Какие проблемы физики и астрофизики представляются сейчас, на пороге ХХI века, особенно важными и интересными? Величайшая нерешённая задача современной физики: почему гравитация такая слабая

Экология жизни. Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки

Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки продолжают волновать умы людей, занятых во всех дисциплинах современной науки и гуманитарных науках.

Вопросы вроде «существует ли универсальное определение «слова»?», «существует ли цвет физически или проявляется только у нас в умах?» и «какова вероятность, что солнце встанет завтра?» не дают людям спать. Мы собрали эти вопросы во всех сферах: медицине, физике, биологии, философии и математике, и решили задать их вам. Сможете ответить?

Почему клетки совершают самоубийство?

Биохимическое событие, известное как апоптоз, иногда называют «запрограммированной смертью клетки» или «клеточным суицидом». По причинам, которые наука в полной мере не осознает, клетки обладают возможностью «решить умереть» весьма организованным и ожидаемым образом, который полностью отличается от некроза (клеточной смерти, вызванной болезнью или травмой). Порядка 50-80 миллиардов клеток умирают в результате запрограммированной смерти клеток в человеческом организме каждый день, но механизм, который за ними стоит, и даже само это намерение непонятны в полной мере.

С одной стороны, слишком много запрограммированных смертей клеток приводит к атрофии мышц и к мышечной слабости, с другой же - отсутствие должного апоптоза позволяет клеткам пролиферировать, что может привести к раку. Общая концепция апоптоза была впервые описана немецким ученым Карлом Фогтом в 1842 году. С тех пор в понимании этого процесса был достигнут нехилый прогресс, но полноценного объяснения ему так и нет.

Вычислительная теория сознания

Некоторые ученые приравнивают деятельность ума к способу, которым компьютер обрабатывает информацию. Таким образом, в середине 60-х годов была разработана вычислительная теория сознания, и человек начал бороться с машиной всерьез. Проще говоря, представьте, что ваш мозг - это компьютер, а сознание - операционная система, которая им управляет.

Если погрузиться в контекст информатики, аналогия будет простой: в теории, программы выдают данные, основанные на серии входной информации (внешние раздражители, взгляд, звук и т. д.) и памяти (которую можно одновременно посчитать физическим жестким диском и нашей психологической памятью). Программы управляются алгоритмами, которые имеют конечное число шагов, повторяющихся в соответствии с различными вводными. Как и мозг, компьютер должен делать репрезентации того, что не может физически рассчитать - и это один из сильнейших аргументов в пользу этой теории.

Тем не менее вычислительная теория отличается от репрезентативной теории сознания тем, что не все состояния являются репрезентативными (вроде депрессии), а значит, и не смогут отвечать на воздействие компьютерного характера. Но эта проблема философская: вычислительная теория сознания работает отлично, пока речь не заходит о «перепрограммировании» мозгов, которые в депрессии. Мы не можем сбросить себя до заводских настроек.

Сложная проблема сознания

В философских диалогах «сознание» определяется как «квалиа» и проблема квалиа будет преследовать человечество, наверное, всегда. Квалиа описывает отдельные проявления субъективного сознательного опыта - например, головную боль. Мы все испытывали эту боль, но нет никакого способа измерить, испытывали ли мы одинаковую головную боль, и вообще, был ли этот опыт единым, ведь опыт боли основан на нашем восприятии ее.

Хотя было проделано множество научных попыток определить сознание, никто так и не разработал общепринятую теорию. Некоторые философы подвергали сомнению саму возможность этого.

Проблема Гетье

Проблема Гетье звучит так: «Является ли обоснованное истинное убеждение знанием?». Эта логическая головоломка входит в число самых неприятных, потому что требует от нас задуматься о том, является ли истина универсальной константой. Также она поднимает массу мысленных экспериментов и философских аргументов, в том числе и «обоснованное истинное убеждение»:

Субъект А знает, что предложение Б истинно тогда и только тогда, если:

Б является истиной,

и А считает, что Б является истиной,

и А убежден, что вера в истинность Б обоснована.

Критики проблем вроде Гетье считают, что невозможно обосновать что-то, что не является истиной (поскольку «истина» считается понятием, которое возводит аргумент в незыблемый статус). Сложно определить не только что для кого-то значит истинность, но и что значит вера в то, что это так. И это серьезно повлияло на все, от криминалистики до медицины.

Все цвета - у нас в голове?

Одним из самых сложных в человеческом опыте остается восприятие цвета: действительно ли физические объекты в нашем мире обладают цветом, который мы распознаем и обрабатываем, или же процесс наделения цветом происходит исключительно у нас в головах?

Мы знаем, что существование цветов обязано разным длинам волн, но когда дело доходит до нашего восприятия цвета, нашей общей номенклатуры и простого факта, что наши головы, вероятно, взорвутся, если мы вдруг встретимся с никогда не виданным доселе цветом в нашей универсальной палитре, эта идея продолжает удивлять ученых, философов и всех остальных.

Что такое темная материя?

Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не можем видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т. п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.

Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынуждено принимать ее существование как факт, чем бы она ни была.

Проблема восхода солнца

Какова вероятность того, что завтра взойдет солнце? Философы и статистики задаются этим вопросом тысячелетия, пытаясь вывести неопровержимую формулу для этого ежедневного события. Этот вопрос предназначен для демонстрации ограничений теории вероятности. Трудность возникает, когда мы начинаем задумываться о том, что есть много различий между предварительным знанием одного человека, предварительным знанием человечества и предварительным знанием Вселенной того, встанет ли солнце.

Если p - это долгосрочная частота восходов солнца, и к p применяется равномерное распределение вероятностей, тогда величина p увеличивается с каждым днем, когда солнце на самом деле встает и мы видим (личность, человечество, Вселенная), что это происходит.

137 элемент

Названный в честь Ричарда Фейнмана, предлагаемый окончательный элемент периодической таблицы Менделеева «фейнманиум» представляет собой теоретический элемент, который может стать последним возможным элементом; чтобы выйти за пределы №137, элементам придется двигаться быстрее скорости света. Выдвигались предположения, что элементам выше №124 не будет хватать стабильности на существование в течение более нескольких наносекунд, а значит такой элемент, как фейнманиум, будет уничтожаться в процессе спонтанного деления, прежде чем его можно будет изучить.

Что еще более интересно, так это то, что номер 137 был не просто так выбран в честь Фейнмана; он считал, что этот номер обладает глубоким смыслом, так как «1/137 = почти точно значению так называемой константы тонкой структуры, безразмерной величины, которая определяет силу электромагнитного взаимодействия».

Большим вопросом остается, сможет ли такой элемент существовать за пределами сугубо теоретического и произойдет ли это на нашем веку?

Существует ли универсальное определение слова «слово»?

В лингвистике слово - это небольшое высказывание, которое может обладать каким-либо смыслом: в практическом или буквальном смысле. Морфема, которая чуть меньше, но с помощью которой все еще можно сообщать смысл, в отличие от слова, не может оставаться особняком. Вы можете сказать «-ство» и понять, что это значит, но едва ли разговор из таких обрезков будет иметь смысл.

Каждый язык в мире имеет свой собственный лексикон, который делится на лексемы, являющиеся формами отдельных слов. Лексемы чрезвычайно важны для языка. Но опять же, в более общем смысле, мельчайшей единицей речи остается слово, которое может стоять особняком и будет иметь смысл; правда, остаются проблемы с определением, к примеру, частиц, предлогов и союзов, поскольку они особым смыслом вне контекста не обладают, хотя и остаются словами в общем смысле.

Паранормальные способности за миллион долларов

С момента начала в 1964 году порядка 1000 человек приняли участие в «Паранормальном испытании» (Paranormal Challenge), но никто так и не взял приз. Образовательный фонд Джеймса Рэнди предлагает миллион долларов любому, кто сможет научно подтвердить сверхъестественные или паранормальные способности. На протяжении многих лет масса медиумов пытались проявить себя, но им категорически отказывали. Чтобы все удалось, претендент должен получить одобрение от учебного института или другой организации соответствующего уровня.

Хотя ни один из 1000 претендентов не смог доказать наличие наблюдаемых психических паранормальных способностей, которые можно было засвидетельствовать научно, Рэнди сказал, что «очень немногие» из конкурсантов посчитали, что их провал был обусловлен отсутствием талантов. По большей части все сводили неудачи к нервозности.

Проблема в том, что этот конкурс едва ли кто-нибудь когда-нибудь выиграет. Если кто-то будет обладать сверхъестественными способностями, это значит, что их нельзя объяснить естественным научным подходом. Улавливаете?опубликовано

Выпуски:
* Александров Е.Б., Хвостенко Г.И., Чайка М.П. Интерференция атомных состояний. (1991)
* Алиханов А.И. Слабые взаимодействия. Новейшие исследования бета-распада. (1960)
* Аллен Л., Джонс Д. Основы физики газовых лазеров. (1970)
* Альперт Я.Л. Волны и искусственные тела в приземной плазме. (1974)
* (1988)
* Андреев И.В. Хромодинамика и жесткие процессы при высоких энергиях. (1981)
* Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. (1987)
* Аракелян С.М., Чилингарян Ю.С. Нелинейная оптика жидких кристаллов. (1984)
* (1969)
* Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемотосекундных лазерных импульсов. (1988)
* (1981)
* (1962)
* Бахвалов Н.С., Жилейкин Я.М., Заболотская Е.А. и др. Нелинейная теория звуковых пучков. (1982)
* Белов К.П., Белянчикова М.А., Левитин Р.З., Никитин С.А. Редкоземельные ферромагнетики и антиферромагнетики. (1965)
* Бутыкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. (1977)
* (1970)
* Бреслер С.Е. Радиоактивные элементы. (1949)
* Бродский А.М., Гуревич Ю.Я. Теория электронной эмиссии из металлов. (1973)
* Бугаков В.В. Диффузия в металлах и сплавах. (1949)
* Вавилов В.С., Гиппиус А.А., Конорова Е.А. Электронные и оптические процессы в алмазе. (1985)
* Вайсенберг А.О. Мю-мезон. (1964)
* (1968)
* Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. (1987)
* (1986)
* (1988)
* (1984)
* Вонсовский С.В. Современное учение о магнетизме. (1952)
* (1969)
* Вонсовский С.В. и др. Ферромагнитный резонанс. Явление резонансного поглощения высокочастотного электромагнитного поля в ферромагнитных веществах. (1961)
* (1981)
* Гейликман Б.Т., Кресин В.З. Кинетические и нестационарные явления в сверпроводниках. (1972)
* Гетце В. Фазовые переходы жидкость-стекло. (1992)
* (1975)
* Гинзбург В.Л., Рухадзе А.А. Волны в магнитоактивной плазме. (1970)
* Гинзбург С.Л. Необратимые явления в спиновых стеклах. (1989)
* Гринберг А.П. Методы ускорения заряженных частиц. (1950)
* Гурбатов С.Н., Малахов А.Н., Саичев А.И. Нелинейные случайные волны в средах без дисперсии. (1990)
* Гуревич Ю.Я., Харкац Ю.И. Суперионные проводники. (1992)
* Дорфман Я.Г. Магнитные свойства атомного ядра. (1948)
* Дорфман Я.Г. Диамагнитизм и химическая связь. (1961)
* Жевандров Н.Д. Оптическая анизотропия и миграция энергии в молекулярных кристаллах. (1987)
* (1970)
* (1984)
* (1972)
* Кернер Б.С., Осипов В.В. Автосолитоны: Локалализованные сильно-неравновесные области в однородных дисипативных системах. (1991)
* (1985)
* Кляцкин В.И. Метод погружения в теории распространения волн. (1986)
* Кляцкин В.И. Статистическое описание динамических систем с флуктуирующими параметрами. (1975)
* Корсунский М.И. Аномальная фотопроводимость. (1972)
* Кулик И.О., Янсон И.К. Эффект Джозефсона в сверхпроводящих туннельных структурах. (1970)
* Лихарев К.К. Введение в динамику джозефсоновских переходов. (1985)
* Лучевое приближение и вопросы распространения радиоволн. (1971) Сборник
* (1958)
* (1967)
* Миногин В.Г., Летохов В.С. Давление лазерного луча на атомы. (1986)
* Михайлов И.Г. Распространение ультрозвуковых волн в жидкостях. (1949)
* Нейтрино. (1970) Сборник
* Общие принципы квантовой теории поля и их следствия. (1977) Сборник
* Осташев В.Е. Распространение звука в движущихся средах. (1992)
* Павленко В.Н., Ситенко А.Г. Эховые явления в плазме и плазмоподобных средах. (1988)
* Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. (1975)
* Пушкаров Д.И. Дефектоны в кристаллах: Метод квазичастиц в квантовой теории дефектов. (1993)
* Рик Г.Р. Масс-спектроскопия. (1953)
* Сверхпроводимость: сб. ст. (1967)
* Сена Л.А. Столкновение электронов и ионов с атомами газа. (1948)
* (1960)
* (1964)
* Смилга В.П., Белоусов Ю.М. Мюонный метод исследования вещества. (1991)
* Смирнов Б.М. Комплексные ионы. (1983)
* (1988)
* (1991)
* Степанянц Ю.А., Фабрикант А.Л. Распространение волн в сдвиговых потоках. (1996)
* Тверской Б.А. Динамика радиационных поясов Земли. (1968)
* Туров Е.А. - Физические свойства магнитоупорядоченых кристаллов. феноменол. Теория спиновых волн в ферромагнетиках, антиферромагнетиках. (1963)
* (1972)
* (1961)
* Фотопроводимость. (1967) Сборник
* Фриш С.Э. Спектроскопическое определение ядерных моментов. (1948)
* (1965)
* Хриплович И.Б. Несохранение четности в атомных явлениях. (1981)
* Честер Дж. Теория необратимых процессов. (1966)
* Шикин В.Б., Монарха Ю.П. Двухмерные заряженные системы в гелии. (1989)

Любая физическая теория, которая противоречит

существованию человека, очевидно неверна.

П. Девис

Что нам требуется, так это дарвиновский взгляд на физику, эволюционный взгляд на физику, биологический взгляд на физику.

И. Пригожин

До 1984 г. большинство учёных верили в теорию суперсимметрии (супергравитации, суперсилы) . Суть её в том, что все частицы (частицы вещества, гравитоны, фотоны, бозоны и глюоны) – разные виды одной “суперчастицы”.

Эта “суперчастица” или “суперсила” с понижением энергии предстаёт перед нами в разных ипостасях, как сильное и слабое взаимодействия, как электромагнитная и гравитационная силы. Но сегодня в эксперименте ещё не достигли энергий для проверки данной теории (нужен циклотрон размерами с Солнечную систему), проверка же на компьютере заняла бы более 4 лет. С. Вайнберг считает, что физика вступает в эру, когда эксперименты уже не в состоянии пролить свет на фундаментальные проблемы (Девис 1989; Хокинг 1990: 134; Налимов 1993: 16).

В 80-х гг. становится популярной струнная теория . Под редакцией П. Девиса и Дж. Брауна в 1989 г. выходит книга с характерным названием Сверхструны: теория всего ? Согласно теории, микрочастицы – не точечные объекты, а тонкие кусочки струны, определяемые длиной и открытостью. Частицы – волны, бегущие по струнам, как волны по верёвке. Испускание частицы – соединение, поглощение частицы-переносчика – разъединение. Солнце действует на Землю через гравитон, бегущий по струне (Хокинг 1990: 134-137).

Теория квантового поля поместила наши размышления о природе материи в новый контекст, разрешила проблему пустоты. Она заставила нас перевести взгляд с того, что “можно увидеть”, то есть частиц, на невидимое, то есть поле. Присутствие материи есть всего лишь возбуждённое состояние поля в данной точке. Придя к понятию квантового поля, физика нашла ответ на старый вопрос о том, из чего же состоит вещество – из атомов или континуума, лежащего в основе всего. Поле есть континуум, пронизывающий всё Пр, который, тем не менее, имеет протяжённую, как бы “гранулярную”, структуру в одном из своих проявлений, то есть в форме частиц. Теория квантового поля современной физики изменила представления о силах, помогает в решении проблем сингулярности и пустоты:

    в субатомной физике нет сил, действующих на расстоянии, их заменяют взаимодействия между частицами, происходящие через посредство полей, то есть других частиц, не сила, а взаимодействие;

    необходимо отказаться от противопоставления “материальные” частицы – пустота; частицы связаны с Пр и не могут рассматриваться в отрыве от него; частицы оказывают влияние на структуру Пр, они являются не самостоятельными частицами, а, скорее сгустками в беспредельном поле, пронизывающем всё Пр;

    наша Вселенная рождается из сингулярности, вакуумной неустойчивости;

    поле существует всегда и везде: оно не может исчезнуть. Поле есть проводник для всех материальных явлений. Это “пустота”, из которой протон создаёт π-мезоны. Возникновение и исчезновение частиц – лишь формы движения поля. Теория поля утверждает, что рождение частиц из вакуума и превращение частиц в вакуум происходят постоянно . Большинство физиков считают открытие динамической сущности и самоорганизации вакуума одним из важнейших достижений современной физики (Капра 1994: 191-201).

Но есть и нерешённые проблемы: обнаружено сверхточное самосогласование вакуумных структур, через которые выражаются параметры микро-частиц. Вакуумные структуры должны быть согласованы с точностью до 55-ого знака после запятой. За этой самоорганизацией вакуума стоят неизвестные нам законы нового типа. Антропный принцип 35 и есть следствие этой самоорганизации, суперсилы.

Теория S-матрицы описывает адроны, ключевое понятие теории было предложено В. Гейзенбергом, на этой основе учёные построили математическую модель для описания сильных взаимодействий. S-матрица получила своё название потому, что всю совокупность адронных реакций представили в виде бесконечной последовательности ячеек, которая в математике называется матрицей. Буква “S” сохранилась от полного названия этой матрицы – матрица рассеивания (scattering) (Капра 1994: 232-233).

Важным нововведением этой теории является то, что она переносит акценты с объектов на события, исследуются не частицы, а реакции частиц. По Гейзенбергу, мир делится не на различные группы объектов, а на различные группы взаимопревращений. Все частицы понимаются как промежуточные стадии в сети реакций. Например, нейтрон оказывается звеном в огромной сети взаимодействий, сети “переплетения событий”. Взаимодействия в такой сети не могут быть определены со стопроцентной точностью. Им можно приписать только вероятностные характеристики.

В динамическом контексте нейтрон может рассматриваться в качестве “связанного состояния” протона (р) и пиона (), из которых он образовался, а также в качестве связанного состояния частиц  и , которые образуются в результате его распада. Адронные реакции представляют собой поток энергии, в котором возникают и “исчезают” частицы (Капра 1994: 233-249).

Дальнейшее развитие теории S-матрицы привело к созданию бутстрэпной гипотезы , которую выдвинул Дж. Чу. Согласно гипотезе бутстрэпа, ни одно из свойств любого участка Вселенной не имеет фундаментального характера, все они обусловлены свойствами остальных участков сети, общая структура которой определяется универсальной согласованностью всех взаимосвязей.

Эта теория отрицает фундаментальные сущности (“кирпичики” материи, константы, законы, уравнения), Вселенная понимается как динамическая сеть взаимосвязанных событий.

В противоположность большинству физиков, Чу не мечтает о единственном решающем открытии, он видит свою задачу в медленном и постепенном создании сети взаимосвязанных понятий, ни одно из которых не является более фундаментальным, чем другие. В бутстрэпной теории частиц нет непрерывного Пр-Вр. Физическая реальность описывается в терминах изолированных событий, причинно связанных, но не вписанных в непрерывное Пр-Вр. Гипотеза бутстрэпа настолько чужда традиционному мышлению, что принимается меньшинством физиков. Большинство ищут фундаментальные составляющие материи (Капра 1994: 258-277, 1996: 55-57).

Теории атомной и субатомной физики выявили принципиальную взаимосвязанность различных аспектов существования материи, обнаружив, что энергия может переходить в массу, и, предположив, что частицы представляют собой скорее процессы, чем объекты.

Хотя поиск элементарных составляющих материи продолжается до сих пор, в физике представлено другое направление, исходящее из того, что строение мироздания нельзя сводить к каким-либо фундаментальным, элементарным, конечным единицам (фундаментальные поля, “элементарные” частицы). Природу следует понимать в самосогласованности. Эта идея возникла в русле теории S-матрицы, а в дальнейшем легла в основу гипотезы бутстрэпа (Налимов 1993: 41-42; Капра 1994: 258-259).

Чу надеялся осуществить синтез принципов квантовой теории, теории относительности (понятия макроскопического Пр-Вр), характеристик наблюдения и измерения на основе логической связности своей теории. Похожую программу разрабатывал Д. Бом и создал теорию имплицитного порядка . Он ввёл термин холодвижение , который используется для обозначения основы материальных сущностей и принимает во внимание как единство, так и движение. Начальной точкой для Бома является понятие “неделимой целостности”. Космической ткани присущ имплицитный, свёрнутый порядок, который можно описывать, пользуясь аналогией голограммы, в которой каждая часть содержит целое. Если осветить каждую часть голограммы, будет восстановлен весь образ. Некое подобие импликативного порядка свойственно и сознанию, и материи, поэтому он может способствовать связи между ними. В сознании, может быть, свёрнут весь материальный мир (Бом 1993: 11; Капра 1996: 56)!

Концепции Чу и Бома предполагают включение сознания в общую связь всего сущего. Доведённые до своего логического завершения, они предусматривают, что существование сознания, наряду с существованием всех остальных аспектов природы, необходимо для самосогласованности целого (Капра 1994: 259, 275).

Так философская проблема сознание–материя (проблема наблюдателя, проблема связи семантического и физического миров) становится серьёзной проблемой физики, “ускользая” от философов, об этом можно судить на основании:

    возрождения идей панпсихизма при попытке объяснить поведение микрочастиц, Р. Фейнман пишет 36 , что частица “решает”, “пересматривает”, “обнюхивает”, “чует”, “идёт верным путём” (Фейнман и др. 1966: 109);

    невозможности в квантовой механике разделить субъект и объект (В. Гейзенберг);

    сильного антропного принципа в космологии, предполагающего сознательное сотворение жизни, человека (Д. Картер);

    гипотез о слабых формах сознания, космическом сознании (Налимов 1993: 36-37, 61-64).

Физики пытаются включить сознание в картину физического мира. В книге П. Девиса, Дж. Брауна Дух в атоме говорится о роли процесса измерения в квантовой механике. Наблюдение мгновенно изменяет состояние квантовой системы. Изменение ментального состояния экспериментатора вступает в обратную связь с лабораторной аппаратурой и, , с квантовой системой, изменяя её состояние. По Дж. Джинсу, природа и наш математически мыслящий ум работают по одним и тем же законам. В.В. Налимов находит параллели в описании двух миров, физического и семантического:

    нераспакованный физический вакуум – возможность спонтанного рождения частиц;

    нераспакованный семантический вакуум – возможность спонтанного рождения текстов;

    распаковка вакуума есть рождение частиц и создание текстов (Налимов1993:54-61).

В.В. Налимов писал о проблеме раздробленности науки. Надо будет освободиться от локальности описания мироздания, при котором учёный оказывается озабоченным изучением некоего явления только в рамках своей узкой специальности. Существуют процессы, протекающие сходным образом на разных уровнях Универсума и нуждающиеся в едином, сквозном описании (Налимов 1993: 30).

Но пока современная физическая картина мира принципиально не завершена: самая сложная проблема физики – проблема объединения частных теорий, например, теория относительности не включает принцип неопределённости, теория гравитации не входит в теорию 3-х взаимодействий, в химии не учитывают строение ядра атома.

Не решена и проблема объединения в рамках одной теории 4 типов взаимодействий. До 30-х гг. считали, что существуют 2 типа сил на макроуровне – гравитационные и электромагнитные, но открыли слабое и сильное ядерные взаимодействия. Был открыт мир внутри протона и нейтрона (порог энергий выше, чем в центре звёзд). Будут ли открыты другие “элементарные” частицы?

Проблема объединения физических теорий связана с проблемой достижения высоких энергий . С помощью ускорителей вряд ли удастся возвести мост через пропасть планковской энергии (выше, чем 10 18 гига электрон-вольт) и того, что достигают сегодня в лаборатории в обозримом будущем.

В математических моделях теории супергравитации возникает проблема бесконечностей . В уравнениях, описывающих поведение микрочастиц, получаются бесконечные числа. Есть и другой аспект данной проблемы – старые философские вопросы: конечен или бесконечен мир в Пр-Вр? Если Вселенная расширяется из сингулярности планковских размеров, то куда она расширяется – в пустоту или происходит растяжение матрицы? Что окружало сингулярность – эту бесконечно маленькую точку до начала инфляции или наш мир “отпочковался” от Мегавселенной?

В струнных теориях тоже сохраняются бесконечности, но возникает проблема многомерности Пр-Вр, например, электрон – это малая вибрирующая струна планковской длины в 6-мерном и даже в 27-мерном Пр. Существуют и другие теории, согласно которым наше Пр на самом деле не 3-мерно, а, например, 10-мерно. Предполагается, что во всех направлениях, кроме 3 (х, у, z), Пр как бы свёрнуто в очень тонкую трубочку, “скомпактифицировано”. Поэтому мы можем двигаться лишь в 3 разных, независимых направлениях и Пр представляется нам 3-мерными. Но почему, если есть иные меры, развернулись только 3 Пр и 1 Вр меры? С. Хокинг иллюстрирует путешествие в разных измерениях примером бублика: 2-мерный путь по поверхности бублика длиннее пути через третье, объёмное измерение (Линде 1987: 5; Хокинг 1990: 138).

Другой аспект проблемы многомерности – проблема иных, не одномерных для нас миров. Существуют ли параллельные Вселенные 37 , неодномерные нам, и, наконец, могут ли существовать иные, неодномерные для нас формы жизни, разума? Теория струн допускает существование иных миров во Вселенной, существование 10- или 26-мерное Пр-Вр. Но если существуют иные меры, почему мы их не замечаем?

В физике и во всей науке возникает проблема создания универсального языка : наши обычные понятия не могут быть применены к строению атома. На абстрактном искусственном языке физики, математики процессы, паттерны современной физики не описываются. Что означают такие характеристики частиц как “очарованный” или “странный” ароматы кварков или “шизоидные” частицы? Это один из выводов книги Дао физики Ф. Капры. Какой же выход: вернуться к агностицизму, восточной мистической философии?

Гейзенберг считал: математические схемы адекватнее отражают эксперимент, чем искусственный язык, обычные понятия не могут быть применены к строению атома, Борн писал о проблеме символов для отражения реальных процессов (Гейзенберг 1989: 104-117).

Может быть, попытаться вычислить базисную матрицу естественного языка (вещь – связь – свойство и атрибут), то, что будет инвариантно к любым артикуляциям и, не критикуя многообразие искусственных языков, попытаться “заставить” говорить на одном общем естественном языке? Стратегическая роль синергетики и философии в решении проблемы создания универсального языка науки рассматривается в статье Диалектическая философия и синергетика (Федорович 2001: 180-211).

Создание единой физической теории и теории УИ, единой Э человека и природы является предельно сложной задачей науки. Один из важнейших вопросов современной философии науки: предопределёно ли наше будущее и какова наша роль. Если мы часть природы, можем ли мы играть какую-то роль в формировании мира, который находится в процессе строительства?

Если Вселенная едина, то может ли существовать единая теория реальности? С. Хокинг рассматривает 3 варианта ответа.

    Единая теория существует, и мы её когда-нибудь создадим. Так думал И. Ньютон; М. Борн в 1928 г. после открытия П. Дираком уравнения для электрона, написал: физика через полгода кончится.

    Теории постоянно уточняются и совершенствуются. С позиций эволюционной эпистемологии, научный прогресс – совершенствование когнитивной компетенции вида Homo Sapiens (К. Халвег). Все научные понятия и теории – это лишь приближения к истинной природе реальности, значимые лишь для определённого диапазона явлений. Э научного знания есть последовательная смена моделей, но ни одна модель не окончательна.

До сих пор не решён парадокс эволюционной картины мира: нисходящее направление Э в физике и восходящая тенденция усложнения в биологии. Несовместимость физики и биологии обнаружилась в ХIХ в., сегодня наметилась возможность разрешения коллизии физика–биология: эволюционное рассмотрение Вселенной в целом, трансляция эволюционного подхода в физику (Стёпин, Кузнецова 1994: 197-198; Хазен 2000).

И. Пригожин, которого Э. Тоффлер в предисловии книги Порядок из хаоса назвал Ньютоном ХХ в., говорил в одном из интервью о необходимости ввести в физику идеи необратимости, истории. Классическая наука описывает стабильность, равновесие, но существует другой мир – нестабильный, эволюционный, нужны другие слова, другая терминология, которой не существовало во Вр Ньютона. Но даже после Ньютона и Эйнштейна у нас нет чёткой формулы сущности мира. Природа очень сложное явление и мы – неотъемлемая часть природы, часть Вселенной, которая находится в постоянном саморазвитии (Хорган 2001: 351).

Возможные перспективы развития физики следующие: завершение построения единой физической теории, описывающей 3-хмерный физический мир и проникновение в иные Пр-Вр измерения; изучение новых свойств материи, видов излучения, энергии и скоростей, превышающих скорость света (торсионное излучение) и открытие возможности мгновенного перемещения в Метагалактике (в ряде теоретических работ показана возможность существования топологических туннелей, соединяющих любые области Метагалактики, МВ); установление связи физический мир – семантический мир, что попытался сделать В.В. Налимов (Гиндилис 2001: 143-145).

Но главное, что предстоит сделать физикам: включить в свои теории эволюционную идею. В физике второй половины ХХ в. утверждается понимание сложности микро- и мегамиров. Изменяется и представление об Э физической Вселенной: нет существующего без возникающего . Д. Хорган приводит такие слова И. Пригожина: мы не отцы времени. Мы – дети времени. Мы появились в результате эволюции. То, что нам требуется сделать, – это включить эволюционные модели в наши описания. Что нам требуется, так это дарвиновский взгляд на физику, эволюционный взгляд на физику, биологический взгляд на физику (Пригожин 1985; Хорган 2001: 353).

  • Физика
    • Перевод

    Наша Стандартная модель элементарных частиц и взаимодействий не так давно стала настолько полной, насколько вообще можно было желать. Все до единой элементарные частицы – во всех их возможных видах – создали в лаборатории, измерили, и для всех определили свойства. Дольше всех державшиеся верхний кварк, антикварк, тау-нейтрино и антинейтрино, и, наконец, бозон Хиггса, пали жертвами наших возможностей.

    А последняя – бозон Хиггса – ещё и решила старую задачу физики: наконец, мы можем продемонстрировать, откуда элементарные частицы берут свою массу!

    Это всё круто, но наука-то не заканчивается в момент окончания решения этой загадки. Наоборот, она поднимает важные вопросы, и один из них, это «а что дальше?». Насчёт Стандартной модели можно сказать, что мы ещё не всё знаем. И для большинства физиков один из вопросов особенно важен – для его описания давайте сначала рассмотрим следующее свойство Стандартной модели.


    С одной стороны, слабое, электромагнитное и сильное взаимодействие могут быть очень важны, в зависимости от их энергий и расстояний, на которых происходит взаимодействие. Но с гравитацией всё не так.

    Мы можем взять две любых элементарных частицы – любой массы и подверженной любым взаимодействиям – и обнаружить, что гравитация на 40 порядков слабее, чем любая другая сила во Вселенной. Это значит, что сила гравитации в 10 40 раз слабее трёх оставшихся сил. К примеру, хотя они и не фундаментальные, но если вы возьмёте два протона и разнесёте их на метр, электромагнитное отталкивание между ними будет в 10 40 раз сильнее, чем гравитационное притяжение. Или, иными словами, нам нужно увеличить силу гравитации в 10 000 000 000 000 000 000 000 000 000 000 000 000 000 раз, чтобы сравнять её с любой другой из сил.

    При этом нельзя просто увеличить массу протона в 10 20 раз, чтобы гравитация стянула их вместе, преодолевая электромагнитную силу.

    Вместо этого для того, чтобы реакции вроде той, что проиллюстрирована выше, происходили спонтанно, когда протоны преодолевают их электромагнитное отталкивание, вам нужно собрать вместе 10 56 протонов. Только собравшись вместе и поддавшись силе гравитации, они смогут преодолеть электромагнетизм. Оказывается, что 10 56 протонов как раз составят минимальную возможную массу звезды.

    Это описание того, как работает Вселенная – но почему она такая, мы не знаем. Почему гравитация настолько слабее остальных взаимодействий? Почему «гравитационный заряд» (т.е. масса) настолько слабее электрического или цветового, или даже слабого?

    Вот в этом и состоит проблема иерархии, и она, по многим причинам, служит величайшей нерешённой проблемой физики. Ответ нам неизвестен, но нельзя сказать, что мы находимся в полном неведении. Теоретически у нас есть несколько хороших идей по поводу поиска решения, и инструмент для поиска доказательств их правильности.

    Пока что Большой адронный коллайдер – самый высокоэнергетический из коллайдеров – достигал беспрецедентных уровней энергии в лабораторных условиях, собирал кучу данных и воссоздавал происходящее в точках столкновения. Сюда входят и создание новых, доселе невиданных частиц (таких, как бозон Хиггса), и появление старых, всем известных частиц Стандартной модели (кварки, лептоны, калибровочные бозоны). Также он способен, в случае их существования, произвести любые другие частицы, не входящие в Стандартную модель.

    Существует четыре возможных способа, известных мне – то есть, четыре хороших идеи – решения проблемы иерархии. Хорошие новости в том, что если природа выбрала какой-то один из них, то БАК его найдёт! (А если нет, поиски продолжатся).

    Кроме бозона Хиггса, найденного несколько лет назад, никаких новых фундаментальных частиц на БАК не нашли. (Более того, вообще не наблюдается никаких интригующих новых кандидатов в частицы). И ещё, найденная частица полностью соответствовала описанию Стандартной модели; никаких статистически важных намёков на новую физику замечено не было. Ни на композитные бозоны Хиггса, ни на множественные хиггсовские частицы, ни на нестандартные распады, ничего такого.

    Но теперь мы начали получать данные от ещё более высоких энергий, в два раза больше предыдущих, до 13-14 ТэВ, чтобы найти что-нибудь ещё. И какие же в данном ключе есть возможные и разумные решения проблемы иерархии?

    1) Суперсимметрия, или SUSY. Суперсимметрия – особая симметрия, способная заставить нормальные массы любых частиц, достаточно крупных для того, чтобы гравитация была сравнима с другими воздействиями, взаимно уничтожиться с большой степенью точности. Эта симметрия также предполагает, что у каждой частицы в стандартной модели есть суперчастица-партнёр, и что существует пять частиц Хиггса и пять их суперпартнёров. Если такая симметрия существует, она, должно быть, нарушена, или у суперпартнёров были бы такие же массы, как у обычных частиц, и их бы уже давно нашли.

    Если SUSY существует на подходящем для решения проблемы иерархии масштабе, то БАК, дойдя до энергий в 14 ТэВ, должен найти хотя бы одного суперпартнёра, а также вторую частицу Хиггса. Иначе существование очень тяжёлых суперпартнёров само по себе приведёт ещё к одной проблеме иерархии, у которой не будет хорошего решения. (Что интересно, отсутствие SUSY-частиц на всех энергиях опровергнет теорию струн, поскольку суперсимметрия – это необходимое условие для теорий струн, содержащих стандартную модель элементарных частиц).

    Вот вам первое возможное решение проблемы иерархии, у которого в настоящий момент нет никаких доказательств.

    Имеется возможность создать крохотные сверхохлаждённые кронштейны, наполненные пьезоэлектрическими кристаллами (вырабатывающими электроэнергию при деформации), с расстояниями между ними . Эта технология позволяет нам наложить на «большие» измерения ограничения в 5-10 микрон. Иначе говоря, гравитация работает согласно предсказаниям ОТО на масштабах гораздо меньших миллиметра. Так что если и существуют большие дополнительные измерения, они находятся на уровнях энергий, недоступных для БАК, и что более важно, не решают проблему иерархии.

    Конечно, для проблемы иерархии может найтись совершенно другое решение , которое на современных коллайдерах не найти, или решения ей вообще нет; это просто может быть свойство природы безо всякого объяснения для него. Но наука не будет продвигаться без попыток, и именно это пытаются делать эти идеи и поиски: продвигать наши знания о Вселенной вперёд. И, как всегда, с началом второго запуска БАК я с нетерпением ожидаю того, что там может появиться, кроме уже открытого бозона Хиггса!

    Теги:

    • гравитация
    • фундаментальные взаимодействия
    • бак
    Добавить метки

    Академик В. Л. ГИНЗБУРГ.

    Почти 30 лет назад академик В. Л. Гинзбург опубликовал статью "Какие проблемы физики и астрофизики представляются сейчас особенно важными и интересными?" ("Наука и жизнь" № 2, 1971 г.) с перечнем наиболее актуальных вопросов современной физики. Прошло десять лет, и на страницах журнала появился его "Рассказ о некоторых проблемах современной физики..." ("Наука и жизнь" № 4, 1982 г.). Просмотрев старые журнальные публикации, легко убедиться, что все проблемы, на которые возлагались большие надежды, по-прежнему актуальны (кроме разве что загадки "аномальной воды", которая будоражила умы в 70-х годах, но оказалась ошибкой эксперимента). Это говорит о том, что "генеральное направление" развития физики было обозначено верно. За истекшие годы в физике появилось много нового. Были открыты гигантские углеродные молекулы - фуллерены, зарегистрированы мощнейшие гамма-всплески, приходящие из космоса, синтезированы высокотемпературные сверхпроводники. В Дубне получен элемент со 114 протонами и 184 нейтронами в ядре, речь о котором шла в статье 1971 года. Все эти и многие другие крайне интересные и перспективные направления современной физики заняли достойное место в новом "списке". Сегодня, на пороге III тысячелетия, академик В. Л. Гинзбург еще раз возвращается к волнующей его теме. Большая обзорная статья, посвященная проблемам современной физики на рубеже тысячелетия, с подробными комментариями ко всем пунктам "списка" напечатана в журнале "Успехи физических наук" № 4 за 1999 год. Мы публикуем ее вариант, подготовленный для читателей "Науки и жизни". Статья значительно сокращена там, где приводятся рассуждения и выкладки, предназначенные для физиков-профессиона лов, но, возможно, непонятные большинству наших читателей. Одновременно те положения, которые очевидны читателям журнала УФН, но недостаточно хорошо знакомы широкой аудитории, пояснены и расширены. Многие проблемы, перечисленные в "списке", были отражены в публикациях журнала "Наука и жизнь". Редакция дает на них ссылки в тексте статьи.

    Действительный член Российской академии наук, член редакционного совета журнала "Наука и жизнь" с 1961 года Виталий Лазаревич Гинзбург.

    Схема международного экспериментального термоядерного реактора-токамака ИТЭР.

    Схема стелларатора, предназначенного для удержания плазмы в системе тороидальных обмоток сложной конфигурации.

    Электроны окружают атомное ядро из протонов и нейтронов.

    Введение

    Темп и скорость развития науки в наше время поражают. Буквально в продолжении одной-двух человеческих жизней произошли гигантские изменения в физике, астрономии, биологии, да и во многих других областях. Например, мне было 16 лет, когда в 1932 г. были открыты нейтрон и позитрон. А ведь до этого были известны только электрон, протон и фотон. Как-то нелегко осознать, что электрон, рентгеновские лучи и радиоактивность открыты только около ста лет назад, а квантовая теория зародилась только в 1900 г. Полезно вспомнить и то, что первые великие физики: Аристотель (384-322 гг. до н.э.) и Архимед (около 287-212 гг. до н.э.) отделены от нас более чем двумя тысячелетиями. Но в дальнейшем наука прогрессировала сравнитель но медленно, и не последнюю роль здесь играл религиозный догматизм. Лишь со времен Галилея (1564-1642) и Кеплера (1571-1630) физика стала развиваться все ускоряющимися темпами. Какой путь пройден с тех пор всего за 300-400 лет! Его итог - известная нам современная наука. Она уже освободилась от религиозных пут, и церковь сегодня по крайней мере не отрицает роль науки. Правда, антинаучные настроения и распростра нение лженауки (в частности, астрологии) и в наши дни имеют место, в частности в России.

    Так или иначе можно надеяться на то, что в ХХI веке наука будет развиваться не менее быстро, чем в уходящем ХХ столетии. Трудность на этом пути, быть может, даже главная трудность, как мне кажется, связана с гигантским увеличением накопленного материала, объема информации. Физика так разрослась и дифференцировалась, что за деревьями трудно видеть лес, трудно иметь перед мысленным взором картину современной физики как целого. Поэтому и возникла настоятельная потребность свести основные ее вопросы воедино.

    Речь идет о составлении некоторого списка проблем, представляющихся в данное время наиболее важными и интересными. Эти проблемы должны в первую очередь обсуждаться или комментироваться в специальных лекциях или статьях. Формула "все об одном и кое-что обо всем" весьма привлекательна, но нереальна - за всем не угонишься. Вместе с тем некоторые темы, вопросы, проблемы как-то выделены по различным причинам. Здесь может быть их важность для судеб человечества (выражаясь высокопарно) вроде проблемы управляемого ядерного синтеза с целью получения энергии. Выделены, конечно, и вопросы, касающиеся самого фундамента физики, ее переднего фронта (эта область часто именуется физикой элементарных частиц). Несомненно, особое внимание привлекают и некоторые вопросы астрономии, которую сейчас, как и во времена Галилея, Кеплера и Ньютона, трудно (да и не нужно) отделять от физики. Вот такой список (разумеется, меняющийся со временем) и составляет некий "физический минимум". Это темы, о которых каждый грамотный человек должен иметь некоторое представление, знать, пусть и весьма поверхностно, о чем идет речь.

    Нужно ли подчеркивать, что выделение "особенно важных и интересных" вопросов ни в какой мере не эквивалентно объявлению других физических вопросов неважными или неинтересными? "Особенно важные" проблемы выделяются не тем, что другие не важны, а тем, что на обсуждаемый период времени находятся в фокусе внимания, в какой-то мере на главных направлениях. Завтра эти проблемы могут оказаться уже в тылу, на смену им придут другие. Выбор проблем, конечно, субъективен, возможны и нужны различные взгляды на этот счет.

    Список "особенно важных и интересных проблем" 1999 г.

    Как говорится в известной английской поговорке: "Чтобы узнать, каков пудинг, - нужно его съесть". Поэтому перейду к делу и предъявлю "список", о котором упоминалось.

    1. Управляемый ядерный синтез. *

    2. Высокотемпературная и комнатнотемпературная сверхпроводимость. *

    3. Металлический водород. Другие экзотические вещества.

    4. Двумерная электронная жидкость (аномальный эффект Холла и некоторые другие эффекты). *

    5 . Некоторые вопросы физики твердого тела (гетероструктура в полупроводниках, переходы металл - диэлектрик, волны зарядовой и спиновой плотности, мезоскопика).

    6. Фазовые переходы второго рода и родственные им. Некоторые примеры таких переходов. Охлаждение (в частности, лазерное) до сверхнизких температур. Бозе-эйнштейновская конденсация в газах. *

    7. Физика поверхности.

    8. Жидкие кристаллы. Сегнетоэлектрики.

    9. Фуллерены. *

    10 . Поведение вещества в сверхсильных магнитных полях. *

    11. Нелинейная физика. Турбулентность. Солитоны. Хаос. Странные аттракторы.

    12 . Сверхмощные лазеры, разеры, гразеры.

    13. Сверхтяжелые элементы. Экзотические ядра. *

    14 . Спектр масс. Кварки и глюоны. Квантовая хромодинамика. *

    15. Единая теория слабого и электромагнитного взаимодействия. W + и Z о бозоны. Лептоны. *

    16. Великое объединение. Суперобъединение. Распад протона. Масса нейтрино. Магнитные монополи. *

    17. Фундаментальная длина. Взаимодействие частиц при высоких и сверхвысоких энергиях. Коллайдеры. *

    18. Несохранение СР-инвариантности. *

    19. Нелинейные явления в вакууме и в сверхсильных электромагнитных полях. Фазовые переходы в вакууме.

    20 . Струны. М -теория. *

    21. Экспериментальная проверка общей теории относительности. *

    22. Гравитационные волны, их детектирование. *

    23. Космологическая проблема. Инфляция. L-член. Связь между космологией и физикой высоких энергий. *

    24. Нейтронные звезды и пульсары. Сверхновые звезды. *

    25. Черные дыры. Космические струны. *

    26. Квазары и ядра галактик. Образование галактик. *

    27. Проблема темной материи (скрытой массы) и ее детектирования. *

    28. Происхождение космических лучей со сверхвысокой энергией. *

    29 . Гамма-всплески. Гиперновые. *

    30. Нейтринная физика и астрономия. Нейтринные осцилляции. *

    Примечание. Звездочками * отмечены проблемы, в той или иной степени нашедшие отражение на страницах журнала.

    Несомненно, любой "список" не догма, что-то можно выбросить, что-то дополнить в зависимости от интересов исследователей и ситуации в науке. Самый тяжелый t-кварк был обнаружен лишь в 1994 г. (его масса, по данным на 1999 г., 176 + 6 ГэВ). В статьях 1971-1982 гг. нет, естественно, фуллеренов, открытых в 1985 г., нет гамма-всплесков (первое упоминание об их обнаружении опубликовано в 1973 г.). Высокотемпературные сверхпроводники синтезированы в 1986-1987 гг., но тем не менее в 1971 г. эта проблема рассматривалась довольно подробно, ибо она обсуждается 1964 г. Вообще за 30 лет в физике сделано немало, но, по моему мнению, не так уж и много появилось существенно нового. Во всяком случае, все три "списка" в какой-то мере характеризуют развитие и состояние физической и астрофизической проблематики с 1970 г. и по настоящее время.

    Макрофизика

    Проблема управляемого ядерного синтеза (номер 1 в "списке") все еще не решена, хотя ей исполнилось уже 50 лет. Работа в этом направлении началась в СССР в 1950 г. А. Д. Сахаров и И. Е. Тамм рассказали мне об идее магнитного термоядерного реактора, и я был рад заняться этой проблемой, ибо в разработке водородной бомбы мне тогда делать уже практически было нечего. Работа эта считалась сверхсекретной (гриф "Строго секретно, особая папка"). Кстати сказать, я тогда и долгое время впоследствии думал, что интерес к термояду был в СССР обусловлен желанием создать неиссякаемый источник энергии. Однако, как мне уже в недавнее время рассказал И. Н. Головин, термоядерный реактор интересовал "кого надо" в основном вовсе по другой причине: как источник нейтронов для производства трития. Так или иначе проект считался столь секретным и важным, что меня (то ли в конце 1951 г., то ли в начале 1952 г.) от нее отстранили: просто-напросто перестали выдавать в первом отделе рабочие тетради и собственные отчеты по этой работе. Такова была вершина моей "спецдеятельности". К счастью, через несколько лет И. В. Курчатов и его коллеги поняли, что проблему термояда быстро решить нельзя, и в 1956 г. она была рассекречена.

    За границей работы над термоядом начинались примерно в тот же период также в основном как закрытые, и их рассекречивание в СССР (совершенно нетривиальное решение для нашей страны по тем временам) сыграло большую положительную роль: решение проблемы стало объектом международных конференций и сотрудничества. Но вот прошло уже 45 лет, а работающий (дающий энергию) термоядерный реактор не создан, и, вероятно, до этого момента придется ждать еще лет десять, а может быть, и больше. Работа над термоядерным синтезом ведется во всем мире и довольно широким фронтом. Особенно хорошо разработана система токамак (см. "Наука и жизнь" № 3, 1973 г.). Уже несколько лет осуществляется международный проект ITER (International Termonuclear Experimental Reactor). Это гигантский токамак стоимостью около 10 миллиардов долларов, который предполагалось построить к 2005 г. в качестве прообраза термоядерного реактора будущего. Однако сейчас, когда конструирование в основном закончено, возникли трудности финансового характера. Кроме того, некоторые физики считают целесообразным обдумывать альтернативные конструкции и проекты меньшего масштаба, например так называемые стеллараторы. В общем, сомнений в возможности создать реальный термоядерный реактор уже нет, и центр тяжести проблемы, насколько я понимаю, переместился в инженерную и экономическую области. Однако столь гигантская и уникальная установка, как ITER или какая-то конкурирующая с ней, сохраняет, конечно, свой интерес и для физики.

    Что касается альтернативных путей синтеза легких ядер для получения энергии, то надежды на возможности "холодного термояда" (например, в электролитических элементах) оставлены. Существуют также проекты использования ускорителей с различными ухищрениями, и, наконец, возможен инерциальный ядерный синтез, например "лазерный термояд". Суть его состоит в следующем. Стеклянную ампулу с очень небольшим количеством смеси дейтерия с тритием со всех сторон облучают мощными лазерными импульсами. Ампула испаряется, а световое давление сжимает ее содержимое настолько, что в смеси "зажигается" термоядерная реакция. Обычно она проходит со взрывом, эквивалентным порядка 100 кг тротила. Строятся гигантские установки, но о них мало известно в силу засекреченности: на них, видимо, надеются имитировать термоядерные взрывы. Так или иначе проблема инерциального синтеза явно важна и интересна.

    Проблема 2 - высокотемпературная и комнатнотемпературная сверхпроводимость (кратко ВТСП и КТСП).

    Человеку, далекому от физики твердого тела, может показаться, что проблему ВТСП пора из "списка" выбросить, ведь в 1986-1987 гг. такие материалы были созданы. Не пора ли перевести их в категорию огромного числа других веществ, изучаемых физиками и химиками? На деле это совершенно не так. Достаточно сказать, что механизм сверхпроводимости в купратах (соединениях меди) остается неясным (наивысшая температура Т c = 135 К достигнута для HgBa 2 Ca 2 Cu 3 O 8+x без давления; под довольно большим давлением для него уже T c = 164 К). Нет сомнений, у меня во всяком случае, что очень существенную роль играет электронно -фононное взаимодействие с сильной связью, но этого мало, нужно еще "что-то". В общем, вопрос открыт, несмотря на огромные усилия, затраченные на изучение ВТСП (за 10 лет на эту тему появилось около 50 тысяч публикаций). Но главное здесь, конечно, - возможность создания КТСП. Она ничему не противоречит, но и быть уверенным в успехе нельзя.

    Металлический водород (проблема 3 ) еще не создан даже под давлением около трех миллионов атмосфер (речь идет о низкой температуре). Однако исследование молекулярного водорода под большим давлением выявило у него целый ряд неожиданных и интересных особенностей. При сжатии ударными волнами и температуре около 3000 К водород, по-видимому, переходит в хорошо проводящую жидкую фазу.

    При высоком давлении обнаружены также своеобразные особенности у воды и ряда других веществ. К числу "экзотических" веществ можно отнести фуллерены. Совсем недавно кроме "обычного" фуллерена С 60 начали исследовать С 36 , который может обладать очень высокой температурой сверхпроводящего перехода при допировании - "встраивании" атомов другого элемента в кристаллическую решетку или молекулу.

    Нобелевская премия по физике за 1998 г. присуждена за открытие и объяснение дробного квантового эффекта Холла - проблема 4 (см. "Наука и жизнь" № ). Кстати сказать, за открытие целочисленного квантового холл-эффекта тоже была присуждена Нобелевская премия (в 1985 г.). Дробный квантовый холл-эффект был открыт в 1982 г. (целочисленный обнаружен в 1980 г.); он наблюдается при протекании тока в двумерном электронном "газе" (вернее, в жидкости, ибо там взаимодействие между электронами существенно, особенно для дробного эффекта). Неожиданная и очень интересная особенность дробного квантового холл-эффекта - существование квазичастиц с зарядами e * = (1/3)e , где e - заряд электрона, и другой величины. Нужно отметить, что двумерный электронный газ (или, вообще говоря, жидкость) интересен и в других случаях.

    Проблема 5 (некоторые вопросы физики твердого тела) сейчас буквально безбрежна. Я лишь наметил возможные темы и, если бы читал лекцию, остановился бы на гетероструктурах (включая "квантовые точки") и на мезоскопике. Твердые тела долгое время считались чем-то единым и целым. Однако сравнительно недавно выяснилось, что в твердом теле существуют области с различным химическим составом и физическими свойствами, разделенные резко очерченными границами. Такие системы и называются гетерогенными. Это приводит к тому, что, скажем, твердость или электрическое сопротивление одного конкретного образца резко отличается от усредненных значений, измеренных у их набора; поверхность кристалла имеет свойства, отличные от его внутренней части и т. д. Совокупность подобных явлений называется мезоскопикой. Исследования мезоскопических явлений чрезвычайно важны для создания тонкопленочных полупроводниковых материалов, высокотемпературных сверхпровод ников и т. д.

    В отношении проблемы 6 (фазовые переходы и т.д.) можно сказать следующее. Открытие низкотемпературных сверхтекучих фаз Не-3 отмечено Нобелевской премией по физике за 1996 г. (см. "Наука и жизнь" № 1, 1997 г.). Особое внимание за последние три года привлекает к себе бозе-эйнштейновс кая конденсация (БЭК) в газах. Это, несомненно, очень интересные работы, но "бум", который они вызвали, по моему мнению, в значительной мере связан с незнанием истории. Еще в 1925 г. Эйнштейн обратил внимание на БЭК, но длительное время ею пренебрегали и иногда даже сомневались в ее реальности. Но эти времена давно прошли, особенно после 1938 г., когда Ф. Лондон связал БЭК со сверхтекучестью Не-4. Разумеется, гелий II - жидкость, и БЭК в нем проявляется, так сказать, не в чистом виде. Стремление наблюдать ее в разреженном газе вполне понятно и оправдано, но несерьезно видеть в ней открытие чего-то неожиданного и принципиально нового. Другое дело, что осуществление БЭК в газах Rb, Na, Li, наконец, H в 1995 г. и позже - очень большое достижение экспериментальной физики. Оно стало возможно только в результате развития методов охлаждения газов до сверхнизких температур и удержания их в ловушках (за это, кстати, была присуждена Нобелевская премия по физике за 1997 г., см. "Наука и жизнь" № 1, 1998 г.). Осуществление БЭК в газах повлекло за собой поток теоретических работ и статей. В бозе-эйнштейновском конденсате атомы находятся в когерентном состоянии и можно наблюдать интерференционные явления, что привело к появлению понятия "атомный лазер" (см. "Наука и жизнь" № 10, 1997 г.).

    Темы 7 и 8 весьма широки, поэтому трудно выделить что-то новое и важное. Разве что хочется отметить повышенный и вполне оправданный интерес к кластерам из различных атомов и молекул (речь идет об образованиях, содержащих небольшое число частиц). Весьма любопытны исследования жидких кристаллов и сегнетоэлектриков (или, по английской терминологии, ферроэлектриков). Привлекает к себе внимание также изучение тонких сегнетоэлектрических пленок.

    О фуллеренах (проблема 9 ) уже вскользь упоминалось, и вместе с углеродными нанотрубками эта область находится в цвету (см. "Наука и жизнь" № 11, 1993 г.).

    О веществе в сверхсильных магнитных полях (конкретно, в коре нейтронных звезд), а также о моделировании соответствующих эффектов в полупроводниках (проблема 10 ) нет ничего нового. Подобное замечание не должно обескураживать или вызывать вопрос: зачем же тогда помещать эти проблемы в "список"? Во-первых, они, на мой взгляд, имеют некую прелесть для физика; а во-вторых, понимание важности вопроса вовсе не обязательно связано с достаточным знакомством с его состоянием на сегодняшний день. Ведь "программа" как раз и имеет целью стимулировать интерес и побудить специалистов освещать состояние проблемы в доступных статьях и лекциях.

    В отношении нелинейной физики (проблемы 11 в "списке") ситуация иная. Материала очень много, и в сумме нелинейной физике посвящено до 10-20% всех научных публикаций.

    Недаром ХХ век иногда называли не только атомным, но и лазерным веком. Совершенство вание лазеров и расширение области их применения идут полным ходом. Но проблема 12 - это не лазеры вообще, а прежде всего сверхмощные лазеры. Так, уже достигнута интенсивность (плотность мощности) лазерного излучения 10 20 - 10 21 Вт см -2 . При такой интенсивности напряженность электрического поля достигает 10 12 В см -1 , оно на два порядка сильнее поля протона на основном уровне атома водорода. Магнитное поле при этом достигает 10 9 - 10 10 эрстед. Использование очень коротких импульсов длительностью до 10 -15 с (т. е. до фемтосекунды) открывает целый ряд возможностей, в частности, для получения рентгеновских импульсов длительностью в аттосекунды (10 -18 с). Родственная проблема - создание и использование разеров и гразеров - аналогов лазеров в рентгеновском и гамма-диапазонах соответственно.

    Проблема 13 - из области ядерной физики. Она очень велика, поэтому я выделил только два вопроса. Во-первых, это далекие трансурановые элементы в связи с надеждами на то, что отдельные их изотопы живут долго (в качестве такого изотопа указывалось на ядро с числом протонов Z = 114 и нейтронов N = 184, т. е. с массовым числом A = Z + N = 298). Известные трансурановые элементы с Z < 114 живут лишь секунды или доли секунды. Существование в космических лучах долгоживущих (речь идет о миллионах лет) трансурановых ядер пока подтверждено не было. В начале 1999 г. появилось сообщение, что в Дубне синтезирован 114-й элемент с массовым числом 289, живущий около 30 секунд. Поэтому возникла надежда, что элемент действительно окажется очень долгоживущим. Во-вторых, под "экзотическими" ядрами подразумеваются также гипотетические ядра из нуклонов и антинуклонов повышенной плотности, не говоря уже о ядрах несферической формы и с некоторыми другими особенностями. Сюда же примыкает проблема кварковой материи и кварк-глюонной плазмы, получение которой планируется в начале XXI века.

    Микрофизика

    Проблемы с 14 по 20 относятся к области, которую правильнее всего, по-видимому, называть физикой элементарных частиц. Одно время, правда, это название как-то стало редко употребляться, поскольку устарело. На определенном этапе элементарными считались, в частности, нуклоны и мезоны. Сейчас же известно, что они состоят (правда, в несколько условном смысле), из кварков и антикварков,которые, возможно, тоже "состоят" из каких-то частиц - преонов и т. д. Однако для подобных гипотез пока нет никаких оснований, а "матрешка" - деление вещества на все более "мелкие" части - должна когда-то исчерпаться. Так или иначе на сегодняшний день мы считаем неделимыми и в этом смысле элементарными кварки - их, не считая антикварки, 6 типов, которые называются "ароматами" (flowers): u (up), d (down), c (charm), s (straneness), t (top) и b (bottom), а также электрон, позитрон и ряд других частиц. Одна из самых актуальных задач физики элементарных частиц - поиски и, как все надеются, обнаружение хиггса - бозона Хиггса ("Наука и жизнь" № 1, 1996 г.). По оценкам, его масса меньше 1000 ГэВ, но, скорее, даже меньше 200 ГэВ. Поиски ведутся и будут вестись на ускорителях в ЦЕРНе и Фермилабе. Главная же надежда физики высоких энергий - ускоритель LHC (Large Hadron Colleider), строящийся в ЦЕРНе. В нем будет достигнута энергия в 14 ТэВ (10 12 эВ), но только, видимо, в 2005 г.

    Другая важная задача - поиски суперсимметричных частиц. В 1956 г. было открыто несохранение пространственной четности (P ) при слабых взаимодействиях - мир оказался несимметричным, "правое" неэквивалентно "левому". Однако эксперименты показывали, что все взаимодействия инвариантны относительно CP -сопряжения, то есть при замене правого на левое с одновременной сменой частицы на античастицу. В 1964 г. был обнаружен распад К -мезона, который свидетельствовал, что и CP -инвариантность нарушается (в 1980 г. это открытие было отмечено Нобелевской премией). Процессы с несохранением CP -инвариантно сти очень редки. Пока обнаружена только еще одна такая реакция, а другая под вопросом. Реакция распада протона, на которую возлагались некоторые надежды, не зарегистрирована, что, впрочем, неудивительно: среднее время жизни протона 1,6 10 33 года. Возникает вопрос: а станет ли сохраняться инвариантность при замене времени t на -t ? Этот фундаментальный вопрос имеет важное значение для объяснения не-обратимости физических процессов. Природа процессов с CP -несохранением неясна, их исследования продолжаются.

    О массе нейтрино, упоминаемой в числе прочих "разделов" проблемы 16 , будет сказано ниже при обсуждении проблемы 30 (нейтринная физика и астрономия). Остановимся на проблеме 17 и более конкретно на фундаментальной длине.

    Теоретические расчеты показывают, что до расстояний l f = 10 -17 см (чаще, правда, указывают 10 -16 см) и времен t f = l f /c ~ 10 -27 с cуществующие пространственно-временные представления справедливы. А что происходит в меньших масштабах? Такой вопрос в сочетании с имевшимися затруднениями теории и привел к гипотезе о существовании некоторой фундаментальной длины и времени, при которых вступает в строй "новая физика" и какие-то необычные пространственно-временные представления ("зернистое пространство -время" и т. п.). С другой стороны, в физике известна и играет важную роль еще одна фундаментальная длина - так называемая планковская, или гравитационная, длина l g = 10 -33 см.

    Ее физический смысл заключается в том, что при меньших масштабах уже нельзя пользовать ся, в частности, общей теорией относительности (ОТО). Здесь нужно использовать квантовую теорию гравитации, еще не созданную в сколько-нибудь законченной форме. Итак, l g - явно некоторая фундаментальная длина, ограничивающая классические представления о пространстве-времени. Но можно ли утверждать, что эти представления не "отказывают" еще раньше, при некоторой l f , которая на целых 16 порядков меньше l g ?

    "Атака на длину" ведется с двух сторон. Со стороны сравнительно низких энергий - это строительство новых ускорителей на встречных пучках (коллайдеров), и в первую очередь уже упомянутого LHC, на энергию 14 ТэВ, что отвечает длине l = ћc/E c = =1,4 . 10 -18 см. В космических лучах зарегистрированы частицы с максимальной энергией Е = 3 . 10 20 эВ. Однако и таких частиц крайне мало, и непосредственно использовать их в физике высоких энергий невозможно. Длины, сопоставимые с l g , фигурируют лишь в космологии (и в принципе внутри черных дыр).

    В физике элементарных частиц довольно широко оперируют энергиями Е о = 10 16 эВ, в еще не завершенной теории "великого объединения" - объединения электрослабого и сильного взаимодействий. Длина l о = =ћc/E о = 10 -30 см, и все же она на три порядка больше l g . Что происходит в области между l о и l g , по-видимому, сказать совсем трудно. Быть может, здесь и притаилась какая-то фундаментальная длина l f , такая, что l g < l f < l o ?

    В отношении совокупности проблем 19 (вакуум и сверхсильные магнитные поля) можно утверждать, что они очень акутальны. Еще в 1920 г. Эйнштейн заметил: "... общая теория относительности наделяет пространство физическими свойствами, таким образом, в этом смысле эфир существует..." Квантовая теория "наделила пространство" еще виртуальными парами, различными фермионами и нулевыми колебаниями электромагнитного и других полей.

    Проблема 20 - струны и М -теория ("Наука и жизнь" №№ 8, 9, 1996 г.). Это, можно сказать, фронтовое направление в теоретической физике на сегодняшний день. Кстати, вместо термина "струны" часто употребляют название "суперструны", во-первых, чтобы не было путаницы с космическими струнами (проблема 25 ), и, во-вторых, чтобы подчеркнуть использование представления о суперсимметрии. В суперсимметричной теории каждой частице отвечает партнер с другой статистикой, например, фотону (бозону со спином единица) отвечает фотино (фермион со спином 1/2) и т. д. Нужно сразу отметить, что суперсиммет ричные партнеры (частицы) еще не обнаружены. Их масса, по-видимому, не меньше 100-1000 ГэВ. Поиски этих частиц - одна из основных задач экспериментальной физики высоких энергий.

    Теоретическая физика еще не может ответить на целый ряд вопросов, например: как построить квантовую теорию гравитации и объединить ее с теорией других взаимодействий; почему существует, по-видимому, только шесть типов кварков и шесть типов лептонов; почему масса нейтрино очень мала; как определить из теории постоянную тонкой структуры 1/137 и ряд других постоянных и т. д. Другими словами, сколь ни грандиозны и впечатляющи достижения физики, нерешенных фундаментальных проблем предостаточно. Теория суперструн еще не ответила на подобные вопросы, но обещает успехи в нужном направлении.

    В квантовой механике и в квантовой теории поля элементарные частицы считаются точечными. В теории суперструн элементарные частицы - это колебания одномерных объектов (струн), имеющих характерные размеры 10 -33 см. Струны могут быть конечной длины или в виде колечек. Их рассматривают не в четырехмерном ("обычном") пространстве, а в пространствах, скажем, с 10-ю или 11-ю измерениями.

    Теория суперструн пока не привела к каким-либо физическим результатам, и в их отношении можно упомянуть главным образом о "физнадеждах", как любил говорить Л. Д. Ландау, а не о результатах. Но что называть результатами? Ведь математические построения и обнаружение различных свойств симметрии тоже результаты. Это не помешало физикам, исследующим струны, применять к теории струн и не слишком скромную терминологию - "теория всего".

    Стоящие перед теоретической физикой задачи и вопросы, о которых идет речь, крайне сложны и глубоки, и сколько еще потребуется времени, чтобы найти ответы, неизвестно. Чувствуется, что теория суперструн - это нечто глубокое и развивающееся. Сами ее авторы претендуют на понимание лишь некоторых предельных случаев и говорят только о намеках на некоторую более общую теорию, которую называют М-теорией, то есть магической или мистической.

    (Окончание следует.)

    Обращение президиума РАН

    Засилье антинаучных и малограмотных статей в газетах и журналах, телевизионных и радиопередач вызывает серьезное беспокойство у всех ученых страны. Речь идет о будущем нации: сможет ли новое поколение, воспитанное на астрологических прогнозах и вере в оккультные науки, сохранить научное мировоззрение, достойное людей XXI века, или наша страна вернется к средневековому мистицизму. Журнал всегда пропагандировал только достижения науки и разъяснял ошибочность иных позиций (см., например, "Наука и жизнь" №№ 5, 6, 1992 г.). Публикуя обращение Президиума РАН, принятое постановлением от 16 марта 1999 г. № 58-А, мы продолжаем эту работу и видим в читателях своих единомышленников.

    НЕ ПРОХОДИТЕ МИМО!

    Научным работникам России, профессорам и преподавателям вузов, учителям школ и техникумов, всем членам российского интеллектуального сообщества.

    В настоящее время в нашей стране широко и беспрепятственно распространяются и пропагандируются псевдонаука и паранормальные верования: астрология, шаманство, оккультизм и т. д. Продолжаются попытки осуществлять за счет государственных средств различные бессмысленные проекты вроде создания торсионных генераторов. Население России оболванивается теле- и радиопрограммами, статьями и книгами откровенно антинаучного содержания. В отечественных государственных и частных СМИ не прекращается шабаш колдунов, магов, прорицателей и пророков. Псевдонаука стремится проникнуть во все слои общества, все его институты, включая Российскую академию наук.

    Эти иррациональные и в основе своей аморальные тенденции, бесспорно, представляют собой серьезную угрозу для нормального духовного развития нации.

    Российская академия наук не может и не должна равнодушно взирать на беспрецедентное наступление мракобесия и обязана дать ему должный отпор. С этой целью Президиум РАН создал Комиссию по борьбе с лженаукой и фальсификацией научных исследований.

    Комиссия РАН по борьбе с лженаукой и фальсификацией научных исследований уже начала действовать. Однако совершенно очевидно, что существенного успеха можно достичь только в том случае, если борьбе с псевдонаукой будут уделять внимание широкие круги научных работников и педагогов России.

    Президиум РАН призывает вас активно реагировать на появление псевдонаучных и невежественных публикаций как в средствах массовой информации, так и в специальных изданиях, противодействовать осуществлению шарлатанских проектов, разоблачать деятельность всевозможных паранормальных и антинаучных "академий", всемирно пропагандировать достоинства научного знания, рациональное отношение к действительности.

    Мы призываем руководителей радио- и телевизионных компаний, газет и журналов, авторов и редакторов программ и публикаций не создавать и не распространять псевдонаучные и невежественные программы и публикации и помнить об ответственности СМИ за духовное и нравственное воспитание нации.

    От позиции и действий каждого научного работника сегодня зависит духовное здоровье нынешнего и будущего поколений!

    Президиум Российской академии наук.