Как герц доказал существование электромагнитных волн. Опыт Франка – Герца

Электромагнитные колебания, возникающие в колебательном контуре, по теории Максвелла могут распространяться в пространстве. В своих работах он показал, что эти волны распространяются со скоростью света в 300 000 км/с. Однако очень многие ученые пытались опровергнуть работу Максвелла, одним из них был Генрих Герц. Он скептически относился к работам Максвелла и попытался провести эксперимент по опровержению распространения электромагнитного поля.

Распространяющееся в пространстве электромагнитное поле называется электромагнитной волной .

В электромагнитном поле магнитная индукция и напряженность электрического поля располагаются взаимно перпендикулярно, и из теории Максвелла следовало, что плоскость расположения магнитной индукции и напряженности находится под углом 90 0 к направлению распространения электромагнитной волны (Рис. 1).

Рис. 1. Плоскости расположения магнитной индукции и напряженности ()

Эти выводы и попытался оспорить Генрих Герц. В своих опытах он попытался создать устройство для изучения электромагнитной волны. Для того чтобы получить излучатель электромагнитных волн, Генрих Герц построил так называемый вибратор Герца, сейчас мы называем его передающей антенной (Рис. 2).

Рис. 2. Вибратор Герца ()

Рассмотрим, как Генрих Герц получил свой излучатель или передающую антенну.

Рис. 3.Закрытый колебательный контур Герца ()

Имея в наличии закрытый колебательный контур (Рис. 3), Герц стал разводить обкладки конденсатора в разные стороны и, в конце концов, обкладки расположились под углом 180 0 , при этом получилось, что если в этом колебательном контуре происходили колебания, то они обволакивали этот открытый колебательный контур со всех сторон. В результате этого изменяющееся электрическое поле создавало переменное магнитное, а переменное магнитное создавало электрическое и так далее. Этот процесс и стали называть электромагнитной волной (Рис. 4).

Рис. 4. Излучение электромагнитной волны ()

Если к открытому колебательному контуру подключить источник напряжения, то между минусом и плюсом будет проскакивать искра, что как раз и есть ускоренно движущийся заряд. Вокруг этого заряда, движущегося с ускорением, образуется переменное магнитное поле, которое создает переменное вихревое электрическое поле, которое, в свою очередь, создает переменное магнитное, и так далее. Таким образом, по предположению Генриха Герца будет происходить излучение электромагнитных волн. Целью эксперимента Герца было пронаблюдать взаимодействие и распространение электромагнитных волн.

Для принятия электромагнитных волн Герцу пришлось сделать резонатор (Рис. 5).

Рис. 5. Резонатор Герца ()

Это колебательный контур, который представлял собой разрезанный замкнутый проводник, снабженный двумя шариками, и эти шарики располагались относительно

друг от друга на небольшом расстоянии. Между двумя шариками резонатора проскакивала искра почти в тот же самый момент, когда проскакивала искра в излучатель (Рис. 6).

Рисунок 6. Излучение и прием электромагнитной волны ()

Налицо было излучение электромагнитной волны и, соответственно, прием этой волны резонатором, который использовался как приемник.

Из этого опыта следовало, что электромагнитные волны есть, они распространяются, соответственно, переносят энергию, могут создавать электрический ток в замкнутом контуре, который находится на достаточно большом расстоянии от излучателя электромагнитной волны.

В опытах Герца расстояние между открытым колебательным контуром и резонатором составляло около трех метров. Этого было достаточно, чтобы выяснить, что электромагнитная волна может распространяться в пространстве. В дальнейшем Герц проводил свои эксперименты и выяснил, как распространяется электромагнитная волна, что некоторые материалы могут препятствовать распространению, например материалы, которые проводят электрический ток, не давали проходить электромагнитной волне. Материалы, которые не проводят электрический ток, давали электромагнитной волне пройти.

Опыты Генриха Герца показали возможность передачи и приема электромагнитных волн. В дальнейшем многие ученые начали работать в этом направлении. Наибольших успехов добился русский ученый Александр Попов, именно ему удалось первому в мире осуществить передачу информации на расстоянии. Это то, что мы сейчас называем радио, в переводе на русский язык «радио» обозначает «излучать», с помощью электромагнитных волн беспроводная передача информации была осуществлена 7 мая 1895 года. В университете Санкт-Петербурга был поставлен прибор Попова, который и принял первую радиограмму, она состояла всего лишь из двух слов: Генрих Герц.

Дело в том, что к этому времени телеграф (проводная связь) и телефон уже существовали, существовала и азбука Морзе, с помощью которой сотрудник Попова передавал точки и тире, которые на доске перед комиссией записывались и расшифровывались. Радио Попова, конечно, не похоже на современные приемники, которыми мы пользуемся (Рис. 7).

Рис. 7. Радиоприемник Попова ()

Первые исследования по приему электромагнитных волн Попов проводил не с излучателями электромагнитных волн, а с грозой, принимая сигналы молний, и свой приемник он назвал грозоотметчик (Рис. 8).

Рис. 8. Грозоотметчик Попова ()

К заслугам Попова относится возможность создания приемной антенны, именно он показал необходимость создания специальной длинной антенны, которая могла бы принимать достаточно большое количество энергии от электромагнитной волны, чтобы в этой антенне индуцировался электрический переменный ток.

Рассмотрим, из каких же частей состоял приемник Попова. Основной частью приемника был когерер (стеклянная трубка, заполненная металлическими опилками (Рис. 9)).

Такое состояние железных опилок обладает большим электрическим сопротивлением, в таком состоянии когерер электрического тока не пропускал, но, стоило проскочить небольшой искорке через когерер (для этого там находились два контакта, которые были разделены), и опилки спекались и сопротивление когерера уменьшалось в сотни раз.

Следующая часть приемника Попова - электрический звонок (Рис. 10).

Рис. 10. Электрический звонок в приемнике Попова ()

Именно электрический звонок оповещал о приеме электромагнитной волны. Кроме электрического звонка в приемнике Попова был источник постоянного тока - батарея (Рис. 7), которая обеспечивала работу всего приемника. И, конечно же, приемная антенна, которую Попов поднимал на воздушных шарах (Рис. 11).

Рис. 11. Приемная антенна ()

Работа приемника заключалась в следующем: батарея создавала электрический ток в цепи, в которую был включен когерер и звонок. Электрический звонок не мог звенеть, так как когерер обладал большим электрическим сопротивлением, ток не проходил, и необходимо было подобрать нужное сопротивление. Когда на приемную антенну попадала электромагнитная волна, в ней индуцировался электрический ток, электрический ток от антенны и источника питания вместе был достаточно большим - в этот момент проскакивала искра, опилки когерера спекались, и по прибору проходил электрический ток. Звонок начинал звенеть (Рис. 12).

Рис. 12. Принцип работы приемника Попова ()

В приемнике Попова кроме звонка был ударный механизм, выполненный таким образом, что ударял одновременно по звоночку и когереру, тем самым встряхивая когерер. Когда электромагнитная волна приходила, звонок звенел, когерер встряхивался - опилки рассыпались, и в этот момент вновь сопротивление увеличивалось, электрический ток переставал протекать по когереру. Звонок переставал звенеть до следующего приема электромагнитной волны. Таким образом и работал приемник Попова.

Попов указывал на следующее: приемник может работать достаточно хорошо и на больших расстояниях, но для этого необходимо создать очень хороший излучатель электромагнитных волн - в этом была проблема того времени.

Первая передача прибором Попова состоялась на расстоянии 25 метров, и буквально за несколько лет расстояние уже составляло более 50 километров. Сегодня при помощи радиоволн мы можем передавать информацию по всему земному шару.

Не только Попов работал в этой области, итальянский ученый Маркони сумел внедрить свое изобретение в производство практически по всему миру. Поэтому первые радиоприемники пришли к нам из-за границы. Принципы современной радиосвязи мы рассмотрим на следующих занятиях.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Какие выводы Максвелла попытался оспорить Генрих Герц?
  2. Дайте определение электромагнитной волны.
  3. Назовите принцип работы приемника Попова.
  1. Интернет-портал Mirit.ru ().
  2. Интернет-портал Ido.tsu.ru ().
  3. Интернет-портал Reftrend.ru ().

Порядка 10-11 см соответствует частоте порядка 1021 периодов в секунду.

Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказывать что-либо экспериментально более не приходится. Но необходимо все же вкратце упомянуть здесь об опытах, бывших первым экспериментальным подтверждением максвелловой теории и, вместе с тем, первым осуществлением так называемой „беспроволочной передачи энергии". Мы говорим об опытах Герца, произведенных в 1887 -1889 гг.

Генератором электромагнитных волн, или, что то же, электро­магнитных колебаний, служил в опытах Герца простейший коле­бательный контур, так называемый вибратор, представляющий собою конденсатор, замкнутый накоротко. Подробный математи­ческий анализ явления электрических колебаний в такой цепи относится к специальным курсам. Здесь же мы остановимся коротко лишь на описании (схематическом) физической стороны явления в обстановке, которою Герц воспользовался в своих классических опытах, произведенных в то время, когда, конечно, еще не были известны современные генераторы незатухающих колебаний.

Представим себе конденсатор с обкладками Р и S (рис. 180), емкость которого равна С.

Обкладки конденсатора могут быть замкнуты через провод ВК. Всякий провод обладает, как мы знаем, некоторым коэффициентом самоиндукции L > 0. На рисунке 180 эта самоиндукция для наглядности представлена сосредоточенной. Пусть в начальный момент рубильник К. разомкнут и конденсатор заряжен с помощью какого-либо источника энергии, не предста­вленного на рисунке, до разности потенциалов U p -U s =U 1 , при­чем пластину Р предположим заряженной положительно. Запас энергии заряженного конденсатора, равен, как известно, величине:

где Q - заряд, С - емкость конденсатора, причем эта энергия

есть не что иное, как энергия электрического поля между обкладками конденсатора. Тока в цепи ВК. пока еще нет, так как цепь

эта разомкнута. Следовательно, вся энергия системы заключается

в энергии электрического поля.

Если теперь цепь ВК. замкнуть, то в ней возникнет ток, т. е. качнется некоторый кинетический процесс в диэлектрике, в кото­ром находится наша система. В силу электромагнитной инерции, характеризуемой коэффициентом самоиндукции L, ток не дости­гает сразу своей максимально» величины, а будет нарастать постепенно. По мере возрастания тока напряжение между обкладками конденсатора будет падать, энергия электрического поля будет убывать, превращаясь в энергию магнитного поля, т.е. в электро­кинетическую энергию, выражаемую величиной 1 / 2 Li 2 . Если бы



омическое (точнее - активное) сопротивление цепи r было равно нулю и никаких вообще потерь не было, то энергия электрического поля должна была бы полностью превращаться в энергию магнит­ного поля, так что в каждый данный момент сумма энергии элек­трического и магнитного полей была бы равна первоначальному запасу энергии электрического поля, т. е. имело бы место соотношение:

где U - электрическое напряжение, действующее между обкладками конденсатора в момент, соответствующий данной силе тока i, причем:

U" 1 .

Максимальной величины сила тока в цепи достигнет, когда энергия электрического поля целиком перейдет в энергию магнит­ного поля. Этот момент представляет собою второе типичное состояние системы (рис. 181), когда вся ее энергия выражается только в энергии магнитного поля.

Количество энергии магнитного поля

в этот момент, если система свободна от потерь, равно пер­воначальному запасу энергии электрического поля, т. е.

где I m - максимальная величина силы тока, так называемая ампли­туда. Напряжение на обкладках конденсатора в этот момент равно нулю (U 2 =0).

Если 0или, вообще, если есть потери энергии в системе, то, естественно, часть первоначального запаса энергии будет поте­ряна, и мы получим:

На рассмотренном втором типичном состоянии системы процесс не остановится. В силу той же электромагнитной инерции системы, которая препятствовала мгновенному нарастанию тока, последний не прекратится мгновенно, как только напряжение у зажимов кон­денсатора сделается равным нулю, а будет продолжать существо­вать, сохраняя прежнее направление и постепенно ослабевая по силе. В результате между обкладками конденсатора вновь возникает электрическое поле, направленное обратно прежнему, т. е. пластина Р получит отрицательный заряд, а пластина S - положительный. Сила этого электрического поля и запас энергии будет в этой ста­дии явления постепенно возрастать за счет ослабления силы тока и уменьшения энергии магнитного поля. Когда сила тока станет равной нулю, напряжение на обкладках конденсатора достигнет наибольшей величины U 3 (рис. 182),

причем для случая, когда никаких потерь энергии нет, должны иметь место равенства:

Если же 0, или вообще потери энергии в системе имеют место, то очевидно:

так как часть первоначального запаса энергии будет израсходована.

Ясно, что в момент, когда i =0, то вся энергия системы снова выражается только в энергии электрического поля. Это - третье типичное состояние системы, отличающееся от первого только знаком электрического поля.

В дальнейшем, очевидно, процесс будет происходить в обрат­ном направлении, проходя через те же фазы: максимум тока обрат­ного направления, при напряжении между обкладками конденсатора, равном нулю (4-е состояние, рис. 183) и, наконец, возвращение

к исходному состоянию, которым заканчивается первый цикл, или полный период электрического колебания, и начинается следующий, вполне аналогичный.

При этом, если омическое сопротивление равно нулю, то повто­рение этого цикла, казалось бы, будет иметь место бесконечное количество раз. В действительности, однако, как показывает опыт, если бы даже мы имели дело со сверхпроводящим проводником, во время процесса электрических колебаний в рассматриваемой цепи часть энергии системы будет непрерывно излучаться в окружающее пространство в форме электромагнитных волн, имеющих ту же частоту, что и основной ко­лебательный контур. При этом интенсивность электромагнитного излучения в значительной сте­пени будет зависеть от конфигурации основного контура и от частоты его электрических колебаний. Таким образом, расходование энергии в общем случае будет определяться не только наличием чисто омического сопротивления, от которого зависит джоулево тепло, выделяемое в колеба­тельной цепи, но также и наличием излучения. Это последнее обстоятельство можно учесть, вводя понятие об активном сопротивлении г, которое, являясь результирующим фактором рассеяния энергии в электрической цепи, слагается в данном случае изчисто омического сопротивления и из так называемого со­противления излучения. Итак, благодаря непрерывному расходованию энергии в колебательной цепи, первичный запас энергии будет исся­кать, т. е. будет непрерывно уменьшаться интенсивность колебатель­ного процесса. Это называют затуханием электрических колебаний. Практически, затухание бывает столь велико, что по прошествии очень малого промежутка времени, малой доли секунды, электри­ческие колебания прекращаются.

Роль сопротивления r не ограничивается постепенным уменьшением интенсивности колебательного процесса. Величина r, вернее, соотношение величины активного сопротивления с коэффициентом самоиндукции L цепи, характеризующим ее электромагнитную инерцию, оказывается решающим фактором для самого возникнове­ния колебания. Если r слишком велико по сравнению с L, именно,

если отношение r/L больше некоторой критической величины, то

колебания не могут возникнуть вовсе: сила тока, пройдя через максимальное значение, уменьшается постепенно до нуля, ток об­ратного направления не возникает (так называемый апериодический разряд). Если же т достаточно мало, колебательный процесс имеет место.

Период возникающих в этом случае электрических колебаний, т. е. промежуток времени между двумя соседними моментами, в ко­торые процесс проходит одни и те же стадии, например, между моментами, соответствующими i=I m , определяется, как известно,

величинами сопротивления r, емкости С и коэффициента самоиндук­ции L. При относительно малых значениях r, величина периода Т может быть достаточно точно определена по формуле В. Томсона.

Т=2pÖLC .

Обратимся теперь к опытам Герца. Основной колебательный контур, так называемый вибратор, применявшийся им, по существу был подобен представленному на рисунках 180- 183 с тою, однако, разницею, что обкладки конденсатора разводились, т. е. удалялись одна от другой. При этом электрическое поле, возникавшее в про­цессе заряжения конденсатора, захватывало район всего диэлектрика, который окружал вибратор. При такой обстановке создавались условия, особо благоприятные для излучения электромагнитной энергии во время электрических колебаний в вибраторе. Роль ключа K (рис. 180 -183), при помощи которого цепь вибратора замыкалась после первоначального заряжения конденсатора, в опытах Герца играл искровой промежуток между шариками. Когда в про­цессе заряжения конденсатора между этими шариками возникала достаточно большая разность потенциалов, между ними проскакивала искра, которая может рассматриваться как короткое замыка­ние концов цепи, потому что благодаря сильной ионизации газа в объеме искры сопротивление ее оказывается практически малым. Так как, вследствие излучения электромагнитной энергии и по причине тепловых потерь, колебательный процесс быстро затухает, то для периодического возбуждения этого процесса Герц при­соединял обкладки конденсатора ко вторичным зажимам катушки Румкорфа. В таком случае каждому прерыванию тока в первич­ной обмотке катушки соответствовало заряжение пластин конденса­тора и проскакивание искры, коротко замыкавшей колебательную цепь. Ко времени следующего импульса со стороны вторичной об­мотки катушки Румкорфа колебательный процесс обычно успевает вполне закончиться, и ионизация газа между шариками искрового разрядника исчезает, так что процесс возбуждения вибратора мо­жет полностью повториться, и т. д. Возобновляя таким образом электрические колебания в вибраторе много раз в секунду, Герц получил достаточно мощное результирующее излучение электромаг­нитной энергии, что дало ему возможность подвергнуть всесторон­нему изучению электромагнитные волны. Общее расположение описываемой схемы Герца представлено на рисунке 184.

Здесь Р и S суть обкладки „развернутого" конденсатора. Это были либо шары, либо пластины, которые могли передвигаться вдоль стерж­ней /1 и /2 с целью некоторого изменения емкости системы. К, есть искровой промежуток, ограниченный шариками. R - катушка Рум­корфа, от вторичных зажимов которой при помощи тонких про­волок ток, возбуждающий вибратор, подавался к последнему.

Герц, вообще говоря, разнообразил форму и размеры при­менявшихся в его опытах вибраторов. В позднейших опытах он применял вибратор, состоявший из двух латунных цилиндров,

каждый из которых имел 13 см длины и 3 см диаметра (рис. 185).

Эти цилиндры были расположены один над другим так, что общая ось составляла одну вертикальную линию, причем на обращенных друг к другу концах цилиндров были насажены шары, имевшие в диаметре 4 см. Оба эти цилиндра были соединены с зажимами вторичной обмотки румкорфовой катушки. По расчетам Герца, длина электромагнитной волны, возбуждаемой описанным вибрато­ром, была около 60 см.

Для обнаружения электромагнитных волн в воздухе Герц при­менял так называемые резонаторы, которые состояли из некото­рого контура, снабженного искровым промежутком между маленькими шариками, причем помощью микрометриче­ского винта можно было изменять и в то же время измерять расстояние между этими шариками. Форма резонаторного контура в различных опытах Герца значительно изменялась. Иногда он применял простой круговой контур, В дру­гих случаях контур этот имел форму квадрата. Наконец Герц при­менял и резонатор, подобный стержневому вибратору (рис. 185) и состоявший из двух прямых проволок, совпадавших по направле­нию, в промежутке между которыми располагался микрометрический искромер.

При существовании электромагнитных волн в пространстве, где был расположен резонатор, в нем могли возбуждаться электрические колебания аналогичные первичным колебаниям вибратора, вследствие чего появлялась искра между шариками резонаторного искромера. При этом для успеха опыта необходимо было надлежащим образом ориентировать приемный резонатор и, сверх того, так подобрать его геометрические размеры, чтобы период его собственных элек­трических колебаний возможно точнее соответствовал периоду колебаний вибратора, т. е. периоду излучаемых электромагнитных волн.

По длине искры, появляющейся между шариками резонатора, Герц судил о достижении условий резонанса между тем резонато­ром, при посредстве которого исследовались электромагнитные

волны, и тем вибратором, который порождал эти волны в окружаю­щем его пространстве. Таким же путем, т. е. длиною искры в ре­зонаторе, Герц определял и степень напряженности электромаг­нитных возмущений в данном месте пространства.

В опытах, произведенных после работ Герца, были применены для обнаружения электрических колебаний в резонаторе и другие средства, как например, гейслеровы трубки, термоэлементы, коге­реры, детекторы и т. п., но общий характер получаемых резуль­татов незыблемо установлен классическими опытами Герца, при­менившего простейшие устройства, описанные выше.

Наблюдая искры в резонаторе, Герц имел возможность про­следить распределение электромагнитных возмущений в пространстве, окружающем вибратор, причем найденное непосредственно путем опытов распределение этих возмущений оказалось вполне согласным с теорией Максвелла. При помощи надлежаще подобранного вибратора Герцу удалось обнаружить электромагнитное излучение в свободном пространстве на расстоянии в 12 метров от вибратора, геометрические размеры которого были порядка 1 метра. Такая чувствительность герцовского резонатора позволила наблюдать и стоячие электромагнитные волны в воздухе, которые получались тогда, когда волны, излучаемые вибратором, претерпевали отраже­ние от большой металлической плоской поверхности, перпендикуляр­ной направлению излучения и расположенной на надлежащем рас­стоянии от вибратора. В этом случае, перемещая резонатор в про­межутке между вибратором и отражающею поверхностью так, что плоскость резонатора (круглого или прямоугольного) оставалась параллельною самой себе, Герц заметил весьма резкие изменения в длине искры, появлявшейся в резонаторе. В некоторых местах искра в резонаторе совсем не появлялась. В местах же, находив­шихся как раз в середине между этими положениями резонатора, искра получалась наиболее длинная. Таким путем Герц определил плоскости узлов и плоскости пучностей стоячих электромагнитных волн, а следовательно, можно было измерить и длину этих волн, излучаемых данным вибратором. По наблюденной длине стоячей волны и по вычисленному периоду электрических колебаний виб­ратора Герц мог определить скорость распространения электро­магнитной энергии. Эта скорость оказалась, в полном согласии с теорией Максвелла, равною скорости света.

Аналогия между электрическими и световыми волнами очень резко была выявлена в опытах Герца с параболическими зеркалами. Если поместить вибратор (рис. 185) в фокальной линии параболи­ческого цилиндрического зеркала так, чтобы электрические колеба­ния совершались параллельно фокальной линии, то в случае, если законы отражения электромагнитных и световых волн одинаковые, электромагнитные волны, излученные вибратором, после отражения от цилиндра должны образовать параллельный пучок, который должен сравнительно мало терять в своей интенсивности по мере удаления от зеркала. Когда такой пучок попадает на другой параболический цилиндр, обращенный к первому и расположенный так,

что его фокальная линия совпадает с фокальной линией первого зеркала, то этот пучок собирается в фокальной линии второго зеркала. Вдоль этой линии располагался прямолинейный резонатор.

Для того, чтобы показать отражение волн, зеркала ставились рядом таким образом, что их отверстия были обращены в одну сторону, и оси сходились в точке, отстоящей примерно на три метра. Когда в таком положении вибратор приводился в действие, то в резонаторе искорок не наблюдалось. Но если в точке пере­сечения осей зеркал ставилась металлическая пластина (поверх­ностью около двух кв. метров), и если эта пластина располагалась перпендикулярно линии, делящей угол между осями пополам, то в резонаторе появлялись искры. Эти искры при повороте метал­лической пластины на небольшой угол исчезали. Описываемый опыт доказывает, что электромагнитные волны отражаются, и то, что угол их отражения равен углу падения, т. е. что они ведут себя совершенно аналогично волнам световым.

Преломление электромагнитных волн Герцу удалось обнару­жить в опыте с призмой, сделанной из асфальта. Высота призмы доходила до 1,5 метра, преломляющий угол был равен 30°, и ребро основания, не противолежащее преломляющему углу, примерно равнялось 1,2 метра. При прохождении электромагнитных волн сквозь такую призму в резонаторе искр не наблюдалось, если ось зеркала с вибратором совпадала с осью резонаторного зеркала. Но когда оси зеркал образовывали подходящий угол, то искры в резонаторе появлялись. Далее при минимуме отклонения, искры были наиболее сильны. Для описанной призмы этот минимум угла отклонения был равен 22°, а следовательно, показатель преломле­ния электромагнитных волн для этой призмы был равен 1,69. Как видно, и в этом случае получается полная аналогия со световыми явлениями. Позднейшие исследования обнаружили, что электро­магнитные волны обладают вообще всеми физическими свойствами световых волн.

1) Небезынтересно здесь отметить, что электронная теория, развитие которой рас­ценивалось некоторыми как крушение основных положений теории Максвелла, не привела к какой-либо особой теории распространения электромагнитной энер­гия. Оперируя понятиями электронной теории при описании, так сказать, „микро-электрических" явлений, обращаются обычно к основным представлениям Максвелла, как только заходит речь о распространении электромагнитной энергии в пространстве. По существу же между понятиями электронной теории и идеями Максвелла нет и не должно быть никаких внутренних противоречий: элемен­тарный электрический заряд мыслим по Максвеллу, как центр, вокруг которого соответствующим образом ориентирована связанная с ним электрическая деформа­ция среды. Является ли этот „центр" действительным носителем некоторого физи­ческого количества, в данном центре сосредоточенного, или это только так кажется,-с точки зрения формальной вопрос этот не имеет существенного значения.

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Генрих Рудольф Герц родился в семье адвоката в 1857 году в Гамбурге. Герц с детских лет полюбил науку и увлекался написанием стихов, а также работой на токарном станке.

Герц получил образование в гимназии и в 1876 году поступил в Мюнхенское высшее техническое училище, но на втором курсе он осознает, что сделал ошибку в выборе профессии. Он решает заняться наукой и поступает в Берлинский университет, где его замечают известные физики Гельмгольц и Кирхгофф. В 1880 году Герц оканчивает Берлинский университет с докторской степенью. А в 1885 году Герц становится профессором экспериментальной физики в политехническом институте в Карлсруэ, где он провел известные всему миру опыты.

Немного фактов.

В начале 30-х годов в России, а затем и во всем мире была принята единица частоты периодического процесса – герц. В дальнейшем эта величина была внесена в таблицу международной системы единиц СИ. 1
Герц приравнивается к одному полному колебанию за одну секунду.

Физик Дж. Томсон говорил о работах Герца, как о триумфе экспериментального мастерства, которое сопровождалось изобретательностью и осторожностью во время демонстрации выводов.

В свое время, когда мать Герца сказала мастеру, который обучал мальчика токарному делу, что ее сын стал профессором, то тот сказал с досадой: «Эх, какая жалость, из него бы вышел высококлассный токарь!»

Знаменитые опыты Герца.

Теоретические утверждения Максвелла, говорят о том, что электромагнитные волны могут обладать отражающими свойствами, деформироваться и преломляться. Но любая теория для утверждения нуждается в практике. Но в те времена Максвелл и другие физики не могли получить на практике электромагнитные волны. Это стало возможным в 1888 году, когда Герц смог поставить опыты с электромагнитными волнами и опубликовать результаты своей работы.

Открытый колебательный контур или как создать вибратор Герца?

В ходе серии экспериментов Герцу удалось создать на практике источник электромагнитных волн, который он назвал – вибратором. Он создал устройство, которое состояло из двух проводящих сфер (иногда использовались цилиндры) с диаметром 10…30 см, которые были закреплены на разрезанных посредине стержнях. Концы разрезанных стержней имели окончание в виде небольшой сферы. Между концами имелся искровой промежуток – расстояние в несколько миллиметров.

Сферы подключались ко вторичной обмотке катушки, которую изобрел Румкорф и которая является источником высокого напряжения.

В чем заключалась идея создания вибратора Герца?

Опять же вернемся к теории Максвелла:
Изучить электромагнитные волны можно только при прохождении ускоренных зарядов.
Энергия электромагнитных волн пропорциональна четвертой степени ее частотности колебаний.

Известно, что создать ускоренные заряды можно только в колебательном контуре, что дало возможность использования его в изучении электромагнитных волн. Требовалось одно – это поднять частоту колебание зарядов. Исходя из формулы Томсона, которая относится к расчету циклической частоты колебаний:

видно, что для того, чтобы повысить частоту необходимо уменьшить емкостные и индуктивные показатели контура.

Для уменьшения емкости С необходимо раздвинуть пластины (увеличить между ими расстояние, а также уменьшить площадь пластины. Самая маленькая емкость – это простой провод.

Для того чтобы снизить индуктивность L необходимо уменьшить количество витков в катушке. В результате таких манипуляций выходит обычный провод, который получил название открытого колебательного контура ОКК.

Для создания колебательного действия в ОКК, Герц придумал такую схему:

Если говорить о сути происходящего в вибраторе Герца, то можно сказать следующее. Индуктор Румкорфа позволяет создавать на концах вторичной обмотки высокое напряжение (в несколько киловольт) и напряжение, которое заряжает сферы противоположными зарядами. Через некоторое время в искровом промежутке проскакивает электрическая искра, которая делает сопротивление воздушного промежутка относительно малым, что позволяет в вибраторе получить высокочастотные затухающие колебания, которые длятся весь период существования искры. Так как вибратор – это открытый колебательный контур, то образуется излучение электромагнитных волн.

Но как определить присутствие электромагнитных вол, ведь они не видны и их нельзя потрогать?

Детектором Герц использовал кольцо с разрывом, похожим на искровой промежуток вибратора, который можно отрегулировать. Первое кольцо в опытах Герца имело диаметр 1 метр, но потом постепенно уменьшилось до диаметра 7 см.

Герц назвал такую находку резонатором. В ходе проводимых опытов Герц установил, что изменении геометрических характеристик резонатора - размеров, месторасположения и расстояния между резонатором и вибратором, можно достигнуть определенного результата: «гармонии», «синтонии» (резонанса). Наличие резонанса будет наблюдаться при появлении искр в искровом промежутке. Герц наблюдал в своих опытах искры величиной 3-7 мм, а искрение в резонаторе описывалось искрами величиной десятые доли миллиметра. Такое искрение было хорошо видно только в темном помещении, а иногда приходилось использовать лупу.

Какие заслуги Герца?

В ходе проведения длительных и трудоемких опытов, в которых использовались простые и подручные средства. Герцу удалось достичь невероятных результатов в физике. Он измерил длины волн и произвел расчет скоростей их распространения. Было доказано, что существует:
Отражение;
Преломление;
Дифракция;
Интерференция и поляризация волн;
Произведен замер скорости электромагнитных волн.

Герц стал популярным мировым ученым после доклада о результатах своих исследований в Берлинском университете (1888 г.) и публикации результатов своих опытов. Электромагнитные волны имеют еще название «лучи Герца».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство высшего и среднего образования Республики Узбекистан

Национальный университет Республики Узбекистан им. Мирзо Улугбека

Физический факультет

Доклад

По дисциплине: «Оптика»

На тему: «Опыты Генриха Герца»

Подготовил:

Студент 2-го курса

Небесный Андрей Анатольевич

Руководитель:

д.ф.-м.н. проф.

Валиев Уйгун Вахидович

Ташкент 2015

Введение

1. Постановка задачи

2. Интересное явление

3. Вибратор Герца

4. Катушка Румкорфа

5. Эксперименты с вибратором

Послесловие

Литература

Введение

Генрих Герц родился в 1857 году в Гамбурге (Германия) в семье адвоката. Он с детства обладал отличной памятью и отличными способностями к рисованию, языками, техническому творчеству и проявлял интерес к точным наукам. В 1880 году, в возрасте 23 лет, он окончил Берлинский университет, блестяще защитив докторскую диссертацию по теоретической электродинамике. Научным руководителем Герца был Известный европейский физик Г.Гельмгольц, у которого Герц, последующие три года проработал ассистентом.

Гельмгольц, занимавшийся множеством проблем физики, разработал свой вариант теоретической электродинамики. Его теория соперничала с представленными ранее теориями В.Вебера и Дж.К.Максвелла. Это были основные три теории электромагнетизма того времени. Однако требовалось экспериментальное подтверждение.

1. Постановка задачи

В 1879 году Берлинская академия наук, по инициативе Гельмгольца выдвинула конкурсную задачу: “Установить экспериментально, существует ли связь между электродинамическими силами и диэлектрической поляризацией”. Решение этой задачи, т.е. экспериментальное подтверждение и должно было дать ответ, какая из теорий верна. Гельмгольц предложил взяться за эту задачу Герцу. Герц, попытался решить поставленную задачу, используя электрические колебания, возникающие при разряде конденсаторов и индуктивностей. Однако вскоре он столкнулся с проблемой - требовались значительно более высокочастотные колебания, чем умели получать в то время .

Колебания высокой частоты, значительно превышающей частоту промышленного тока (50 Гц), можно получить с помощью колебательного контура. Частота колебаний щ=1/v(LC) будет тем больше, чем меньше индуктивность и емкость контура .

Простой расчёт показывает, что для создания частот, которые впоследствии удалось получить Герцу (500 МГц) необходим конденсатор ёмкостью 2 нФ и катушка индуктивности на 2 нГн. Однако промышленный прогресс того времени ещё не достиг возможности создания столь малых по величине ёмкостей и индуктивностей.

2. Интересное явление

Потерпев неудачу с решением этой задачи, он сохранил надежду отыскать ответ. С тех пор всё что было связанно с электрическими колебаниями неизменно интересовало его.

Уже позже, осенью 1886 года, отлаживая лекционное оборудование, а именно проверяя индукционные катушки с тонко регулируемым с помощью микрометрического винта искрового промежутка между металлическими шариками на концах обмоток, Герц обнаружил интересное явление: для возбуждения искры в одной из катушек не обязательно присоединять ко второй мощную батарею, главное чтобы в искровом промежутке первичной катушки проскочила искра.

Он провёл серию опытов для подтверждения своего наблюдения.

3. Вибратор Герца

В своих опытах для получения электромагнитных волн Герц использовал простое устройство, называемое сейчас вибратором Герца .

Это устройство представляет собой открытый колебательный контур (рис справа). Обычный колебательный контур, изображенный на рисунке слева (его можно назвать закрытым), не приспособлен для излучения электромагнитных волн. Дело в том, что переменное электрическое поле сосредоточено преимущественно в очень малой области пространства между обкладками конденсатора, а магнитное -- внутри катушки. Чтобы излучение электромагнитных волн было достаточно интенсивным, область переменного электромагнитного поля должна быть велика и не огорожена металлическими пластинами. Здесь имеется сходство с излучением звуковых волн. Колеблющаяся струна или камертон без резонаторного ящика почти не излучают, так как в этом случае колебания воздуха возбуждаются в очень малой области пространства, непосредственно примыкающей к струне или ветвям камертона.

Область, в которой создается переменное электрическое поле, увеличивается, если раздвигать пластины конденсатора. Емкость при этом уменьшается. Одновременное уменьшение площади пластин еще больше уменьшит емкость. Уменьшение же емкости увеличит собственную частоту этого колебательного контура. Для еще большего увеличения частоты нужно заменить катушку прямым проводом без витков. Индуктивность прямого провода гораздо меньше индуктивности катушки. Продолжая раздвигать пластины и уменьшая одновременно их размеры, мы придем к открытому колебательному контуру. Это просто прямой провод. В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику. Ток в данный момент времени во всех сечениях проводника направлен в одну и ту же сторону, но сила тока не одинакова в различных сечениях проводника. На концах она равна нулю, а посредине достигает максимума.

Для возбуждения колебаний в таком контуре нужно провод разрезать посредине так, чтобы остался небольшой воздушный промежуток, называемый искровым. Благодаря этому промежутку можно зарядить оба проводника до высокой разности потенциалов.

При сообщении шарам достаточно больших разноименных зарядов между ними происходил электрический разряд и в электрическом контуре возникают свободные электрические колебания. После каждой перезарядки шаров между ними вновь проскакивает искра, и процесс повторялся многократно. Поместив на некотором расстоянии от этого контура виток проволоки с двумя шарами на концах -- резонатор, -- Герц обнаружил, что при проскакивании искры между шарами вибратора маленькая искра возникает и между шарами резонатора. Следовательно, при электрических колебаниях в электрическом контуре в пространстве вокруг него возникает вихревое переменное электромагнитное поле. Это поле и создает электрический ток во вторичном контуре (резонаторе).

Из-за малой емкости и индуктивности частота колебаний очень велика. Колебания, разумеется, будут затухающими по двум причинам: во-первых, вследствие наличия у вибратора активного сопротивления, которое особенно велико в искровом промежутке; во-вторых, из-за того, что вибратор излучает электромагнитные волны и теряет при этом энергию. После того как колебания прекратятся, источник вновь заряжает оба проводника до наступления пробоя искрового промежутка и все повторяется сначала . На рисунке ниже показан вибратор Герца, включённый в последовательную цепь с гальванической батареей и катушкой Румкорфа.

В одном из первых вибраторов, собранных учённым, на концы снабжённого посередине искровым промежутком медного провода длиной 2,6 м и диаметром 5 мм, были насажены подвижные жестяные шары диаметром по 0.3 м в качестве резонирующих . В последствии Герц убрал эти шары для повышения частоты .

4. Катушка Румкорфа

Катушка Румкорфа, которую использовал Генрих Герц в своих опытах, названную по имени немецкого физика Генриха Румкорфа, состоит из цилиндрической части с центральным железным стержнем внутри, на которую намотана первичная обмотка из толстой проволоки. Поверх первичной обмотки наматывается несколько тысяч витков вторичной обмотки из очень тонкой проволоки. Первичная обмотка подсоединена к батарее химических элементов и конденсатору. В эту же цепь вводится прерыватель (зуммер) и коммутатор. Назначение прерывателя состоит в быстром попеременном замыкании и размыкании цепи. Результатом этого является то, что при каждом замыкании и размыкании в первичной цепи во вторичной обмотке появляются сильные мгновенные токи: при прерывании -- прямого (одинакового направления с током первичной обмотки) и при замыкании -- обратного. При замыкании первичной обмотки через неё течёт нарастающий ток. Катушка Румкорфа накапливает энергию в сердечнике в виде магнитного поля. Энергия магнитного поля равна:

Ц -- магнитный поток,

L -- индуктивность катушки или витка с током.

Когда магнитное поле достигает определённой величины, якорь притягивается, и цепь размыкается. При размыкании цепи в обеих обмотках возникает бросок напряжения (противоЭДС), прямо пропорциональный числу витков обмоток, большой по величине даже в первичной обмотке, а во вторичной ещё больше, высокое напряжение которого пробивает воздушный промежуток между выводами вторичной обмотки (пробивное напряжение воздуха приблизительно равно 3кВ на 1мм). ПротивоЭДС в первичной обмотке через низкое сопротивление батареи химических элементов заряжает конденсатор C .

5. Эксперименты с вибрато ром

опыт Генрих Герц

Герц получал электромагнитные волны, возбуждая в вибраторе с помощью источника высокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласованно.

В электромагнитной волне векторы E? и B? перпендикулярны друг другу, причем вектор E? лежит в плоскости, проходящей через вибратор, а вектор B? перпендикулярен этой плоскости.

На рисунке показаны линии напряженности электрического и индукции магнитного полей вокруг вибратора в фиксированный момент времени: в горизонтальной плоскости расположены линии индукции магнитного поля, а в вертикальной -- линии напряженности электрического поля. Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора. Вдоль оси излучения не происходит.

Обнаружить это Герцу удалось не сразу. Для своих экспериментов он затемнил свою комнату. И ходил с резонатором наблюдая, порой даже через лупу, в каком месте комнаты, относительно генератора, возникнет искра .

Экспериментируя со своим вибратором, учённый заметил, что казалось бы совершенно естественная картина с ослаблением искры в резонаторе с увеличением расстояния до источника колебаний, нарушается, когда резонатор оказывается вблизи стен или рядом с железной печкой.

После долгих размышлений Герц осознал что дело в отражении волн, а странное поведение искры в резонаторе вблизи стен ни что иное, как интерференция. Для подтверждения этого он закрепил на стене заземлённый металлический лист и установил напротив него вибратор. С резонатором в руках он стал медленно перемещаться в направлении перпендикулярном стене. При этом получалось, что периодически, через равные промежутки резонатор попадал в мёртвые зоны, в которых искра отсутствовала. Это были зоны в которых прямая волна вибратора встречалась с отражённой волной противоположной фазы и гасилась, что полностью подтверждало наличие интерференционных процессов.

Это вызвало подлинный восторг всего научного мира. Далее он легко продемонстрировал прямолинейность распространения излучения. При перегораживании пути от вибратора к резонатору металлическим экраном искры в резонаторе полностью исчезали. В тоже время оказалось, что изоляторы(диэлектрики), для электромагнитных волн прозрачны. Столь же легко была продемонстрирована полная аналогия с законами отражения света - для этого вибратор и резонатор устанавливали по одну сторону заземлённого металлического листа, игравшего роль зеркала и проверяли равенство углов падения и отражения.

Самым демонстративным стал опыт с демонстрацией возможности преломления электромагнитного излучения. Для этого использовалась призма из асфальта, массой свыше тонны. Призма имела форму равнобедренного треугольника со стороной 1.2 метра и углом при вершине в 300 . Направив “электрический луч” на асфальтовую призму Герц зарегистрировал его отклонение на 320 , что соответствовало приемлемому значению показателя преломления равному 1,69 .

В своих опытах Герц не только экспериментально доказал существование электромагнитных волн, но и изучил все явления, типичные для любых волн: отражение от металлических поверхностей, преломление в большой призме из диэлектрика, интерференцию бегущей волны с отраженной от металлического зеркала и т.п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света в вакууме. Эти результаты являются одним из веских доказательств правильности электромагнитной теории Максвелла, согласно которой свет представляет собой электромагнитную волну .

Послесловие

Уже через семь лет после Герца электромагнитные волны нашли применение в беспроволочной связи. Показательно, что русский изобретатель радио Александр Степанович Попов в своей первой радиограмме в 1896 г. передал два слова: «Генрих Герц» .

Л итература

1. Библиотечка "Квант", №1, 1988 г.

2. Ландсберг Г. С., Оптика - М.: ФИЗМАТЛИТ, 2003, 848с.

3. Калитеевский Н.И.,“Волновая оптика”, М.: Высш. школа, 1978, 383с

4. http://www.physbook.ru/

5. https://ru.wikipedia.org

6. http://ido.tsu.ru

7. http://alexandr4784.narod.ru

Размещено на Allbest.ru

Подобные документы

    Краткая биография Г. Герца. Экспериментальное подтверждение теории Максвелла в результате создания немецким физиком вибратора (излучателя) и резонатора (приемника) электромагнитных волн. Конструкция вибратора, механизм возникновения электрической искры.

    презентация , добавлен 15.01.2013

    Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.

    реферат , добавлен 10.07.2011

    Биографии Г. Герца и Д. Франка. Их совместная работа: исследование взаимодействия электронов с атомами благородных газов низкой плотности. Анализ энергий электронов, претерпевших столкновения с атомами. Характеристика вакуумной и газонаполненной лампы.

    реферат , добавлен 27.12.2008

    Система уравнений Максвелла в дифференциальной и интегральной формах. Исследования Р. Герца. Скорость распространения электромагнитных волн. Открытие фотоэлектрического эффекта. Расчет давления света. Энергия, импульс и масса ЭМП. Вектор Умова-Пойнтинга.

    презентация , добавлен 14.03.2016

    Численная оценка зависимости между параметрами при решении задачи Герца для цилиндра во втулке. Устойчивость прямоугольной пластины, с линейно-изменяющейся нагрузкой по торцам. Определение частот и форм собственных колебаний правильных многоугольников.

    диссертация , добавлен 12.12.2013

    Открытие рентгеновского излучения Вингельмом Конрадом Рентгеном. Публикация статьи "О новом типе лучей" в журнале Вюрцбургского физико-медицинского общества. Эксперименты Хитторфа, Крукса, Герца и Ленарда. Присуждение Нобелевской премии по физике.

    презентация , добавлен 10.02.2011

    Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.

    реферат , добавлен 25.02.2009

    Определение напряженности магнитного поля элементарного вибратора в ближней зоне. Уравнения бегущих волн. Их длина и скорость их распространения в дальней зоне. Направления вектора Пойнтинга. Мощность и сопротивление излучения электромагнитных волн.

    презентация , добавлен 13.08.2013

    Основные методы, способы задания и описания состояния поляризации излучения. Граничные условия для естественно гиротропных сред. Формулы связи между амплитудами падающей, отражённой и преломлённой волн. Решение задач о падении электромагнитной волны.

    курсовая работа , добавлен 13.04.2014

    Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.