Как определить степень окисления для тупых. Степень окисления

Степень окисления. Определение степени окисления атома элемента по химической формуле соединения. Составление формулы соединения по известным степеням окисления атомов элементов

Степень окисления элемента — это условный заряд атома в веществе, исчисленный с предположением, что она состоит из ионов. Для определения степени окисления элементов необходимо запомнить определенные правила:

1. Степень окисления может быть положительным, отрицательным или равным нулю. Он обозначается арабской цифрой со знаком «плюс» или «минус» над символом элемента.

2. При определении степеней окисления исходят из электроотрицательности вещества: сумма степеней окисления всех атомов в соединении равна нулю.

3. Если соединение образована атомами одного элемента (в простой веществе), то степень окисления этих атомов равен нулю.

4. Атомам некоторых химических элементов обычно приписывают стали степени окисления. Например, степень окисления фтора в соединениях всегда равна -1; лития, натрия, калия, рубидия и цезия +1; магния, кальция, стронция, бария и цинка +2, алюминия +3.

5. Степень окисления водорода в большинстве соединений +1, и только в соединениях с некоторыми металлами он равен -1 (KH, BaH2).

6. Степень окисления кислорода в большинстве соединений -2, и лишь в некоторых соединениях ему приписывают степень окисления -1 (H2O2, Na2O2 или +2 (OF2).

7. Атомы многих химических элементов оказывают переменные степени окисления.

8. Степень окисления атома металла в соединениях положительный и численно равна его валентности.

9. Максимальный положительный степень окисления элемента, как правило, равна номеру группы в периодической системе, в которой находится элемент.

10. Минимальная степень окисления для металлов равна нулю. Для неметаллов в большинстве случаев ниже отрицательный степень окисления равна разнице между номером группы и цифрой восемь.

11. Степень окисления атома образует простой ион (состоит из одного атома), равна заряду этого иона.

Пользуясь приведенным правилам, определим степени окисления химических элементов в составе H2SO4. Это сложное вещество, состоящее из трех химических элементов — водорода Н, серы S и кислорода О. Отметим степени окисления тех элементов, для которых они являются постоянными. В нашем случае это водород Н и кислород О.

Определим неизвестный степень окисления серы. Пусть степень окисления серы в этой соединении равно х.

Составим уравнения, умножив для каждого элемента его индекс в степень окисления и добытую сумму приравняем к нулю: 2 · (+1) + x + 4 · (-2) = 0

2 + X — 8 = 0

x = +8 — 2 = +6

Следовательно, степень окисления серы равна плюс шесть.

В следующем примере выясним, как можно составить формулу соединения с известными степенями окисления атомов элементов. Составим формулу феррум (III) оксида. Слово «оксид» означает, что справа от символа железа надо записать символ кислорода: FeO.

Отметим степени окисления химических элементов над их символами. Степень окисления железа указана в названии в скобках (III), следовательно, равна +3, степень окисления кислорода в оксидах -2.

Найдем наименьшее общее кратное для чисел 3 и 2, это 6. Разделим число 6 на 3, получим число 2 — это индекс для железа. Разделим число 6 на 2, получим число 3 — это индекс для кислорода.

В следующем примере выясним, как можно составить формулу соединения с известными степенями окисления атомов элементов и зарядами ионов. Составим формулу кальций ортофосфата. Слово «ортофосфат» означает, что справа от символа Кальция надо записать кислотный остаток ортофосфатнои кислоты: CaPO4.

Отметим степень окисления кальция (правило номер четыре) и заряд кислотного остатка (по таблице растворимости).

Найдем наименьшее общее кратное для чисел 2 и 3, это 6. Разделим число 6 на 2, получим число 3 — это индекс для кальция. Разделим число 6 на 3, получим число 2 — это индекс для кислотного остатка.

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Высшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Высшая степень окисления химического элемента обычно численно совпадает с номером группы в Периодической системе Д. И. Менделеева. Исключения составляют фтор (степень окисления равна -1, а элемент расположен в VIIA группе), кислород (степень окисления равна +2, а элемент расположен в VIA группе), гелий, неон, аргон (степень окисления равна 0, а элементы расположены в VIII группе), а также элементы подгруппы кобальта и никеля (степень окисления равна +2, а элементы расположены в VIII группе), для которых высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе (максимальная положительная степень окисления меди и серебра равна +2, золота +3).

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления серы в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • В сероводороде степень окисления серы равна (-2), а в простом веществе - сере - 0:

Изменение степени окисления серы: -2 → 0, т.е. шестой вариант ответа.

  • В простом веществе - сере — степень окисления серы равна 0, а в SO 3 - (+6):

Изменение степени окисления серы: 0 → +6, т.е. четвертый вариант ответа.

  • В сернистой кислоте степень окисления серы равна (+4), а в простом веществе - сере - 0:

1×2 +x+ 3×(-2) =0;

Изменение степени окисления серы: +4 → 0, т.е. третий вариант ответа.

ПРИМЕР 2

Задание Валентность III и степень окисления (-3) азот проявляет в соединении: а) N 2 H 4 ; б) NH 3 ; в) NH 4 Cl; г) N 2 O 5
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять валентность и степень окисления азота в предложенных соединениях.

а) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 4-м (1×4 = 4). Разделим полученное значение на число атомов азота в молекуле: 4/2 = 2, следовательно, валентность азота равна II. Этот вариант ответа неверный.

б) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 3-м (1×3 = 3). Разделим полученное значение на число атомов азота в молекуле: 3/1 = 2, следовательно, валентность азота равна III. Степень окисления азота в аммиаке равна (-3):

Это верный ответ.

Ответ Вариант (б)

Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

Свойства элементов находятся в периодической зависимости от порядкового номера.

Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.




Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.

Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).

В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).




В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.

У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

Примеры заданий частей А, В

1. В 4-м периоде число элементов равно


2. Металлические свойства элементов 3-го периода от Na до Сl

1) силиваются

2) ослабевают

3) не изменяются

4) не знаю


3. Неметаллические свойства галогенов с увеличением порядкового номера

1) возрастают

2) понижаются

3) остаются без изменений

4) не знаю


4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это


5. Металлические свойства элементов повышаются по ряду

1) In – Ga – Al

2) К – Rb – Sr

3) Ge – Ga – Tl

4) Li – Be – Mg


6. Неметаллические свойства в ряду элементов Аl – Si – С – N

1) увеличиваются

2) уменьшаются

3) не изменяются

4) не знаю


7. В ряду элементов О – S – Se – Те размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


9. Для фосфора элемент с меньшей электроотрицательностью – это


10. Молекула, в которой электронная плотность смещена к атому фосфора, – это


11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов

1) СlO 2 , РСl 5 , SeCl 4 , SO 3

2) PCl, Аl 2 O 3 , КСl, СО

3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2

4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7


12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора

1) ClF 3 , NH 3 , NaH, OF 2

2) H 3 S + , NH+, SiH 4 , H 2 Se

3) CH 4 , BF 4 , H 3 O + , PF 3

4) PH 3 , NF+, HF 2 , CF 4


13. Валентность для многовалентного атома одинакова в ряду соединений

1) SiH 4 – AsH 3 – CF 4

2) РН 3 – BF 3 – ClF 3

3) AsF 3 – SiCl 4 – IF 7

4) H 2 O – BClg – NF 3


14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них



Степени окисления элементов. Как найти степени окисления?

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Необходимо запомнить элементы, для которых характерны неизменные степени окисления. Все они перечислены в таблице.


3) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.


Рассмотрим применение этого правила на простых примерах.

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3*(+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2*(+1) + х + 4*(-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1*(+3) + 3х + 9*(-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4*(-2) = -3. Ответ: As(+5), O(-2).


А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.


Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Copyright Repetitor2000.ru, 2000-2015

Электроотрицательность (ЭО) — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s 2 2p 5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX ) позволит судить о типе химической связи. Если величина Δ X = 0 – связь ковалентная неполярная .

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными . Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.


При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.


На этом рисунке изображены степени окисления, характерные для первых 20 элементов.
Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.


Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») - способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей . Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m . При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 — и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах N 2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.