Как построить гиперболу по каноническому уравнению. Гипербола и ее каноническое уравнение

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается обычно через 2а, Фокусы гиперболы обозначают буквами F 1 и F 2 , расстояние между ними - через 2с. По определению гиперболы 2а

Пусть дана гипербола. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

х 2 /a 2 + y 2 /b 2 = 1, (1)

где b = √(с 2 - а 2). Уравнение вида (I) называется каноническим уравнением гиперболы При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат -ее центром симметрии (рис. 18). Оси симметрии гиперболы называются просто ее осями, центр симметрии-центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. 18 вершины гиперболы суть точки А" и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2а и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы; их уравнения суть:

y = b/a x, y = - b/a x

Уравнение

X 2 /a 2 + y 2 /b 2 = 1 (2)

определяет гиперболу, симметричную относительно координатных осей с фокусами на оси ординат; уравнение (2),как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

x 2 /a 2 - y 2 /b 2 = 1, - x 2 /a 2 + y 2 /b 2 = 1

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуоясми (а = b) называется равносторонней,; ее каноническое уравнение имеет вид

х 2 - у 2 = а 2 или - х 2 + у 2 = а 2 .

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы ε > 1. Если М(х; у) - произвольная точка гиперболы, то отрезки F 1 М и F 2 M (см. рис. 18) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

r 1 = εх + а, r 2 = εх - а,

фокальные радиусы точек левой ветви - по формулам

r 1 = -εх - а, r 2 = -εх + а

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

x = -a/ε, x = a/ε

называются ее директрисами (см. рис. 18). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

x = -b/ε, x = b/ε

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету гиперболы:

515. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная, кроме того, что:

1) ее оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с = 10 и ось 2b = 8;

3) расстояние между фокусами 2с = 6 и эксцентриситет ε = 3/2;

4) ось 2а = 16 и эксцентриситет ε = 5/4;

5) уравнения асимптот у = ±4/3х и расстояние между фокусами 2с = 20;

6) расстояние между директрисами равно 22 2/13 и расстояние между фокусами 2с = 26; 39

7) расстояние между директрисами равно 32/5 и ось 2b = 6;

8) расстояние между директрисами равно 8/3 и эксцентриситет ε = 3/2;

9) уравнения асимптот у = ± 3/4 х и расстояние между директрисами равно 12 4/5.

516. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что:

1) ее полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2с = 10 и эксцеитриситет ε = 5/3; оч и. 12

3) уравнения асимптот у = ±12/5х и расстояние между вершинами равно 48;

4) расстояние между директрисами равно 7 1/7 и эксцентриситет ε = 7/5;

5) уравнения асимптот у = ± 4/3x и расстояние между директрисами равно 6 2/5.

517. Определить полуоси а и b каждой из следующих гипербол:

1) x 2 /9 - y 2 /4 = 1; 2) x 2 /16 - y 2 = 1; 3) x 2 - 4y 2 = 16;

4) x 2 - y 2 = 1; 5) 4x 2 - 9y 2 = 25; 6) 25x 2 -16y 2 = 1;

7) 9x 2 - 64y 2 = 1.

518. Дана гипербола 16x 2 - 9y 2 = 144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

519. Дана гипербола 16x 2 - 9у 2 = -144. Найти: 1) полуоси a и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

520. Вычислить площадь треугольника, образованного асимптотами гиперболы x 2 /4 - y 2 /9 = 1 и прямой 9x + 2y - 24 = 0.

521. Установить, какие линии определяются следующими уравнениями:

1) y = +2/3√(x 2 - 9); 2) y = -3√(x 2 + 1)

3) x = -4/3√(y 2 + 9); 4) +2/5√(x 2 + 25)

522. Дана точка M 1 (l0; - √5) на гиперболе - x 2 /80 - y 2 /20 = 1. Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1 .

523. Убедившись, что точка M 1 (-5; 9/4) лежит на гилерболе x 2 /16 - y 2 /9 = 1, определить фокальные радиусы точки M 1 .

524. Эксцентриситет гиперболы ε = 2, фокальный ра-диус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

525. Эксцентриситет гиперболы ε = 3, расстояние от точки, М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

526. Эксцентриситет гиперболы ε = 2, центр ее лежит в начале координат, один из фокусов F(12; 0). Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

527. Эксцентриситет гиперболы ε = 3/2, центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

528. Определить точки гиперболы - x 2 /64 - y 2 /36 = 1, расстояние которых до правого фокуса равно 4,5.

529. Определить точки гиперболы x 2 /9 - y 2 /16 = 1, расстояние которых до левого фокуса равно 7.

530. Через левый фокус гиперболы x 2 /144 - y 2 /25 = 1 про-веден перпендикуляр к ее оси, содержащей вершины. Определить расстояния от фокусов до точек пересечения этого перпендикуляра с гиперболой.

531. Пользуясь одним циркулем, построить фокусы гиперболы x 2 /16 - y 2 /25 = 1 (считая, что оси координат изображены и масштабная единица задана).

532. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки М 1 (6; -1) и М 2 (-8; 2√2) гиперболы;

2) точка M 1 (-5; 3) гиперболы и эксцентриситет ε = √2;

3) точка M 1 (9/2;-l) гиперболы и уравнения асимптот у = ± 2.3х;

4) точка M 1 (-3 ; 5.2) гиперболы и уравнения директрис х = ± 4/3;

5) уравнения асимптот у = ±-3/4х и уравнения директрис х = ± 16/5

533. Определить эксцентриситет равносторонней гиперболы.

534. Определить эксцентриситет гиперболы, если отрезок между ее вершинами виден из фокусов сопряженной гиперболы под углом в 60°.

535. Фокусы гиперболы совпадают с фокусами эллипса x 2 /25 + y 2 /9 = 1. Составить уравнение гиперболы, если ее эксцентриситет ε = 2.

536. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса x 2 /100 + y 2 /64 = 1, а директрисы проходят через фокусы этого эллипса.

537. Доказать, что расстояние от фокуса гиперболы x 2 /a 2 - y 2 /b 2 = 1 до ее асимптоты равно b.

538. Доказать что произведение расстояний от любой точки гиперболыx x 2 /a 2 - y 2 /b 2 = 1 до двух ее асимптот есть величина постоянная, равная a 2 b 2 /(a 2 + b 2)

539. Доказать, что площадь параллелограмма, ограниченного асимптотами гиперболы x 2 /a 2 - y 2 /b 2 = 1 и прямыми, проведенными через любую ее точку параллельно асимптотам, есть величина постоянная, равная ab/2.

540. Составить уравнение гиперболы, если известны ее полуоси а и b, центр С(х 0 ;у 0) и фокусы расположены на прямой: 1) параллельной оси Ох; 2) параллельной оси Оу.

541. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16x 2 - 9у 2 - 64x - 54у - 161 =0;

2) 9x 2 - 16у 2 + 90x + 32y - 367 = 0;

3) 16x 2 - 9у 2 - 64x - 18у + 199 = 0.

542. Установить, какие линии определяются следующими уравнениями:

1) у = - 1 + 2/3√(x 2 - 4x - 5);

2) у = 7- 3/2√(х 2 - 6х + 13);

3) x = 9 - 2√(y 2 + 4y + 8);

4) Х = 5 + 3/4√(y 2 + 4y - 12).

Изобразить эти линии на чертеже.

543. Составить уравнение гиперболы, зная, что:

1) расстояние между ее вершинами равно 24 и фокусы суть F 1 (-10;2), F 2 (16; 2);

2) фокусы суть F 1 (3;4), F 2 (-3; -4) и расстояние между директрисами равно 3,6;

3) угол между асимптотами равен 90° и фокусы суть F 1 (4; -4), F 1 (- 2;2).

544. Составить уравнение гиперболы, если известны ее эксцентриситет ε = 5/4, фокус F (5; 0) и уравнение соответствующей директрисы 5х - 16 = 0.

545. Составить уравнение гиперболы, если известны ее эксцентриситет е - фокус F(0; 13) и уравнение соответствующей директрисы 13y - 144 = 0.

546. Точка А (-3; - 5) лежит на гиперболе, фокус которой F (-2;-3), а соответствующая директриса дана уравнением x + 1 = 0. Составить уравнение этой гиперболы.

547. Составить уравнение гиперболы, если известны ее эксцентриситет ε = √5, фокус F(2;-3) и уравнение соответствующей директрисы Зх - у + 3 = 0.

548. Точка M 1 (1; 2) лежит на гиперболе, фокус которой F(-2; 2), а соответствующая директриса дана уравнением 2х - у - 1 = 0. Составить уравнение этой гиперболы.

549. Дано уравнение равносторонней гиперболы х 2 - у 2 = а 2 . Найти ее уравнение в новой системе, приняв за оси координат ее асимптоты.

550. Установив, что каждое из следующих уравнений определяет гиперболу, найти для каждой из них центр, полуоси, уравнения асимптот и построить их на чертеже: 1) ху = 18; 2) 2ху - 9 = 0; 3) 2ху + 25 = 0.

551. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы х 2 /20 - y 2 /5 = 1.

552. Найти точки пересечения прямой 4х - 3y - 16 = 0 и гиперболы х 2 /25 - y 2 /16 = 1.

553. Найти точки пересечения прямой 2x - y + 1 = 0 и гиперболы х 2 /9 - y 2 /4 = 1.

554. В следующих случаях определить, как расположена прямая относительно гиперболы: пересекает ли, касается или проходит вне ее:

1) x - y - 3 = 0, х 2 /12 - y 2 /3 = l;

2) x - 2y + 1 = 0, х 2 /16 - y 2 /9 = l;

555. Определить, при каких значениях m прямая y = 5/2x + m

1) пересекает гиперболу x 2 /9 - y 2 /36 = 1; 2) касается ее;

3) проходит вне этой гиперболы.

556. Вывести условие, при котором прямая у = kx + m касается гиперболы х 2 /a 2 - y 2 /b 2 = 1.

557. Составить уравнение касательной к гиперболе х 2 /a 2 - y 2 /b 2 = 1 в ее точке Af, (*,; #i).

558. Доказать, что касательные к гиперболе, про-веденные в концах одного и того же диаметра, параллельны.

559. Составить уравнения касательных к гиперболе х 2 /20 - y 2 /5 = 1, перпендикулярных к прямой 4x + Зy - 7 = 0.

560. Составить уравнения касательных к гиперболе x 2 /16 - y 2 /64 = 1, параллельных прямой 10x - 3y + 9 = 0.

561. Провести касательные к гиперболе x 2 /16 - y 2 /8 = - 1 параллельно прямой 2x + 4y - 5 = 0 и вычислить расстояние d между ними.

562. На гиперболе x 2 /24- y 2 /18 = 1 найти точку М 1 , ближайшую к прямой Зx + 2y + 1 = О, и вычислить расстояние d от точки M x до этой прямой.

563. Составить уравнение касательных к гиперболе х 2 - y 2 = 16, проведенных из точки A(- 1; -7).

564. Из точки С(1;-10) проведены касательные к гиперболе x 2 /8 - y 2 /32 = 1. Составить уравнение хорды, соединяющей точки касания.

565. Из точки Р(1; -5) проведены касательные к гиперболе x 2 /3 - y 2 /5 = 1. Вычислить расстояние d от точки Р до хорды гиперболы, соединяющей точки касания.

566. Гипербола проходит через точку А(√6; 3) и касается прямой 9x + 2у - 15 == 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают с осями координат.

567. Составить уравнение гиперболы, касающейся двух прямых: 5x - 6y - 16 = 0, 13x - 10y - 48 = 0, при условии, что ее оси совпадают с осями координат.

568. Убедившись, что точки пересечения эллипса x 2 /3 - y 2 /5 = 1 и гиперболы x 2 /12 - y 2 /3 = 1 являются вершинами прямоугольника, составить уравнения его сторон.

569. Даны гиперболы x 2 /a 2 - y 2 /b 2 = 1 и какая-нибудь ее касательная: Р - точка пересечения касательной с осью Ox, Q - проекция точки касания на ту же ось. Доказать, что ОР OQ = а 2 .

570. Доказать, что фокусы гиперболы расположены по разные стороны от любой ее касательной.

571. Доказать, что произведение расстояний от фокусов до любой касательной к гиперболе x 2 /a 2 - y 2 /b 2 = 1 есть величина постоянная, равная b 2 .

572. Прямая 2x - y - 4 == 0 касается гиперболы, фокусы которой находятся в точках F 1 (-3; 0) и F 2 (3;0). Составить уравнение этой гиперболы.

573. Составить уравнение гиперболы, фокусы кото-рой расположены на оси абсцисс симметрично относительно начала координат, если известны уравнение касательной к гиперболе 15x + 16y - 36 = 0 и расстояние между ее вершинами 2а = 8.

574. Доказать, что прямая, касающаяся гиперболы в некоторой точке М, составляет равные углы с фокальными радиусами F 1 M, F 2 M и проходит внутри угла F 1 MF 2 . Х^

575. Из правого фокуса гиперболы x 2 /5 - y 2 /4 = 1 под углом α(π

576. Доказать, что эллипс и гипербола, имеющие общие фокусы, пересекаются под прямым углом.

577. Коэффициент равномерного сжатия плоскости к оси Ох равен 4/3 . Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /16 - y 2 /9 = 1. Указание. См. задачу 509.

578. Коэффициент равномерного сжатия плоскости к оси Оу равен 4/5. Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /25 - y 2 /9 = 1.

579. Найти уравнение линии, в которую преобразуется гипербола х 2 - у 2 = 9 при двух последовательных равномерных сжатиях плоскости к координатным осям, если коэффициенты равномерного сжатия плос- кости к осям Ох и Оу соответственно равны 2/3 и 5/3.

580. Определить коэффициент q равномерного сжатия плоскости к оси Ох, при котором гипербола - x 2 /25 - y 2 /36 = 1 преобразуется в гиперболу x 2 /25 - y 2 /16 = 1.

581. Определить коэффициент q равномерного сжатия плоскости к оси Оу, при котором гипербола x 2 /4 - y 2 /9 = 1 преобразуется в гиперболу x 2 /16 - y 2 /9 = 1.

582. Определить коэффициенты q 1 и q 2 двух последовательных равномерных сжатий плоскости к осям Ох и Оу, при которых гипербола x 2 /49 - y 2 /16 = 1 преобразуется в гиперболу x 2 /25 - y 2 /64 = 1.

Гипербола и парабола

Переходим ко второй части статьи о линиях второго порядка , посвященной двум другим распространённым кривым – гиперболе и параболе . Если вы зашли на данную страницу с поисковика либо ещё не успели сориентироваться в теме, то рекомендую сначала изучить первый раздел урока, на котором мы рассмотрели не только основные теоретические моменты, но и познакомились с эллипсом . Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

У гиперболы две асимптоты .

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:



Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

1) Прежде всего, находим асимптоты . Если гипербола задана каноническим уравнением , то её асимптотами являются прямые . В нашем случае: . Данный пункт обязателен! Это принципиальная особенность чертежа, и будет грубой ошибкой, если ветви гиперболы «вылезут» за свои асимптоты.

2) Теперь находим две вершины гиперболы , которые расположены на оси абсцисс в точках . Выводится элементарно: если , то каноническое уравнение превращается в , откуда и следует, что . Рассматриваемая гипербола имеет вершины

3) Ищем дополнительные точки. Обычно хватает 2-3-х. В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для 1-ой координатной четверти. Методика точно такая же, как и при построении эллипса . Из канонического уравнения на черновике выражаем:

Уравнение распадается на две функции:
– определяет верхние дуги гиперболы (то, что нам надо);
– определяет нижние дуги гиперболы.

Напрашивается нахождение точек с абсциссами :

4) Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях. Аккуратно соединим соответствующие точки у каждой ветви гиперболы:

Техническая трудность может возникнуть с иррациональным угловым коэффициентом , но это вполне преодолимая проблема.

Отрезок называют действительной осью гиперболы,
его длину – расстоянием между вершинами;
число называют действительной полуосью гиперболы;
число мнимой полуосью .

В нашем примере: , и, очевидно, если данную гиперболу повернуть вокруг центра симметрии и/или переместить, то эти значения не изменятся .

Определение гиперболы. Фокусы и эксцентриситет

У гиперболы, точно так же, как и у эллипса , есть две особенные точки , которые называются фокусами . Не говорил, но на всякий случай, вдруг кто неверно понимает: центр симметрии и точки фокуса, разумеется, не принадлежат кривым .

Общая концепция определения тоже похожа:

Гиперболой называют множество всех точек плоскости, абсолютное значение разности расстояний до каждой из которых от двух данных точек – есть величина постоянная, численно равная расстоянию между вершинами этой гиперболы: . При этом расстояние между фокусами превосходит длину действительной оси: .

Если гипербола задана каноническим уравнением , то расстояние от центра симметрии до каждого из фокусов рассчитывается по формуле: .
И, соответственно, фокусы имеют координаты .

Для исследуемой гиперболы :

Разбираемся в определении. Обозначим через расстояния от фокусов до произвольной точки гиперболы:

Сначала мысленно передвигайте синюю точку по правой ветви гиперболы – где бы мы ни находились, модуль (абсолютное значение) разности между длинами отрезков будет одним и тем же:

Если точку «перекинуть» на левую ветвь, и перемещать её там, то данное значение останется неизменным.

Знак модуля нужен по той причине, что разность длин может быть как положительной, так и отрицательной. Кстати, для любой точки правой ветви (поскольку отрезок короче отрезка ). Для любой точки левой ветви ситуация ровно противоположная и .

Более того, ввиду очевидного свойства модуля безразлично, что из чего вычитать.

Удостоверимся, что в нашем примере модуль данной разности действительно равен расстоянию между вершинами. Мысленно поместите точку в правую вершину гиперболы . Тогда: , что и требовалось проверить.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое обратная зависимость, и с чем ее едят. Если ты уверен, что знаешь все об обратной зависимости, добро пожаловать. Но если нет, тебе стоит прочитать тему « ».

Также очень советую научиться сперва строить , так как есть некоторые общие принципы для построения графика квадратичной и обратной зависимостей.

Начнем с небольшой проверки:

Что такое обратная пропорциональность?

Как выглядит функция, описывающая обратную зависимость в общем виде (формула)?

Как называется график такой функции?

Какие коэффициенты влияют на график функции, и как?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по .

Итак, ты уже умеешь обращаться с обратной зависимостью, анализировать ее график и строить график по точкам.

Ну вот и все, ты научился строить любую гиперболу.

Замечу также, что правила построения гиперболы оказались немного проще, чем для параболы, ведь каждое число просто сдвигает график в какую-то одну сторону. И друг с другом коэффициенты не связаны.

ПОСТРОЕНИЕ ГРАФИКА ОБРАТНОЙ ЗАВИСИМОСТИ. КОРОТКО О ГЛАВНОМ

1. Определение

Функция, описывающая обратную зависимость - это функция вида, где.

График обратной зависимости - гипербола.

2. Коэффициенты, и.

Отвечает за «пологость» и направление графика : чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график:

  • если, и смещение вниз, если .

    Следовательно, - это горизонтальная асимптота .

    3. Правило построения графика функции:

    0) Определяем коэффициенты, и.

    1) Строим график функции (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).

    2) График должен быть сдвинут вправо на. Но проще двигать не график, а оси, так что ось сдвигаем влево на .

    3) График должен быть сдвинут вверх на. Но проще двигать не график, а оси, так что ось сдвигаем вниз на .

    4) Старые оси (прямые, которые служили нам осями в пункте 1) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Определение. Гиперболой называется геометрическое место точек плоскости у абсолютная величина разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами у есть постоянная величина, при условии, что эта величина не равна нулю и меньше расстояния между фокусами.

Обозначим расстояние между фокусами через а постоянную величину, равную модулю разности расстояний от каждой точки гиперболы до фокусов, через (по условию ). Как и в случае эллипса, ось абсцисс проведем через фокусы, а за начало координат примем середину отрезка (см. рис. 44). Фокусы в такой системе будут иметь координаты Выведем уравнение гиперболы в выбранной системе координат. По определению гиперболы для любой ее точки имеем или

Но . Поэтому получим

После упрощений, подобных тем, которые были сделаны при выводе уравнения эллипса, получим следующее уравнение:

которое является следствием уравнения (33).

Нетрудно заметить, что это уравнение совпадает с уравнением (27), полученным для эллипса. Однако в уравнении (34) разность , так как для гиперболы . Поэтому положим

Тогда уравнение (34) приводится к следующему виду:

Это уравнение называется каноническим уравнением гиперболы. Уравнению (36), как следствию уравнения (33), удовлетворяют координаты любой точки гиперболы. Можно показать, что координаты точек, не лежащих на гиперболе, уравнению (36) не удовлетворяют.

Установим форму гиперболы, пользуясь ее каноническим уравнением. Это уравнение содержит лишь четные степени текущих координат. Следовательно, гипербола имеет две оси симметрии, в данном случае совпадающих с координатными осями. В дальнейшем оси симметрии гиперболы мы будем называть осями гиперболы, а точку их пересечения - центром гиперболы. Ось гиперболы, на которой расположены фокусы, называется фокальной осью. Исследуем форму гиперболы в I четверти, где

Здесь так как иначе у принимал бы мнимые значения. При возрастании х от а до возрастает от 0 до Частью гиперболы, лежащей в I четверти, будет дуга , изображенная на рис. 47.

Так как гипербола расположена симметрично относительно координатных осей, то эта кривая имеет вид, изображенный на рис. 47.

Точки пересечения гиперболы с фокальной осью называются ее вершинами. Полагая в уравнении гиперболы, найдем абсциссы ее вершин: . Таким образом, гипербола имеет две вершины: . С осью ординат гипербола не пересекается. В самом деле, положив в уравнении гиперболы получим для у мнимые значения: . Поэтому фокальная ось гиперболы называется действительной осью, а ось симметрии, перпендикулярная фокальной оси, - мнимой осью гиперболы.

Действительной осью также называется отрезок, соединяющий вершины гиперболы, и его длина 2а. Отрезок, соединяющий точки (см. рис. 47), а также его длина называется мнимой осью гиперболы. Числа а и b соответственно называются действительной и мнимой полуосями гиперболы.

Рассмотрим теперь гиперболу, расположенную в I четверти и являющуюся графиком функции

Покажем, что точки этого графика, расположенные на достаточно большом расстоянии от начала координат, сколь угодно близки к прямой

проходящей через начало координат и имеющей угловой коэффициент

С этой целью рассмотрим две точки имеющие одну и ту же абсциссу и лежащие соответственно на кривой (37) и прямой (38) (рис. 48), и составим разность между ординатами этих точек

Числитель этой дроби - величина постоянная, а знаменатель неограниченно возрастает при неограниченном возрастании . Поэтому разность стремится к нулю, т. е. точки М и N неограниченно сближаются при неограниченном возрастании абсциссы.

Из симметрии гиперболы относительно координатных осей следует, что имеется еще одна прямая , к которой сколь угодно близки точки гиперболы при неограниченном удалении от начала координат. Прямые

называются асимптотами гиперболы.

На рис. 49 указано взаимное расположение гиперболы и ее асимптот. На этом рисунке указано также, как построить асимптоты гиперболы.

Для этого следует построить прямоугольник с центром в начале координат и со сторонами, параллельными осям и соответственно равными . Этот прямоугольник называется основным. Каждая из его диагоналей, неограниченно продолженная в обе стороны, является асимптотой гиперболы. Перед построением гиперболы рекомендуется строить ее асимптоты.

Отношение половины расстояния между фокусами к действительной полуоси гиперболы называется эксцентриситетом гиперболы и обозначается обычно буквой :

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: Эксцентриситет характеризует форму гиперболы

Действительно, из формулы (35) следует, что . Отсюда видно, что чем меньше эксцентриситет гиперболы,

тем меньше отношение - ее полуосей. Но отношение - определяет форму основного прямоугольника гиперболы, а следовательно, и форму самой гиперболы. Чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении фокальной оси).


Здравствуйте, дорогие студенты вуза Аргемоны! Приветствую вас на очередной лекции по магии функций и интегралов.

Сегодня мы поговорим о гиперболе. Начнём от простого. Самый простой вид гиперболы:

Эта функция, в отличии от прямой в её стандарных видах, имеет особенность. Как мы знаем, знаменатель дроби не может равняться нулю, потому что на ноль делить нельзя.
x ≠ 0
Отсюда делаем вывод, что областью определения является вся числовая прямая, кроме точки 0: (-∞; 0) ∪ (0; +∞).

Если х стремится к 0 справа (записывается вот так: х->0+), т.е. становится очень-очень маленьким, но при этом остаётся положительным, то у становится очень-очень большим положительным (y->+∞).
Если же х стремится к 0 слева (x->0-), т.е. становится по модулю тоже очень-очень маленьким, но остаётся при этом отрицательным, то у также будет отрицательным, но по модулю будет очень большим (y->-∞).
Если же х стремится в плюс бесконечность (x->+∞), т.е. становится очень большим положительным числом, то у будет становиться всё более и более меньшим положительным числом, т.е. будет стремиться к 0, оставаясь всё время положительным (y->0+).
Если же х стремится в минус бесконечность (x->-∞), т.е. становится большим по модулю, но отрицательным числом, то у будет тоже отрицательным всегда числом, но маленьким по модулю (y->0-).

У, как и х, не может принимать значения 0. Он только к нулю стремится. Поэтому множество значений такое же, как и область определения: (-∞; 0) ∪ (0; +∞).

Исходя из этих рассуждений, можно схематически нарисовать график функции

Видно, что гипербола состоит из двух частей: одна находится в 1-м координатном углу, где значения х и у положительные, а вторая часть — в третьем координатном углу, где значения х и у отрицательные.
Если двигаться от -∞ к +∞, то мы видим, что функция наша убывает от 0 до -∞, потом происходит резкий скачок (от -∞ до +∞) и начинается вторая ветка функции, которая тоже убывает, но от +∞ до 0. То есть, эта гипербола убывающая.

Если совсем чуть-чуть изменить функцию: воспользоваться магией минуса,

(1")

То функция чудесным образом переместится из 1 и 3 координатных четвертей во 2-ю и 4-ю четверти и станет возрастающей.

Напомню, что функция является возрастающей , если для двух значений х 1 и х 2 ,таких, что х 1 <х 2 , значения функции находятся в том же отношении f(х 1) < f(х 2).
И функция будет убывающей , если f(х 1) > f(х 2) для тех же значений х.

Ветви гиперболы приближаются к осям, но никогда их не пересекают. Такие линии, к которым приближается график функции, но никогда их не пересекает, называются ассимптотой данной функции.
Для нашей функции (1) ассимптотами являются прямые х=0 (ось OY, вертикальная ассимптота) и у=0 (ось OX, горизонтальная ассимптота).

А теперь давайте немного усложним простейшую гиперболу и посмотрим, что произойдёт с графиком функции.

(2)

Всего-то добавили константу "а" в знаменатель. Добавление какого-то числа в знаменатель в качестве слагаемого к х означает перенос всей "гиперболической конструкции" (вместе с вертикальной ассимптотой) на (-a) позиций вправо, если а — отрицательное число, и на (-а) позиций влево, если а — положительное число.

На левом графике к х добавляется отрицательная константа (а<0, значит, -a>0), что вызывает перенос графика вправо, а на правом графике — положительная константа (a>0), благодаря которой график переносится влево.

А какая магия может повлиять на перенос "гиперболической конструкции" вверх или вниз? Добавление константы-слагаемой к дроби.

(3)

Вот теперь вся наша функция (обе веточки и горизонтальная ассимптота) поднимется на b позиций вверх, если b — положительное число, и опустится на b позиций вниз, если b — отрицательное число.

Обратите внимание, что ассимптоты передвигаются вместе с гиперболой, т.е. гиперболу (обе её ветки) и обе её ассимптоты надо обязательно рассматривать как неразрывную конструкцию, которая едино передвигается влево, вправо, вверх или вниз. Очень приятное ощущение, когда одним добавлением какого-то числа можно заставлять функцию целиком двигаться в любую сторону. Чем не магия, овладеть которой можно очень легко и направлять её по своему усмотрению в нужную сторону?
Кстати, так управлять можно движением любой функции. На следующих уроках мы это умение будем закреплять.

Перед тем как задать вам домашнее задание, я хочу обратить ваше внимание ещё вот на такую функцию

(4)

Нижняя веточка гиперболы перемещается из 3-го координатного угла вверх — во второй, в тот угол, где значение у положительное, т.е. эта веточка отражается симметрично относительно оси ОХ. И теперь мы получаем чётную функцию.

Что значит "чётная функция"? Функция называется чётной , если выполняется условие: f(-x)=f(x)
Функция называется нечётной , если выполняется условие: f(-x)=-f(x)
В нашем случае

(5)

Всякая чётная функция симметрична относительно оси OY, т.е. пергамент с рисунком графика можно сложить по оси OY, и две части графика точно совпадут друг с другом.

Как видим, эта функция тоже имеет две ассимптоты — горизонтальную и вертикальную. В отличие от рассмотренных выше функций, эта функция является на одной своей части возрастающей, на другой — убывающей.

Попробуем поруководить теперь этим графиком, прибавляя константы.

(6)

Вспомним, что прибавление константы в качестве слагаемого к "х" вызывает перемещение всего графика (вместе с вертикальной ассимптотой) по горизонтали, вдоль горизонтальной ассимптоты (влево или вправо в зависимости от знака этой константы).

(7)

А добавление константы b в качестве слагаемого к дроби вызывает перемещение графика вверх или вниз. Всё очень просто!

А теперь попробуйте сами поэкспериментировать с такой магией.

Домашнее задание 1.

Каждый берёт для своих экспериментов две функции: (3) и (7).
а=первой цифре вашего ЛД
b=второй цифре вашего ЛД
Попробуйте добраться до магии этих функций, начиная с простейшей гиперболы, как я это делала на уроке, и постепенно добавляя свои константы. Функцию (7) уже можете моделировать, исходя из конечного вида функции (3). Укажите области определения, множество значений, ассимптоты. Как ведут себя функции: убывают, возрастают. Чётные — нечётные. В общем, попробуйте провести такое же исследование, как было на уроке. Возможно, вы найдете что-то ещё, о чём я забыла рассказать.

Кстати, обе ветки самой простейшей гиперболы (1) симметричны относительно биссектрисы 2 и 4 координатных углов. А теперь представьте, что гипербола стала вращаться вокруг этой оси. Получим вот такую симпатичную фигуру, которой можно найти применение.

Задание 2 . Где можно использовать данную фигуру? Попробуйте нарисовать фигуру вращения для функции (4) относительно её оси симметрии и порассуждайте, где такая фигура может найти применение.

Помните, как мы в конце прошлого урока получили прямую с выколотой точкой? И вот последнее задание 3 .
Построить график вот такой функции:


(8)

Коэффициенты a, b — такие же, как в задании 1.
с=третьей цифре вашего ЛД или a-b, если ваше ЛД двузначное.
Небольшая подсказка: сначала полученную после подстановки цифр дробь надо упростить, и затем вы получите обычную гиперболу, которую и надо построить, но в конце надо учесть область определения исходного выражения.