Как погибла жизнь на марсе. Атмосфера Марса: тайна четвертой планеты

Углекислый газ 95,32 %
Азот 2,7 %
Аргон 1,6 %
Кислород 0,13 %
Угарный газ 0,07 %
Водяной пар 0,03 %
Оксид азота(II) 0,013 %
Неон 0,00025 %
Криптон 0,00003 %
Ксенон 0,000008 %
Озон 0,000003 %
Формальдегид 0,0000013 %

Атмосфера Марса - газовая оболочка, окружающая планету Марс . Существенно отличается от земной атмосферы как по химическому составу, так и по физическим параметрам. Давление у поверхности составляет 0,7-1,155 кПа (1/110 от земного, или равно земному на высоте свыше тридцати километров от поверхности Земли). Примерная толщина атмосферы - 110 км. Примерная масса атмосферы 2,5·10 16 кг. Марс имеет очень слабое магнитное поле (по сравнению с земным), и в результате солнечный ветер вызывает диссипацию атмосферных газов в космос со скоростью 300±200 тонн в день (в зависимости от текущих солнечной активности и расстояния от Солнца).

Химический состав

4 миллиарда лет назад атмосфера Марса содержала количество кислорода, сопоставимое с его долей на юной Земле.

Температурные колебания

Поскольку атмосфера Марса сильно разрежена, она плохо сглаживает суточные колебания температуры поверхности. Температура на экваторе колеблется от +30°C днём до −80°C ночью. На полюсах температура может падать до −143°C. Однако суточные колебания температуры не столь значительны, как на безатмосферных Луне и Меркурии. Низкая плотность не мешает атмосфере формировать масштабные пыльные бури и смерчи, ветра, туманы, облака, влиять на климат и поверхность планеты.

Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора , проводились ещё в начале 1920-х годов. Измерения В.Лампланда в 1922 году дали среднюю температуру поверхности Марса 245 (−28°C), Э.Петтит и С.Никольсон в 1924 году получили 260 K (−13°C). Более низкое значение получили в 1960 году У.Синтон и Дж.Стронг: 230 K (−43°C).

Годовой цикл

Масса атмосферы в течение года сильно меняется из-за конденсации в полярных шапках больших объёмов углекислого газа в зимнее время и испарения - в летнее.

Характеристики: Атмосфера Марса более разряжена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1% (Точный состав см ). Среднее давление атмосферы на уровне поверхности около 6,1 мбар. Это в 15000 раз меньше, чем на Венере, и в 160 раз меньше, чем у поверхности Земли. В самых глубоких впадинах давление достигает 10 мбар.
Средняя температура на Марсе значительно ниже чем на Земле, - около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С - вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать до -125° С. При зимней температуре даже углекислота замерзает, превращаясь в сухой лед. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922 г. дали среднюю температуру поверхности Марса -28°С, Э. Петтит и С. Никольсон получили в 1924 г. -13°С. Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: -43°С. Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до +27°С, но уже к утру до -50°С.

На Марсе существуют и температурные оазисы, в районах "озера" Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53° С до +22° С летом и от -103° С до -43° С зимой. Итак, Марс - весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде. Когда первые фотографии с поверхности Марса, сделанные “Викингом”, были переданы на Землю, ученые были очень сильно удивлены, увидев, что Марсианское небо не черное, как это предполагалось, а розовое. Оказалось что пыль, висящая в воздухе, поглощает 40% поступающего солнечного цвета, создавая цветной эффект.
Пылевые бури: Одним из проявлений перепада температур являются ветры. Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чаще всего они возникают вблизи полярных шапок. Глобальная пылевая буря на Марсе помешала фотографированию поверхности с борта зонда "Маринер-9". Она бушевала с сентября 1971 по январь 1972 г., подняв в атмосферу на высоте более 10 км около миллиарда тонн пыли. Пылевые бури чаще всего бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Продолжительность бурь может достигать 50-100 суток. (Раньше меняющийся цвет поверхности объяснялся ростом марсианских растений).
Пылевые дьяволы: Пылевые смерчи - еще один пример процессов на Марсе, связанных с температурой. Такие смерчи очень частые проявления на Марсе. Они поднимают в атмосферу пыль и возникают из-за разниц температур. Причина: днем поверхность Марса достаточно нагревается (иногда и до положительных температур), но на высоте до 2х метров от поверхности атмосфера остается такой же холодной. Такой перепад вызывает нестабильность, поднимая в воздух пыль - образуются пылевые дьяволы.
Водяной пар: Водяного пара в марсианской атмосфере совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными. В телескоп видны только самые большие из них, но наблюдения с космических кораблей показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами - каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы. Зимой 1979 г. в районе посадки "Викинга-2" выпал тонкий слой снега, который пролежал несколько месяцев.
Времена года: На сегодняшний момент известно, что из всех планет Солнечной системы Марс наиболее подобен Земле. Он сформировался приблизительно 4,5 млрд. лет назад. Ось вращения Марса наклонена к его орбитальной плоскости приблизительно на 23,9°, что сравнимо с наклоном земной оси, составляющим 23,4°, а потому там, как и на Земле, происходит смена сезонов. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном же наоборот - лето короткое и относительно теплое, а зима длинная и холодная.
С наступлением весны полярная шапка начинает "съеживаться", оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распространяется так называемая волна потемнения. Современные теории объясняют ее тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.
Марсианский день, называемый сол, составляет 24,6 часа, а его год - 669 сол.
Влияние климата: Первые попытки разыскать в марсианской почве прямые свидетельства наличия основы для жизни - жидкой воды и таких элементов, как азот и сера, не принесли успеха. Экзобиологический эксперимент, проведенный на Марсе в 1976 году после посадки на его поверхность американской межпланетной станции «Викинг», несшей на своем борту автоматическую биологическую лабораторию (АБЛ), не принес доказательств существования жизни. Отсутствие органических молекул на изученной поверхности могло быть вызвано интенсивным ультрафиолетовым излучением Солнца, так как у Марса нет защитного озонового слоя, и окисляющим составом почвы. Поэтому верхний слой марсианской поверхности (толщиной около нескольких сантиметров) - бесплоден, хотя существует предположение, что в более глубоких, подповерхностных, слоях сохранились условия, которые были миллиарды лет назад. Определенным подтверждением этих предположений стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы - метаногены, питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях. Гипотеза о более теплом древнем Марсе с открытыми водоемами - реками, озерами, а может, и морями, а также с более плотной атмосферой - обсуждается уже более двух десятилетий, так как «обживать» столь негостеприимную планету, да еще при отсутствии воды, было бы очень сложно. Для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была бы очень сильно отличаться от нынешней.


Переменчивый марсианский климат

Современный Марс - очень негостеприимный мир. Разреженная атмосфера, к тому же непригодная для дыхания, страшные пылевые бури, отсутствие воды и резкие перепады температуры в течение суток и года - всё это свидетельствует о том, что заселить Марс будет не так-то просто. Но ведь когда-то на нём текли реки. Значит ли это, что в прошлом на Марсе был другой климат?
Есть несколько фактов в поддержку этого утверждения. Вопервых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Во-вторых, существуют многочисленные следы проточной воды, что также невозможно при нынешнем состоянии атмосферы. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд пет назад. Приблизительно такой же возраст имеют и многие промоины.
К сожалению, сейчас не удаётся объяснить, что именно привело к таким серьёзным изменениям климата. Ведь для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была очень сильно отличаться от нынешней. Возможно, причина этого кроется в обильном выделении летучих элементов из недр планеты в первый миллиард лет её жизни или в изменении характера движения Марса. Из-за большого эксцентриситета и близости к планетам - гигантам орбита Марса, а также наклон оси вращения планеты могут испытывать сильные колебания, как короткопериодические, так и достаточно длительные. Эти изменения вызывают уменьшение или увеличение количества солнечной энергии, поглощаемой поверхностью Марса. В прошлом климат мог испытать сильное потепление, вследствие которого плотность атмосферы повысилась за счёт испарения полярных шапок и таяния подземных льдов.
Предположения о переменчивости марсианского климата подтверждаются недавними наблюдениями на Хаббловском космическом телескопе. Он позволил производить с околоземной орбиты очень точные измерения характеристик атмосферы Марса и даже предсказывать марсианскую погоду. Результаты оказались довольно неожиданными. Климат планеты сильно изменился со времени посадок спускаемых аппаратов «Викинг» (1976 г.): он стал суше и холоднее. Возможно, это связано с сильными бурями, которые в начале 70-х гг. подняли в атмосферу огромное количество мельчайших пылинок. Эта пыль препятствовала остыванию Марса и испарению водяного пара в космическое пространство, но потом осела, и планета вернулась к своему обычному состоянию.

Поскольку Марс находится дальше от Солнца, чем Земля, он может занимать на небе положение, противоположное Солн-цу, тогда он виден всю ночь. Такое положение планеты назы-вается противостоянием . У Марса оно повторяется каждые два года и два месяца. Так как орбита Марса вытянута больше земной, то во время противостояний расстояния между Мар-сом и Землёй могут быть различными. Раз в 15 или 17 лет происходит Великое противостояние, когда расстояние между Землёй и Марсом минимально и составляет 55 млн км.

Каналы на Марсе

На фотографии Марса, сделанной с космического телеско-па Хаббла, хорошо видны характерные особенности планеты. На красном фоне марсианских пустынь отчётливо видны го-лубовато-зелёные моря и ярко-белая полярная шапка. Знаменитых каналов на снимке не видно. При та-ком увеличении они действительно не видны. После того как были получены крупномасштабные снимки Марса, загадка мар-сианских каналов была окончательно разрешена: каналы пред-ставляют собой оптическую иллюзию.

Большой интерес вызывал вопрос о возможности сущест-вования жизни на Марсе . Проведённые в 1976 г. на амери-канских АМС «Викинг» исследования дали, по-видимому, окон-чательный отрицательный результат. Никаких следов жизни на Марсе не обнаружено.

Однако и в настоящее время идёт ожив-лённая дискуссия по этому поводу. Обе стороны, как сторон-ники, так и противники жизни на Марсе, приводят аргумен-ты, которые их оппоненты опровергнуть не могут. Для реше-ния этого вопроса просто не хватает экспериментальных дан-ных. Остаётся только ожидать, когда осуществляемые и пла-нируемые полёты к Марсу дадут материал, подтверждающий или опровергающий существование жизни на Марсе в наше время или в далёком прошлом. Материал с сайта

У Марса есть два небольших спутника — Фобос (рис. 51) и Деймос (рис. 52). Их размеры 18×22 и 10×16 км соответ-ственно. Фобос расположен от поверхности планеты на рас-стоянии всего 6000 км и обращается вокруг неё примерно за 7 ч, что в 3 раза меньше марсианских суток. Деймос нахо-дится на расстоянии 20 000 км.

Со спутниками связан ряд загадок. Так, неясно их проис-хождение. Большинство учёных считают, что это сравнительно недавно захваченные астероиды . Трудно представить себе, как уцелел Фобос после удара метеорита , оставившего на нем кратер диаметром 8 км. Непонятно, почему Фобос является самым черным из известных нам тел. Его отражательная спо-собность в 3 раза меньше, чем сажи. К сожалению, несколь-ко полётов КА к Фобосу закончилось неудачей. Окончатель-ное решение многих вопросов как Фобоса, так и Марса откла-дывается до экспедиции на Марс, планируемой на 30-е годы XXI в.

Общая ошибка, которая обычно делает оценки климатических условий конкретной планеты, - путать давления с плотностью. Хотя с теоретической точки зрения мы все знаем разницу между давление и плотность, в действительности он берется для сравнения атмосферного давления на земле с атмосферное давление данной планеты без мер предосторожности.

В любой земной лаборатории, где гравитация примерно такой же, Эта предосторожность не нужен и часто использует давление как «синоним» плотность. Некоторые явления обрабатываются безопасно с точки зрения стоимости «давления/температуры», как например фасы диаграм (или Диаграмма состояний), где в действительности было бы более правильно было бы говорить о «коэффициент плотности и температуры» или «под давлением/температуры», в противном случае мы не понимаем присутствие жидкой воды в отсутствие гравитации (и затем невесомости) в космических аппаратов на орбите в космосе!

На самом деле, технически атмосферное давление составляет «вес», которое оказывают определенное количество газа над нашими головами на все, что находится под. Однако реальная проблема заключается в том, что вес обусловлено не только плотность но очевидно тяжести. Если мы например уменьшение тяжести Земли 1/3, Очевидно, что такое же количество газа, что выше нас будет иметь одну треть своего первоначального веса, Несмотря на количество газа остается точно то же самое. Так, то, в сравнении климатические условия между двумя планетами бы более правильно говорить к плотности, а не давление.

Мы очень хорошо понимаем этот принцип путем анализа функционирования Торричелли барометр, Первый документ, который был измеряется земли атмосферное давление. Если мы заполним закрыт Тюбе ртути на одной стороне и множество вертикально с открытым концом погруженной в бак, наполненный ртутью также, Вы заметите, формирования вакуумной камеры в верхней части соломы. Торричелли фактически отметил, что внешнее давление, відсутні в соломе, Это было для поддержки столбца ртути высокой примерно 76 см. Путем расчета продукт удельной ртути, ускорение силы тяжести Земли и высота колонны ртути, можно вычислить вес выше атмосферы.

Из Википедии по адресу: http:/// Вики/Tubo_di_Torricelli it.wikipedia.org

Эта система, блестящий для своего времени, Однако сильные ограничения при применении в «Земляне». На самом деле, как настоящий гравитации в двух из трех факторов формулы, Любая разница в гравитации производит квадратичной разница в ответ барометр, затем, один и тот же столбец воздуха, на планете с 1/3 оригинальные гравитации, будет производить, для барометр, Торричелли, под давлением 1/9 исходное значение.
Ясно, Помимо инструментальная артефактов, факт остается фактом: тот же столбец воздуха будет иметь вес пропорциональны тяжести, планеты на которых время от времени мы будем иметь это так просто барометрическое давление не является абсолютным показателем плотности!
Этот эффект систематически игнорируется в анализе атмосферы Марса. Мы говорим легко давления в гПа и сделки непосредственно с земли, полностью игнорируя давление гПа, что гравитация на Марсе о 1/3 что земли (для точности 38%). Те же ошибки вы сделали, когда вы посмотрите на фасы диаграм воды, чтобы продемонстрировать, что на Марсе, вода не может существовать в жидкой форме. В частности, тройной точки воды, на земле 6.1 гПа, но на Марсе, где гравитация это 38% что земли, Если вы делаете в hPa, было бы абсолютно 6.1 но для 2.318 гПа (Хотя барометр, ознаменует Торричелли 0.88 гПа). Этот анализ, однако, это всегда, на мой взгляд обманным путем, систематически избегать, Восстановление обозначение в те же значения земли. Же указание 5-7 ГПА для марсианской атмосферное давление явно не указаны ли в виду земной гравитации или Марс.
На самом деле 7 hPa на Марсе должна иметь плотность газа на земле будет измерения о 18.4 гПа. Это абсолютно избежать во всех современные исследования, Скажем, в второй половине 60 Далее, В то время как ранее строго указано, что давление было одной десятой от земли но с плотностью 1/3. С чисто научной точки зрения был рассмотрен реальный вес столба воздуха, что приводит как 1/3 его фактический вес на земле, но что на самом деле плотность была сопоставима с 1/3 что земли. Как прийти в последних исследованиях существует эта разница?

Может быть потому что это проще рассуждать о невозможности сохранить жидкой фазы воды?
Есть другие ключи для этого тезиса: Каждый атмосфера на самом деле производит рассеяния света (рассеяние) преимущественно в синем, что даже в случае Марс могут легко анализироваться. Хотя атмосфера Марса кучу пыли, чтобы сделать его красноватый, разделение синий компонент цвета панорамного изображения Марса, Вы можете получить представление о плотности атмосферы Марса. Если мы сравним земной небо снимки, сделанные на разных высотах, а потом с разной степенью плотности, Мы понимаем, что номинальный размер, в котором мы должны найти 7 гПа, т.е. 35.000 m, небо полностью черный, Сальво ярмарка горизонт полоса, где на самом деле мы все еще видим в слоях нашей атмосферы.

Слева: Съемка марсианского пейзажа, сделанные зондом следопыта 22 Июнь 1999. Источник: http://photojournal.JPL. nasa.gov/catalog/PIA01546 право: Синий канал рисунок рядом; Обратите внимание, интенсивность неба!

Слева: Сидней - город Юго-Восточной Австралии, Столица штата Новый Южный Уэльс, на 6 m. Право: Синий канал рисунок рядом.

Слева: Сидней, но всегда во время песчаной бури. Право: Синий канал рисунок рядом; как вы можете видеть, Подвесные пыли уменьшить яркость неба, а не увеличить его, Вопреки тому, что утверждается в случае НАСА Mars!

Очевидно, что фотографии марсианского неба, отфильтрованные синяя полоса, гораздо ярче, почти сопоставима с изображений, снятых на горе Эверест, чуть меньше чем 9.000 m, где смотреть, если атмосферное давление составляет 1/3 нормальный уровень моря давление.

Еще одним свидетельством серьезных пользу марсианский плотности атмосферы выше, чем объявленные, была предоставлена феномен пыль Девилс. Эти «мини Торнадо» способны поднять песка столбцов до нескольких километров; Но как это возможно?
НАСА, сам пытался имитировать их, в вакуумной камере, Имитация марсианского давления 7 гПа, и они не смогли моделировать явления, если не поднимает давление по меньшей мере 11 раз! Начальное давление, даже при использовании очень мощный Вентилятор, не мог снять что-нибудь!
На самом деле, 7 ГПа, действительно просто, Учитывая тот факт, что помимо возвышается над уровнем моря снижается быстро сразу для дробных значений; но тогда все явления наблюдается вблизи горы Олимп, что это означает 17 км высоты, Как можно будет?

Это известно из телескопических наблюдений, Марс имеет очень активную атмосферу, особенно в отношении формирования облака и туманы, не только песчаных бурь. Наблюдения Марса в телескоп в самом деле, Вставка синий светофильтр, Вы можете выделить все эти атмосферные явления далеко не незначительной. Утром и вечером туман, орографические облака, в телескоп с средней мощности СМИ всегда наблюдались полярные облака. Любой человек может к примеру, с обычной графической программы, отдельные три красных уровни, Грин, синий цвет изображения Марса и проверить как это работает. Образ, соответствующий красный канал предоставит нам хорошая Топографическая карта в то время как синий канал покажет полярных ледяных шапок и облака.. Это легко сделать это как на снимки, сделанные с помощью малых телескопов, Оба на снимки с космического телескопа. Кроме того, в изображения, полученные с космического телескопа, Вы заметили синий границы, вызванных атмосферы, что затем появляется синий и красный не, как показано на месте изображения.

Типичные изображения Марса, принятые космический телескоп Хаббла. Источник: http://Science.NASA.gov/Science-News/Science-at-NASA/1999/ast23apr99_1/

Красный канал (слева), Зеленый канал (Центр) и синий канал (право); Обратите внимание, экваториальных облако.

Еще один интересный момент - анализ полярных месторождений; пересечение высотные данные и gravitometrici, Это было невозможно определить, что полярный месторождения различаются сезонно примерно 1.5 метров на Северный полюс и 2.5 метров на Южном полюсе, с средней плотности населения в то время максимальная высота примерно 0.5 g/см 3 .

При этом плотность, 1 мм снега в CO 2 производит давление 0.04903325 гПа; Теперь, даже если предположить наиболее оптимистичный марсианского давления, приведенные выше 18.4 гПа, игнорируя тот факт, что CO 2 представляет 95% и не 100% атмосфера Марса, Если мы все condensassimo атмосферы на земле будет получить слой 37.5 см толщиной!
С другой стороны, 1.5 футов снега углекислого газа с плотностью 0.5 g/см 3 производит давление 73.5 ГПа и 2.5 метров вместо 122.6 гПа!

Время эволюция поверхности атмосферное давление, записано два Викинг Ландерс 1 и 2 (Викинг Ландер 1 Он приземлился в Хриса космизм в 22.48° n, 49.97° Западной долготы, 1.5 Км ниже среднего уровня. Викинг Ландер 2 Он приземлился в утопии космизм в 47.97° n, 225.74° Западной долготы, 3 Км ниже среднего уровня), в течение первых трех лет марсианской миссии: 1й год (точки), 2й год (сплошная линия) и 3 года (Пунктирная линия) укладываются в том же графе. Источник Тилман и гость (1987) (Смотрите также Тиллман 1989).

Рассмотрим также, что, Если масса сезонные сухого льда был похож между двумя полушариями не должна вызывать сезонные вариации глобального атмосферного давления, Так как распад полярной шапки всегда будет компенсироваться конденсации на полу в другом полушарии.

Но мы знаем, что уплощение марсианской орбиты создает разница почти 20° c средняя температура двух полушарий, с вершины до 30° C пользу Широта-30 ° ~. Имейте в виду, что 7 ГПа CO 2 ICES-123 ° c (~ 150° K), Хотя на 18.4 гПа (правильное значение для гравитации Марса) ЛЬДОВ до ~-116 ° C (~ 157° K).

Сравнение данных, собранных миссией Маринер 9 в течение весны бореальных (Ls = 43 – 54°). Показано сплошной линией на графике выше температуры (в Кельвинах) обнаружен эксперимент IRIS. Штрих пунктирные кривые показывают местные ветра (в m s-1) как вытекает из теплового баланса ветра (Поллак и. 1981). Средний график показывает температуру моделирования (K) за тот же сезон., В то время как нижней граф представляет моделирование ветров (в m s-1). Источник: «Метеорологической изменчивости и годового поверхностного давления цикла на Марсе» Фредерик Hourdin, Ле Ван Фу, Франсуа забыть, Olivier Talagrand (1993)

По данным Маринер 9 только на Южном полюсе мы находим необходимых погодных условий, Хотя согласно повреждает глобального съемщика (MGS), связанные с землей, Возможно присутствие в обоих полушариях.

Минимальные температуры в градусах Цельсия почвы Марса, взятые из тепловых спектрометр (TES) на борту Mars Global Surveyor (MGS). В горизонтальной и вертикальной Широта Долгота солнца (Ls). Синяя часть таблицы приведены минимальная температура, Среднегодовой максимум и всегда со ссылкой на ежедневных минимальных температур.

Затем, Подведение итогов, атмосфера, как представляется, достичь минимальной температуры-123 ° C нуля-132 ° C; Я отмечаю, что в-132 ° 2 не должно превышать давление 1.4 ГПа без льда!

Граф давления паров двуокиси углерода; среди других утилит этого графа, можно определить максимальное давление СО2 может достигать до конденсации (в данном случае на льду) при данной температуре.

Но вернемся к сезонной полярной депозиты; как мы уже видели, по крайней мере на ночь, на широте 60°, как кажется, существуют условия для формирования сухого льда, но то, что действительно происходит во время полярной ночи?

Давайте начнем с двух совершенно разных состояния: конденсат от поверхности для охлаждения массы воздуха или «холодные».

Для первого случая, Предположим, что температура почвы опускается ниже замораживания предел двуокиси углерода; почва начнет покрывать слоем льда все больше и больше, до здесь тепловой изоляции, вызванной льда, сам будет достаточно остановить процесс. В случае сухого льда, будучи хорошим теплоизолятором, Он просто очень мало, Поэтому само это явление не является достаточно эффективной для того, чтобы оправдать наблюдаемых ледовых накоплений! Как доказательство этого, на Северный полюс и Южный полюс принадлежит запись-132 ° C, где минимум составляет-130 ° C (По словам TES MGS). Я также интересую как надежное обнаружение-132 ° c с марсианской орбиты и спектроскопических путь, потому что при этой температуре сама почва должна быть завуалированной от процесса конденсации!

Во втором случае, Если воздушная масса (в данном случае CO 2 почти чистый) достигает точки росы, как только температура падает, его давление не превышает предел, установленный «давление пара» для этого газа при этой температуре, вызывает немедленное земли конденсации массы любой избыток газа! На самом деле, эффективность этого процесса действительно драматического; Если мы должны были имитировать аналогичное мероприятие на Марсе, Нам также нужно будет учитывать цепь событий, которые создадут.

Мы понижаем температуру Южного полюса, например до-130 ° C, начальное давление 7 гПа; давление прибытия должно быть ~ 2 ГПа, вызывая осадки снега сухого льда ~ 50 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 10 см толщиной. Конечно такой перепад давления будет оперативно воздух из прилегающих районов, с эффектом от нижней (цепочки) давление и температура из соседних районов, но конденсации вклад всех в снегу. Сам процесс также стремится сделать тепловой энергии (затем повышение температуры) в то же, Но если температура остается на уровне-130 ° C, процесс конденсации остановится только тогда, когда все планеты достигнет равновесия давление 2 гПа!

Это небольшой моделирование используется для понимания взаимосвязи между минимальных температур и изменения атмосферного давления, разъяснение почему минимальная температура и давление связаны. Из представленных графиков атмосферного давления, записаны два Викинг Ландерс мы знаем, что для викингов 1 давление изменяется от минимального 6.8 ГПа и максимум 9.0 гПа, среднее значение 7.9 . Для викингов 2 Допустимые значения – от 7.4 HPA на 10.1 ГПа в среднем 8.75 гПа. Мы также знаем, что VL 1 Он приземлился 1.5 Км и VL 2 3 Км, оба под средний уровень Марса. Учитывая, что средний уровень Марс 6.1 гПа (происходит с тройной точки воды!), Если мы масштаб значений, указанных выше среднее значение 6.1 гПа, Затем оба варьируются от менее 5.2 ± 0.05 ГПа и максимум 7 ± 0.05 гПа. Тогда как минимальное значение 5.2 ГПа, низкая температура, мы получаем ~-125 ° C (~ 148° K), уже в явные разногласия с вашими данными. Теперь, в то время как падение давления от 7 HPA на 5.2 Осаждают HPA 18,4 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 3.7 см толщиной, и что поверхность Южной полярной шапке ~ 1/20 Общая поверхность Марса (определенно приближаясь по умолчанию!), 3.7 см X 20 = 74 см, Это гораздо меньшее значение в пределах полярных отложений обнаружена!

Поэтому существует очевидное противоречие между тепловой данных и данных о погоде, Если один не поддерживает другие! Столь низкая температура приведет к сильным давлением колебания (даже между днем и ночью!) или даже более низкое общее давление! С другой стороны, однако 7 абсолютно недостаточно для учета такого явления, как пыль Девилс номинальное HPA, овраги, распространения света небес или величины переходных полярных месторождений, которые вы объяснили лучше намного выше атмосферного давления 7 гПа.

Пока что, были рассмотрены только аспекты, связанные с двуокиси углерода, считается одним из основных компонентов атмосферы (~ 95%); Но если мы введем даже вода в этом анализе, обозначение 7 ГПа становится совершенно нелепо!
Например, следы, оставленные поток жидкой воды (увидеть кратер Ньютон) где вода должна только быть пара государства, с учетом очень низкого давления и температуры до около 27 ° C!
В такой ситуации можно смело сказать, что давление (в наземных условиях) не может быть меньше, чем 35 гПа!

Атмосфера Марса , как и атмосфера Венеры, в основном состоит из углекислого газа, хотя и существенно тоньше. После обнаружения метана в 2003 г. исследования атмосферы возобновились с большим азартом. Наличие метана косвенно может указывать на наличие жизни на Марсе, хотя больше вероятности, что это следы вулканической или гидротермальной активности планеты.

Атмосфера на 96% состоит из двуокиси углерода, 2.1% из аргона и 1.9% из азота. Так же были найдены следы кислорода, метана, монооксида и двуокиси углерода,и небольшое количество водяного пара в виде холодных облаков. Концентрация углекислого газа на Марсе в 23 раза превышает земной показатель. Это делает невозможным существование любой жизни на Марсе. По крайне мере той жизни, к которой мы все привыкли на родной Земле.

Состав атмосферы Марса.

Состав атмосферы, а так же ее масса сильно колеблется в течение марсианского года. Зимой большая часть углекислого газа конденсируется в полярных шапках , поэтому атмосфера становится более разряженной. Летом же эта часть испаряется, и плотность атмосферы увеличивается.

Но и зимой и летом плотность атмосферы не настолько большая, чтобы сглаживать температурные колебания. В течение одного марсианского дня скачки температуры превышают 100 o C. Днем она поднимается до +30 o C, а ночью опускается до -80 o C. На полюсах минимальная температура опускается еще ниже, до -150 o C.

Атмосферное давление на Марсе составляет 600 Па. Для сравнения на Земле атмосферное давление составляет 101 Па, а на Венере огромные 9.3 МПа. На вулкане Олимп , самой высокой точкой на Марсе, атмосферное давление составляет жалкие 30 Па. А в самой глубой точке планеты, в равнине Эллада, достигает 1155 Па.

Наблюдения марсохода "Mars Exploration Rover" с поверхности Марса показали, что несмотря на разряженность атмосферы, воздух довольно пыльный. Марсианское небо постоянно окрашено с светло-коричневый и оранжевый цвет. Взвешенные частицы песка и пыли поднимаются на высоту 1.5 км. над поверхностью планеты и из-за низкого давления оседают довольно долго.

История атмосферы

Ученые полагают, что атмосфера Марса менялась в течение жизни планеты. Есть доказательства, что на планете были огромные океаны несколько миллиардов лет назад. Но в настоящее время вода может существовать только в виде пара или льда. Во-первых, атмосферное давление способно "удерживать" воду в жидком состоянии только в самых низких точках планеты. А во-вторых, средняя температура на поверхности составляет -63 o C, поэтому вода может существовать только в твердом состоянии.

Тем не менее, в начале своей истории Марс имел более благоприятные условия. В начале 2013 г. было объявлено, что атмосфера Марса была богата кислородом около 4 миллиардов лет назад (). Среди возможных причин истощения кислорода в атмосфере называют следующие:

  1. Постепенное разрушение атмосферы солнечным ветром.
  2. Столкновение с огромным метеоритом или кометой, имевшее катастрофические последствия для Марса.
  3. Низкая гравитация Марса, не позволяющая удержать атмосферу.

Потенциал для использования людьми

Как же человек может использовать атмосферу Марса? Этот вопрос задается все чаще, поскольку колонизация Марса сейчас уже не выглядит неосуществимой фантастической мечтой. Да, вопросов пока больше, чем ответов. Но и решать вопросы нужно по одному, а не все сразу.

Двуокись углерода из атмосферы Марса можно использовать для создания ракетного топлива для обратного полета на Землю. Есть несколько вариантов использования такого богатого объема CO 2 , один из них - процесс Сабатье. Этот химический процесс представляет собой реакцию двуоксида углерода с водородом при никелевом катализаторе. В результате этой реакции получается кислород и метан.

Реакция Сабатье уже "примеряется" учеными из НАСА для переработки углекислого газа на Международной космической станции, оставшегося после дыхания космонавтов. Поэтому на Марсе нам, возможно, и не понадобиться кислород в атмосфере - мы его произведем сами.