоих направлениях. Равновесные концентрации электронов и дырок определяются абсолютной температурой Т, шириной запрещенной зоны Ед, концентрацией примесей и другими факторами. Однако произведение концентраций электронов и дырок (n и p соответственно) не зависит от количества примесей и определяется для данного полупроводника температурой и величиной Eд:

где k – постоянная Больцмана; А – коэффициент пропорциональности.

Рассмотрим два следствия из формулы. В собственном (беспримесном) полупроводнике одинаковые концентрации электронов и дырок будут равны

В примесных полупроводниках при достаточно большом количестве примеси концентрация основных носителей примерно равна концентрации примеси. Например, в полупроводнике n-типа концентрация электронов равна концентрации донорных атомов; тогда концентрация дырок (неосновных носителей) равна:

ЭЛЕКТРОННО-ДЫРОЧНОЙ ПЕРЕХОД В РАВНОВЕСНОМ СОСТОЯНИИ

В монокристалле можно создать резкий переход от полупроводника n-типа к полупроводнику p-типа. На рисунке левая от линии ММ часть кристалла, p-типа, содержит основные -носители - дырки, примерно такое же количество отрицательных акцепторных ионов и незначительное количество электронов. Правая часть, n-типа, содержит соответственно электроны проводимости (основные носители), положительные донорные ионы и небольшое количество дырок.

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ИДЕАЛЬНОГО ЭДП

Зависимость I(U) называют вольт-амперной характеристикой ЭДП (диода).

В зависимости от значения питающего напряжении и полярности источника изменяется высота барьера в ЭДП при неизменной полярности двойного слоя зарядов. Поскольку неосновные носители "скатываются" с барьера, ток неосновных носителей остается постоянным при изменениях высоты барьера. Ток основных носителей, которые "взбираются" на барьер, очень чувствителен к его высоте: при повышении барьера он быстро уменьшается до нуля, а при понижении барьера может возрасти на несколько порядков. Чтобы получить зависимость тока от напряжения, необходимо знать энергетический спектр частиц. В целом эта зависимость довольно сложная, но для описания процессов в ЭДП необходимо знать только самую "энергетическую" честь спектра, "хвост" распределения, поскольку в практических случаях только самые быстрые частицы способны преодолеть барьер. Спектр таких быстрых электронов экспоненциальный.

При прямом смешении ток протекает в положительном направлении, а при обратном смещении направление тока изменяется. Напряжению U припишем знак "плюс" при прямом смещении и "минус" при обратном смещении. Тогда можно получить зависимость, описывающую вольт-амперную характеристику идеального электронно-дырочного перехода

Теоретическая вольт-амперная характеристика р - п -перехода, рассчитанная по формуле при комнатной температуре Т= 295 К, представлена на рисунке и в таблице (напряжение U в вольтах). Зависимость I(U) обладает резко выраженной нелинейностью, т.е. проводимость (или сопротивление) р - п -перехода сильно зависит от U. При обратном смещении через переход течет ток Is неосновных носителей, называемые током насыщения, который обычно мал и почти не зависит от напряжения.

Как видно из формулы, ток насыщения задает масштаб по оси I вольт-амперной характеристики. Значение Is пропорционально площади перехода, концентрации неосновных носителей и их скорости хаотического движения. Учитывая формулу, получаем следующую зависимость тока насыщения от ширины запрещенной зоны и температуры:

где С - коэффициент пропорциональности, не зависящий от Ед и Т.

Экспоненциальный множитель определяет сильную зависимость тока как от температуры, так и ширины запрещенной зоны. При увеличении Ед, например при замене германия кремнием, ток Is уменьшается на несколько порядков, кремниевые диоды почти не пропускают ток в обратном направлении; как следствие, изменяется ВАХ при прямом смещении (качественно эти изменения отражены на рис.). Ток насыщения возрастает при нагревании; например, для германия расчет по формуле дает увеличение тока в 80 раз при нагревании от комнатной температуры на 60 °С (от 295 до 355 К). Изменения ВАХ при нагревании показаны на рис.

Из опыта, в котором измерен ток насыщения при различной температуре, можно найти значение Ед. Полученную зависимость следует сравнить с формулой, которую логарифмированием преобразуем к виду

Если точки ложатся на прямую, то опыт подтверждает экспоненциальную зависимость тока от обратной температуры.

ЭДП В КАЧЕСТВЕ ПРИЕМНИКА СВЕТА (Фотодиод)

Свет может разорвать электронную связь в полупроводнике, образуя электрон проводимости и дырку (на зонной диаграмме электрон переходит из валентной зоны в зону проводимости). При этом концентрация носителей (и проводимость полупроводника) становится больше равновесной. Такой процесс называется внутренним фотоэффектом (в отличие от внешнего фотоэффекта при внутреннем фотоэффекте электрон не вылетает наружу). Разрыв электронной связи осуществляется одним квантом света (фотоном), энергия которого должна превышать значение Ед. Следовательно, у внутреннего фотоэффекта имеется "красная граница". Для кремния, что больше, чем длина волны видимого света.

При освещении p-n-перехода образуются дополнительные электронно-дырочные пары. При достаточном освещении они могут существенно увеличить концентрацию неосновных носителей, которых было мало, практически не изменяя в процентном отношении количество основных носителей. При этой к существовавшему в темноте току неосновных носителей - Is добавляется фототок - I, протекающий в том же направлении.

Фототок равен разности тока и тока называемого в данной случае темновым током. При достаточно большой освещенности темновой ток может составлять пренебрежимо малую долю полного тока. Электронно-дырочный переход, специально изготовленный для детектирования света и работающий при обратном смещении, называется фотодиодом. Это простой и удобный приемник света, фототок которого пропорционален освещенности Е.

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Упрощенная схема, в которой не показаны переключатели, дана на рис. Диод Д (кремниевый или германиевый) через резистор R подключен к источнику постоянного напряжения (ИП), изменяемого от 0 до 15 В. Переменный резистор R1 также используется для изменения напряжения на диоде. Цифровым вольтметром с большим сопротивлением измеряют напряжения U на диоде и Ur на известном сопротивлении R для вычисления тока I=Ur/R. Для измерения малых токов устанавливают большое сопротивление.

Два диода, нагреватель и один спай термопары плотно закреплены на металлической пластине, расположенной в камере с крышкой. Для опытов со светом защитная оболочка кремниевого диода удалена, и при открытой крышке р-п -переход можно осветить лампой. Для измерения температуры диодов служит термопара. Она состоит из двух металлических проводников - медного и константанового (специальный сплав), спай которых находится в тепловом контакте с диодами при измеряемой температуре Т. Другие концы проводов соединены с вольтметром, они имеют комнатную температуру T 1 - 295 К. Когда температуры Т и Т 1 различны, в цепи возникает термоЭДС U T , пропорциональная разности температур и измеряемая вольтметром. Температуру диодов в Кельвинах можно вычислить по формуле

T=295+24.4 U T ,

где напряжение U T следует взять в милливольтах.

Так как в твёрдом теле атомы или ионы сближены на расстояние, сравнимое с размерами самого атома, то в нём происходят переходы валентных электронов от одного атома к другому. Такой электронный обмен может привести к образованию ковалентной связи. Это происходит в случае, когда электронные оболочки соседних атомов сильно перекрываются и переходы электронов между атомами происходят достаточно часто.

Эта картина полностью применима к такому типичному полупроводнику, как германий (Ge). Все атомы германия нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, поскольку в целом распределение электронной плотности жестко фиксировано: по 2 электрона на связь между каждой парой атомов - ближайших соседей. Чтобы создать проводимость в таком кристалле, необходимо разорвать хотя бы одну из связей (нагрев, поглощение фотона и т.д.), то есть, удалив с неё электрон, перенести его в какую-либо другую ячейку кристалла, где все связи заполнены и этот электрон будет лишним. Такой электрон в дальнейшем свободно может переходить из ячейки в ячейку, так как все они для него эквивалентны, и, являясь всюду лишним, он переносит с собой избыточный отрицательный заряд, то есть становится электроном проводимости.

Разорванная же связь становится блуждающей по кристаллу дыркой, поскольку в условиях сильного обмена электрон одной из соседних связей быстро занимает место ушедшего, оставляя разорванной ту связь, откуда он ушёл. Недостаток электрона на одной из связей означает наличие у атома (или пары атомов) единичного положительного заряда, который, таким образом, переносится вместе с дыркой.

В случае ионной связи перекрытие электронных оболочек меньше, электронные переходы менее часты. При разрыве связи также образуются электрон проводимости и дырка - лишний электрон в одной из ячеек кристалла и некомпенсированный положительный заряд в другой ячейке. Оба они могут перемещаться по кристаллу, переходя из одной ячейки в другую.

Наличие двух разноимённо заряженных типов носителей тока - электронов и дырок является общим свойством полупроводников и диэлектриков. В идеальных кристаллах эти носители появляются всегда парами - возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны. Это не означает, что вклад их в электропроводность одинаков, так как скорость перехода из ячейки в ячейку (подвижность) у электронов и дырок может быть различной. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться, так что электропроводность в таком случае будет осуществляется практически только одним типом носителей.

Полупроводники (п/п) – это вещества, у которых при Т = 0 К валентная зона полностью заполнена электронами, а ширина запрещенной зоны W зап около 1 эВ (см. рис.9.5 а). Например:W зап (Si) = 1,1 эВ;W зап (Gе) = 0,72 эВ.

При Т >0 К часть электронов за счет энергии теплового движенияkT могут за­брасываться в свободную зону (зону проводимости, см. рис. 9.5 б).

Собственная проводимость п/п возникает при переходе электронов из ва­лентной

зоны в свободную зону, которую также называют зоной проводимо­сти. Электроны в зоне проводимости легко ускоряются электрическим полем, т. к. у электронов есть возможность увеличить энергию за счет перехода на более высокие свободные уровни. Их называют электронами проводимости. При уходе электрона из валентной зоны там остается положительно заряженная ва­кансия, (свободный уровень). На это место может перескочить соседний электрон, т. е. вакансия (дырка) передвинется.

Образованная при уходе электронаиз валентной зоны вакансия эквивалентна положительной ква­зичастице, которую называют дыркой .

Процесс перехода электрона из валентной зоны в зону проводимости назы­вают рождением электронно-дырочной пары . При встрече электрона проводимо­сти и дырки может произойти их соединение - рекомбинация . В результате пара исчезает.

В равновесии число актов рождения (генерации) пар равно числу актов рекомбина­ции.

Рассмотрим зависимость собственной проводимости от температуры (см. рис.9.6). Вероятностьfперехода электрона на свободный уровень задается распределением Ферми:f = (exp[(W – W F)/kT] – 1) -1

ВеличинаkTпри Т~300К составляет около 1/40эВ, поэтому в зоне проводимостиW-W F >> kTиf = exp[-(W – W F)/kT]  exp (- Wзап/kT)

Так как проводимость пропорциональна числу электронов в свободной зоне, а это значение пропорционально величинеf, то получим:

где  0 -константа,W зап – ширина звпрещенной зоны,k– постоянная Больцмана, Т- температура

9.7. Примесная проводимость п/п. Электронный и дырочный п/п.

Примесная проводимость возникает, если некоторые атомы кристалла (основ­ные) заменить атомами другой валентности (примесью).

1. Если валентность примеси больше валентности основного элемента, то получа­ется полупроводник n – типа (см. рис. 9.7). Например, если атом фосфораР (5-ти валентный) замещает основной атом кремния (4-х валентный),то 5-й электрон уР очень слабо держится, легко отрывается и стано­вится свободным (электроном проводимости).

Атомы примеси, поставляющие электроны проводимости, называют донорами .

Донорные уровни находятся вблизи дна зоны проводимости в запрещенной зоне. Электроны с донорного уровня легко переходят в зону проводимости. Итак, донорные уровни поставляют лишь один вид носителей тока - электроны.

Полупроводник с донорной примесью обладает электронной проводимостью и называется п/п n - типа (negative – отрицательный).

    Если валентность примеси меньше валентности основного элемента, то полу­чается полупроводник р - типа (см. рис.9.8). Например, примесь бораВ - трехвалентна. Здесь недостает для комплекта связей одного электрона. Это еще не дырка. Но если из связиSi = Si сюда перейдет электрон, то появится настоящая дырка.

Атомы примеси, вызывающие возникновение дырок, называют акцепторными .

Акцепторные уровни находятся в запрещенной зоне вблизи верха валентной зоны.

Полупроводники с акцепторной примесью обладают дырочной проводимостью и называются п/п р – типа (positive - положительный).

С повышением температуры Т - концентрация примесных носителей быстро достигает насыщения, т. к. освобождаются все донорные уровни или заполняются акцепторные уровни. При дальнейшем повышенииТ все больший вклад дает собственная прово­димость п/п.

1.2. Структура полупроводников.

Понятие дырки

Структура полупроводников

Наиболее распространенными полупроводниками являются атомарные полупроводники кремний Si, германийGe, и полупроводниковые соединения типа(арсенид галлияGaAs, фосфид индияInP). Используются также полупроводники типа
и
, гдеи-элементы соответствующих групп таблицы Менделеева.

Полупроводниковые кристаллы имеют структуру типа алмаза. В этой кристаллической структуре каждый атом кристалла окружен 4-мя соседями, находящимися на одинаковом расстоянии от атома. Связь между атомами в кристалле парно электронная или ко
валентная. На рисункахХХХ приведены объемный трехмерный и двухмерный варианты решетки кремния. Тетраэдрическая структура представляет собой вдвинутые друг в друга две гранецентрированных кубических решетки. Смещение решеток относительно друг друга проводится вдоль главной диагонали куба на расстояние, равное одной четверти длины главной диагонали (см. рис.)

Сложные полупроводниковые соединения, такие как GaAs,InP,PbSи другие двойные или тройные соединения также имеют решетку типа алмаза. Но в этих соединениях один атом одного элемента окружен четырьмя атомами другого. Связь между атомами – ковалентная.

Понятие дырки

При переходе электрона в зону проводимости из заполненной (валентной) зоны в валентной зоне остается незаполненное место, которое легко может занять какой-либо электрон из той же зоны. В результате образовавшаяся вакансия приобретает возможность перемещаться в пределах валентной зоны. Ее поведение во многом напоминает поведение частицы с положительным зарядом.

Как отмечалось, полупроводники отличаются от металлов и диэлектриков тем, что их зона проводимости при температуре отличной от абсолютного нуля “почти пуста”, а валентная зона “почти заполнена”. Но это означает, что при рассмотрении проводимости в полупроводниках необходимо учитывать движение носителей тока и в зоне проводимости, и в валентной зоне.

Чтобы упростить рассмотрение переноса носителей в “почти заполненной” валентной зоне вводится понятие “дырки”. Однако нужно всегда помнить, что существует только один тип носителей тока в полупроводниках – это электроны. Дырки – это квазичастицы, введение которых позволяет только упростить представление движения электронов в валентной зоне. Дырка – это отсутствие электрона. Свойства дырок аналогичны свойствам электронов, поскольку они занимают одно и тоже энергетическое состояние. Но дырка несет положительный заряд.

На рисунке приведена энергетическая диаграмма полупроводника, помещенного во внешнее электрическое поле с напряженностью . Градиент энергетических уровней зонной диаграммы полупроводника в однородном электрическом поле будет постоянным, и он определяется величиной электрического поля (позже мы подробнее рассмотрим энергетические диаграммы полупроводников в условиях действия электрических полей).

Электроны зоны проводимости движутся противоположно направлению внешнего электрического поля, т.е. в сторону спада уровня. Электроны валентной зоны движутся в том же направлении. Общую плотность тока электронов валентной зоны можно записать в виде

где - объем полупроводника,- заряд электрона,-скоростьi - того электрона валентной зоны. Суммирование проводится по всем электронам валентной зоны. Это выражение можно записать иначе, выразив его через количество состояний валентной зоны, не занятых электронами.

Но плотность тока, создаваемая всеми электронами заполненной валентной зоны, равна нулю. Поэтому в последней формуле остается только одно последнее слагаемое, которое можно записать как

Это соотношение можно трактовать следующим образом. Ток создается положительными носителями, связанными с незаполненными состояниями валентной зоны. Эти носители и называют дырками. Напоминаем, что нет реальных носителей – дырок. Это просто модель, удобная для представления тока, создаваемого электронами валентной зоны. Причиной ввода понятия дырка является то, что это позволяет упростить описание ансамбля из очень большого числа электронов в почти заполненной валентной зоне. Часто оказывается более удобным следить за имеющимися вакансиями, рассматривая их как некоторые гипотетические частицы - дырки (простым гидромеханическим аналогом дырки может служить пузырек в стакане с газированным напитком). Не являющиеся реальными объектами природы дырки часто обладают весьма экзотическими свойствами. Так их эффективная масса не обязательно должна выражаться положительным числом, а зачастую оказывается тензорной величиной. Наряду с фононами дырки представляют собой квазичастицы, вводимые в теорию на основе аналогий с формулами, описывающими поведение реальных объектов. Подобно положительным частицам дырки ускоряются электрическим полем и вносят свой вклад в проводимость полупроводниковых кристаллов.

Попутно отметим, что электроны проводимости, строго говоря, так же являются квазичастицами. С точки зрения квантовой механики все электроны кристалла являются принципиально неразличимыми, что делает бессмысленными попытки ответа на вопрос, какой именно электрон перешел в зону проводимости. Электрический ток в кристалле обусловлен весьма сложным поведением всех без исключения имеющихся в нем электронов. Однако описывающие это поведение уравнения обнаруживают близкое сходство с уравнениями движения лишь очень небольшого числа заряженных частиц - электронов и дырок.

Шуренков В.В.