Космические аппараты и техника

Писатели-фантасты, отправлявшие своих героев к другим мирам, даже не предполагали, как быстро реализуются эти мечты. От первых запусков маленьких ракет, поднявшихся на несколько десятков метров, до первого искусственного спутника Земли про шло всего 30 лет. В наши дни многочисленные космические аппарата фотографируют поверхности далёких планет и их спутников, проводят всевозможные исследования, передавая данные на Землю. Пройдёт ещё немного времени, и в космосе появятся обширные колонии. Согласно оценкам экспертов, к 2030 г. за пределами земной атмосферы будут постоянно работать свыше 1000 человек

Исследования Луны

Вполне естественно, что Луна, как ближайшее к Земле небесное тело, стала первым объектом, к которому направились космические аппараты.

Советские автоматические межпланетные станции первого поколения «Луна-1, −2, −3» не использовали ни коррекцию курса на траектории Земля — Луна, ни торможение при подлёте. Они совершали полёт напрямую. Стартовав с Земли 2 января 1959 г., станция «Луна-1» массой 361 кг впервые достигла второй космической скорости (т. е. минимальной скорости, которую должен развить стартующий с небесного тела объект, чтобы преодолеть силу его притяжения; для Земли она равна 11,19 км/с) и прошла на расстоянии около б тыс. километров от поверхности Луны.

«Луна-2» достигла лунной поверхности 14 сентября 1959 г. вблизи центрального меридиана (место посадки этой станции теперь называется Заливом Лунника). Её приборы показали, что Луна практически не имеет собственного магнитного поля. А на борту станции «Луна-3» находилась фототелевизионная аппаратура, впервые передавшая на Землю снимки части видимого и почти 2/3 невидимого полушария. На них было большое количество дефектов, но, несмотря на это, учёным удалось выбить множество деталей на обратной стороне Луны. Открытые «Луной-3» кратеры получили названия: Циолковский, Курчатов, Джордано Бруно, Жюль Берн и др.

Крупномасштабное фотографирование отдельных участков поверхности видимого полушария выполнил в процессе падения на Луну американские космические аппараты «Рейнджер-7, −8, −9» в 1964 и 1965 гг. Советская станция «Зонд-3» завершила фотографирование невидимого полушария.

Первая мягкая посадка на лунную поверхность была осуществлена в феврале 1966 г. советской автоматической станцией «Луна-9». Телекамеры передали на Землю панорамы окружающего ландшафта с разрешением до нескольких миллиметров. В 1966 г. на орбиту вокруг Луны также были выведены искусственные спутники «Луна-10, -11, −12». На них были установлены приборы для исследования спектрального состава инфракрасного и гамма-излучения лунной поверхности, оборудование для регистрации метеорных частиц и др. В том же году американский аппарат «Сервейор-1» совершил мягкую посадку на Луну и в течение шести недель передавал на Землю снимки поверхности. В конце декабря 1966 г. мягкую посадку выполнила станция «Луна-13», её выносные приборы исследовали свойства лунного грунта, а телевизионные камеры фотографировали окружающую местность.

Мягкие посадки в различных районах Луны осуществили американские космические аппараты «Сервей-ор-3,-5,-6,-7» (1967-1968 гг.), которые должны были исследовать лунную поверхность и выбрать места посадок космических кораблей серии «Аполлон». Пять американских искусственных спутников «Лунар орбитер» в 1966-1967 гг. фотографировали Луну и изучали её гравитационное поле. Детальная съёмка поверхности в районе лунного экватора, выполненная этими спутниками, также нужна была для отбора будущих мест посадок космических кораблей с астронавтами.

Отработка элементов программы полёта на Луну проводилась сначала непилотируемыми кораблями серии «Аполлон», а затем и пилотируемыми («Аполлон-8, −9, −10»). Весил «Аполлон» 44 т и состоял из основного блока и лунной кабины, включавшей посадочную и взлётную ступени. Пилотируемые облёты Луны планировались и в нашей стране. Для отработки манёвров на орбите использовались космические аппараты «Зонд-4, −5, −6, −7, −8». Однако от этих планов отказались после того, как такие облёты совершили американские астронавты.

Место посадки лунной кабины космического корабля «Аполлон-11» было выбрано в Море Спокойствия, где уже побывали аппараты «Рейнджер-8» и «Сервейор-5». Астронавты Нил Армстронг и Эдвин Олдрин осуществили посадку 20 июля 1969 г. Первым из кабины вышел Армстронг, произнеся при этом фразу, ставшую исторической: «Это небольшой шаг для челнока, но огромный скачок для человечества». Астронавты разговаривали президентом США, используя чешскую радиосвязь; установили сжатель лазерного излучения, сейс метр, сделали снимки, собрали 221 образцов лунного грунта. Все раб заняли у них 2 ч 30 мин. За это вр астронавты удалялись от посадочного модуля на расстояние до 100 м. В ос-г новном блоке на орбите наход Майкл Коллинз, который также пр дил научные исследования.

Астронавты «Аполлона-12», запу-1 щенного 14 ноября 1969 г., Чарлз! Конрад и Алан Бин совершили посадку в районе Океана Бурь, недалеко от лунного экватора. В основном блоке корабля на орбите вокруг Луны оставался Ричард Гордон. Конрад и Бин дважды выходили на поверхность, установили аппаратуру для изучения сейсмической активности Луны и состава частиц солнечного ветра у её поверхности. Поскольку место посадки было выбрано рядом со станцией «Сервейор-3», которая пробыла на Луне два года семь месяцев, в задачу астронавтов входило её обследование. Они не обнаружили никаких следов разрушения станции; только слой рыже-коричневой пыли покрывал её. На этот раз было собрано 34кг образцов лунной породы.

Экипаж «Аполлона-13» не смог выполнить посадку на Луну из-за взрыва в двигательном отсеке основного блока. Совершив облёт Луны, астронавты вернулись на Землю через семь дней.

Советская автоматическая станция «Луна-16» в сентябре 1970 г. произвела мягкую посадку в Море Изобилия, где специальным грунтозаборным устройством была взята лунная порода весом 105 г и помещена в возвращаемый аппарат, который доставил её на Землю. В том же году станцией «Луна-17» впервые был доставлен самоходный аппарат «Луноход-1», проделавший путь длиной 10,5 км и передавший на Землю множество снимков. С помощью установленного на «Луноходе-1» лазерного уголкового отражателя удалось уточнить расстояние от Земли до Луны.

Экспедиция «Аполлона-14» проходила с 31 января по 9 февраля 1971 г. Репортаж с места посадки лунной кабины в районе кратера Фра Мауро передавался на Землю. Астронавты Алан Шепард и Эдгар Митчелл провели на поверхности Луны 9 ч и собрали 44,5 кг пород. В августе 1971 г. у подножия лунных гор Апеннины высадился экипаж корабля «Аполлон-15». Впервые астронавты Дэвид Скотт и Джеймс Ирвин использовали для передвижения луноход, проделав на нём путь длиной 10 км, и провели многочисленные исследования. В частности, они изучали глубокое ущелье, носящее название Борозда Хэдли, однако спуститься вниз без специального снаряжения не решились.

В апреле 1972 г. экипаж лунной кабины космического корабля «Аполлон-16» совершил посадку в материковом районе в окрестностях кратера Декарт. В декабре того же года была успешно выполнена последняя, шестая экспедиция на корабле «Аполлон-17».

Второй самоходный аппарат «Лу-ноход-2», доставленный станцией «Луна-21» в январе 1973 г., продолжил исследования в довольно сложном районе Луны, являющемся переходным от моря к материку. С помощью бортовой телевизионной аппаратуры на Землю были переданы многочисленные панорамы и снимки окружающей местности, данные о свойствах грунта и его химическом составе. Всего было пройдено 37 км. В 1974 г. аппарат «Луна-22» выполнял изучение рельефа и гравитационного поля с орбиты искусственного спутника Луны. В том же году «Луне-23» удалось совершить посадку в районе Моря Кризисов. Исследования Луны советскими автоматическими станциями были завершены космическим аппаратом «Луна-24», выполнившим автоматическое бурение лунного грунта в Море Кризисов на глубину 2 м и доставившим на Землю 22 августа 1976 г. 170 г лунной породы.

После этого довольно долго к Луне не было запусков ни в нашей стране, ни в США. Интересно, что лишь 14 лет спустя, в марте 1990 г., Япония с помощью ракеты «Нисан» вывела на орбиту вокруг Луны автоматический аппарат «Мусес-А» для дистанционного исследования лунной поверхности.

К аппаратам нового поколения, создающимся с использованием сверхлёгких материалов, относится станция «Клементина», запущенная в январе 1994 г. Помимо фотографирования поверхности Луны ею выполнены измерения высот рельефа, а также уточнены толщина лунной коры, модель гравитационного поля и некоторые другие параметры.

В недалёком будущем начнётся освоение Луны. Уже в наши дни детально разрабатываются проекты создания на её поверхности постоянно действующей обитаемой базы. Длительное или постоянное присутствие на Луне сменных экипажей такой базы позволит решать более сложные научные и прикладные задачи.

Исследования Меркурия

О поверхности ближайшей к Солнцу планеты ничего не было известно до полёта космического аппарата «Мари-нер-10», запущенного 3 ноября 1973 г. Вес научной аппаратуры составлял около 80 кг. Сначала аппарат был направлен к Венере, в поле тяготения которой получил гравитационный разгон и, изменив траекторию, 29 марта 1974 г. подлетел к Меркурию. Снимки поверхности, полученные в результате трёх пролётов «Маринера-10» с интервалом в шесть месяцев, показали удивительное сходство рельефа Меркурия с ближайшей соседкой Земли — Луной. Как оказалось, вся его поверхность покрыта множеством кратеров разных размеров.

Учёных несколько разочаровало то, что атмосферы на Меркурии обнаружено не было. Найдены следы аргона, неона, гелия и водорода, но столь незначительные, что можно говорить лишь о вакууме с такой степенью разрежения, которую на Земле не умеют ещё получать.

Во время первого пролёта, проходившего на высоте 705 км, были обнаружены ударная волна плазмы и магнитное поле вблизи Меркурия. Удалось уточнить значение радиуса планеты (2439 км) и её массы.

21 сентября 1974 г. на довольно большом расстоянии (более 48 тыс. километров) был осуществлён второй пролёт около Меркурия. Датчики температуры позволили установить, что в течение дня, продолжительность которого составляет 88 земных суток. температура поверхности планеты поднимается до 510 °С, а ночью опускается до −210 °С. С помощью радиометра был определён тепловой поток, излучаемый поверхностью; на фоне нагретых участков, состоящих из рыхлых пород, выявлены более холодные, представляющие собой скальные породы.

Во время третьего пролёта около Меркурия, происходившего 16 марта 1975 г. на наименьшем расстоянии −318 км, было подтверждено, что обнаруженное магнитное поле действительно принадлежит планете. Его напряжённость составляет около 1% от напряжённости земного магнитного поля. 3 тыс. фотографий, полученных на этом сеансе, имели разрешение до 50 м. Поскольку три сеанса фотографирования охватывали западное полушарие планеты, восточное оставалось неисследованным.

В настоящее время разрабатываются проекты новых полётов космических станций к Меркурию, которые позволят изучить и его восточное полушарие.

Исследования Венеры

Поверхность Венеры полностью скрыта мощным облачным покровом, и только с помощью радиолокаторов возможно «увидеть» её рельеф.

Первый спускаемый аппарат в виде сферы диаметром 0,9 м с теплозащитным покрытием был доставлен космическим аппаратом «Венера-3» в марте 1966 г. Спускаемые аппараты станций «Венера-4, −5, −6» передавали сведения о давлении, температуре и составе атмосферы во время спуска. Однако они не достигли поверхности планеты, поскольку не были рассчитаны на атмосферное давление Венеры, которое составляет, как оказалось, 90 атмосфер! И только спускаемый аппарат «Венеры-7» в декабре 1970 г. опустился наконец на поверхность Венеры и передал данные о составе атмосферы, температуре различных её слоев и поверхности, а также об изменении давления.

В июле 1972 г. спускаемый аппарат станции «Венера-8» впервые сел на дневную сторону планеты и показал, что освещённость на её поверхности напоминает земной пасмурный день. Облака Венеры, через которые прошёл аппарат на высоте от 70 до 30 км, имели слоистую структуру и были не очень плотными.

В октябре 1975 г. аппараты нового поколения «Венера-9, −10», совершившие мягкую посадку на расстоянии свыше 2 тыс. километров друг от друга на освещённой стороне планеты, впервые передали на Землю панорамы окружающей их местности. Масса каждого спускаемого аппарата диаметром 2,4 м составляла 1560 кг. В течение часа оставшиеся на орбите космические аппараты ретранслировали научную информацию с поверхности планеты на Землю.

Увидеть глобальные особенности рельефа большей части поверхности Венеры люди смогли благодаря радиолокационному зондированию, выполненному с американской автоматической станции «Пионер-Венера-1» в 1978 г. На картах, составленных по результатам измерения высот поверхности, можно видеть обширные возвышенности, отдельные горные массивы и низменности.

Интересный эксперимент был проведён на станции «Пионер-Венера-2»: с её помощью в атмосферу Венеры были сброшены один большой (диаметром 1,5 м и массой 316 кг) и три малых (диаметром 0,7 м и массой 96,6 кг) спускаемых аппарата на дневную и ночную стороны, а также в район северного полюса планеты. Аппараты передавали информацию в процессе падения, а один из малых аппаратов даже выдержал удар и передавал данные с поверхности в течение часа. Результаты этого эксперимента подтвердили, что атмосфера планеты содержит до 96% углекислого газа, до 4% азота и немного водяного пара. На поверхности был обнаружен тонкий слой пыли.

В декабре 1978 г. проводили исследования и советские «Венера-11, −12», опустившиеся на расстоянии 800 км друг от друга. Интересными оказались данные о регистрации электрических разрядов в атмосфере планеты. Один из аппаратов выявил 25 ударов молнии в секунду, а другой около 1000, причём один из раскатов грома продолжался 15 мин. По-видимому, возникновению этих разрядов способствует высокое содержание серной кислоты в облачном покрове.

Данные о химическом составе пород в месте посадок «Венеры-13, −14» были получены в марте 1982 г. с помощью специальных грунтозаборных устройств, поместивших породу внутрь спускаемого аппарата. Данные анализов, выполненных автоматами, были переданы на Землю, где учёные смогли сопоставить эти породы с базальтами, встречающимися в глубоководных впадинах земных океанов.

С орбит искусственных спутников Венеры аппараты «Венера-15, −16», оборудованные радиолокационными системами, передали изображения поверхности части северного полушария планеты и данные измерений высот рельефа. В результате каждого пролёта по сильно вытянутым околополярным орбитам снималась полоса местности шириной 160 км и длиной 8 тыс. километров. По материалам этих съёмок составлен атлас поверхности Венеры, включающий карты рельефа, геологические и другие специальные карты.

Спускаемые аппараты нового типа, состоявшие из посадочного аппарата и аэростатного зонда, были сброшены с советских станций «Ве-га-1, −2», предназначенных для проведения исследований Венеры и кометы Галлея в 1985 г. Аэростатные зонды дрейфовали на высоте около 54 км и передавали данные в течение двух суток, посадочные же аппараты провели исследование атмосферы и поверхности планеты.

Наиболее подробные снимки всей поверхности Венеры были получены с помощью американского аппарата «Магеллан», запущенного астронавтами космического челнока «Атлантис» в мае 1989 г. Регулярная радиолокационная съёмка, проводимая в течение нескольких лет, позволила получить изображение рельефа поверхности Венеры с разрешением менее 300 м. В результате всех экспериментов, проведённых с помощью космических аппаратов, Венера, пожалуй, исследована лучше других планет.

Исследования Марса и его спутников

Полёт к Марсу занимает шесть — восемь месяцев. Поскольку взаимное расположение Земли и Марса всё время меняется, а минимальные расстояния между ними (противостояния) бывают только раз в два года, момент старта выбирается таким образом, чтобы Марс находился на пересечении с траекторией космического аппарата, достигшего к тому времени его орбиты.

Первый запуск в сторону Марса был осуществлён в начале ноября 1962 г. Советский «Марс-1» прошёл на расстоянии 197 тыс. километров от красной планеты. Фотографии её поверхности были получены американским «Маринером-4», запущенным два года спустя и прошедшим 15 июля 196 5 г. на расстоянии 10 тыс. километров от поверхности планеты.

Оказалось, что Марс тоже покрыт кратерами. Были уточнены масса планеты и состав её атмосферы. В 1969 г. аппараты «Маринер-6, −7» с расстояния 3400 км от Марса передали несколько десятков снимков с разрешением до 300 м, а также измерили температуру южной полярной шапки. которая оказалась очень низкой (-125 °С).

В мае 1971 г. были запущены «Марс-2, −3» и «Маринер-9». Аппараты «Марс-2, −3» массой 4,65 т каждый имели орбитальный отсек и спускаемый аппарат. Мягкую посадку удалось совершить только спускаемому аппарату «Марса-3».

Космические аппараты «Марс-2, −3» вели исследования с орбит искусственных спутников, передавая данные о свойствах атмосферы и поверхности Марса по характеру излучения в видимом, инфракрасном и ультрафиолетовом диапазонах спектра, а также в диапазоне радиоволн. Была измерена температура северной полярной шапки (ниже −110 °С); определены протяжённость, состав, температура атмосферы, температура поверхности планеты получены данные о высоте пылевых облаков и слабом магнитном поле, а также цветных изображения Марса.

«Маринер-9» тоже был переведёт на орбиту искусственного спутник Марса с периодом около 12 ч. Он передал на Землю 7329 снимков Марс с разрешением до 100 м, а также фотографии его спутников — Фобоса Деймоса. На снимках марсианских поверхности хорошо видны гигантские потухшие вулканы, множество крупных и мелких каньонов и долин напоминающих высохшие русл; Марсианские кратеры отличаются о лунных своими выбросами, свидетельствующими о наличии подповерхностного льда, а также следам: водной эрозии и ветровой активности

Целая флотилия из четырёх космических аппаратов «Марс-4, −5, −6, −7 запущенных в 1973 г., достигла окрестностей Марса в начале 1974 г. Из-; неисправности бортовой систем торможения «Марс-4» прошёл на расстоянии около 2200 км от поверхности планеты, выполнив только её фотографирование. «Марс-5» проводил дистанционные исследования поверхности и атмосферы с орбиты искусственного спутника. Спускаемый аппарат «Марса-6» совершил мягкую посадку в южном полушарии. На Землю переданы данные о химическом составе, давлении и температуре атмосферы. «Марс-7» прошёл на расстоянии 1300 км от поверхности, не выполнив своей программы.

Самыми результативными были полёты двух американских «Викингов», запущенных в 1975 г. На борту аппаратов находились телекамеры, инфракрасные спектрометры для регистрации водяных паров в атмосфере и радиометры для получения температурных данных. Посадочный блок «Викинга-1» совершил мягкую посадку на Равнине Хриса 20 июля 1976 г., а «Викинга-2» — на Равнине Утопия 3 сентября 1976 г. В местах посадок были проведены уникальные эксперименты с целью обнаружить признаки жизни в марсианском грунте. Специальное устройство захватывало образец грунта и помещало его в один из контейнеров, содержавших запас воды или питательных веществ. Поскольку любые живые организмы меняют среду своего обитания, приборы должны были это зафиксировать. Хотя некоторые изменения среды в плотно закрытом контейнере наблюдались, к таким же результатам могло привести наличие сильного окислителя в грунте. Вот почему учёные не смогли уверенно отнести эти изменения за счёт деятельности бактерий.

С орбитальных станций было выполнено детальное фотографирование поверхности Марса и его спутников. На основе полученных данных составлены подробные карты поверхности планеты, геологические, тепловые и другие специальные карты.

В задачу советских станций «Фо-бос-1, -2», запущенных после 13-летнего перерыва, входило исследование Марса и его спутника Фобоса. В результате неверной команды с Земли «Фобос-1» потерял ориентацию, и связь с ним не удалось восстановить.

«Фобос-2» вышел на орбиту искусственного спутника Марса в январе 1989 г. Дистанционными методами получены данные об изменении температуры на поверхности Марса и новые сведения о свойствах пород, слагающих Фобос. Получено 38 изображений с разрешением до 40 м, измерена температура его поверхности, составляющая в наиболее горячих точках 30 °С. К сожалению, осуществить основную программу по исследованию Фобоса не удалось. Связь с аппаратом была потеряна 27 марта 1989 г.

На этом не закончилась серия неудач. Американский космический аппарат «Марс-Обсервер», запущенный в 1992 г., также не выполнил своей задачи. Связь с ним была потеряна 21 августа 1993 г. Не удалось вывести на траекторию полёта к Марсу и российскую станцию «Марс-9б». В июле 1997 г. «Марс-Пасфайндер» доставил на планету первый автоматический марсоход, который успешно исследовал химический состав поверхности и метеорологические условия.

В 1998 г. Япония планирует запуск к Марсу орбитального аппарата «Планета-Б». На 2003 г. Европейским космическим агентством совместно с США и Россией запланировано создание сети специальных станций на Марсе. Разрабатываются программы полёта на Марс астронавтов. Такая экспедиция займёт более двух лет, поскольку, чтобы вернуться, им придётся ждать удобного взаимного расположения Земли и Марса.

Исследования Юпитера

Изучать планеты-гиганты с помощью космической техники начали на десятилетие позже, чем планеты земной группы. 3 марта 1972 г. с Земли стартовал американский космический аппарат «Пионер-10». Через 6 месяцев полёта аппарат успешно миновал пояс астероидов и ещё через 15 месяцев достиг окрестностей «царя планет», пройдя на расстоянии 130 300 км от него в декабре 1973 г.

С помощью оригинального фотополяриметра получено 340 снимков облачного покрова Юпитера и поверхностей четырёх самых крупных спутников: Ио, Европы, Ганимеда и Каллисто. Помимо Большого Красного Пятна, размеры которого превышают диаметр нашей планеты, обнаружено белое пятно поперечником более 10 тыс. километров. Инфракрасный радиометр показал, что температура внешнего облачного покрова составляет 133 °С. Было обнаружено также, что Юпитер излучает в 1,6 раза больше тепла, чем получает от Солнца; уточнена масса планеты и спутника Ио.

Исследования показали, что Юпитер обладает мощным магнитным полем; также была зарегистрирована зона с интенсивной радиацией (в 10 тыс. раз больше, чем в околоземных радиационных поясах) на расстоянии 177 тыс. километров от планеты. Притяжение Юпитера сильно изменило траекторию полёта аппарата. «Пионер-10» начал двигаться по касательной к орбите Юпитера, удаляясь от Земли почти по прямой. Интересно, что шлейф магнитосферы Юпитера был обнаружен за пределами орбиты Сатурна. В 1987 г. «Пионер-10» вышел за границы Солнечной системы.

Трасса «Пионера-11», пролетевшего на расстоянии 43 тыс. километров от Юпитера в декабре 1974 г., была рассчитана иначе. Он прошёл между поясами и самой планетой, не получив опасной дозы радиации. На этом аппарате были установлены те же приборы, что и на предыдущем. Анализ цветных изображений облачного слоя, полученных фотополяриметром, позволил выявить особенности и структуру облаков. Их высота оказалась различной в полосах и расположенных между ними зонах. Согласно исследованиям «Пионера-11», светлые зоны и Большое Красное Пятно характеризуются восходящими течениями в атмосфере. Облака в них расположены выше, чем в соседних областях полос, и здесь холоднее.

Притяжение Юпитера развернуло «Пионер-11» почти на 180°. После нескольких коррекций траектории полёта он пересёк орбиту Сатурна недалеко от самой планеты.

Уникальное взаимное расположение Земли и планет-гигантов с 1976 по 1978 г. было использовано для последовательного изучения этих планет. Под влиянием полей тяготения космические аппараты смогли переходить с трассы полёта от Юпитера к Сатурну, затем к Урану и Нептуну, Без использования гравитационных полей промежуточных планет полёт к Урану занял бы 16 лет вместо 9, а к Нептуну — 20 лет вместо 12. В 1977г. в длительное путешествие отправились аппараты «Вояджер −1, −2», причём «Вояджер-2» был запущен раньше, 20 августа 1977 г., по «медленной» траектории, а «Вояджер-1» — 5 сентября 1977 г. по «быстрой».

«Вояджер-1» совершил пролёт около Юпитера в марте 1979 г., а «Вояд-жер-2» прошёл мимо гиганта на четыре месяца позже. Они передали на Землю снимки облачного покрова Юпитера и поверхностей ближайших спутников с удивительными подробностями. Атмосферные массы красного, оранжевого, жёлтого, коричневого и синего цветов постоянно перемещались. Полосы вихревых потоков захватывали друг друга, то сужаясь, то расширяясь. Скорость перемещения облаков оказалась равной 11 км/с. Большое Красное Пятно вращалось против часовой стрелки и делало полный оборот за 6 ч. «Вояджер-1» впервые показал, что у Юпитера имеется система бледных колец, расположенных на расстоянии 57 тыс. километров от облачного покрова планеты, а на спутнике Ио действуют восемь вулканов. «Вояджер-2» сообщил спустя несколько месяцев, что шесть из них продолжают активно действовать. Фотографии других галилеевых спутников — Европы, Ганимеда и Каллисто — показали, что их поверхности резко отличаются друг от друга.

Американский космический аппарат «Галилео», доставленный на околоземную орбиту в грузовом отсеке корабля многоразового использования «Атлантис», представлял собой аппарат нового поколения для исследования химического состава и физических характеристик Юпитера, а также для более детального фотографирования его спутников. Аппарат состоял из орбитального модуля для длительных наблюдений и специального зонда, который должен был проникнуть в атмосферу планеты. Траектория «Галилео» была довольно сложной. Сначала аппарат направился к Венере, мимо которой прошёл в феврале 1990 г. Затем по новой траектории в декабре он вернулся к Земле. Были переданы многочисленные фотографии Венеры, Земли и Луны.

В октябре 1991 г., проходя через пояс астероидов, аппарат сфотографировал малую планету Гаспра. Вернувшись к Земле второй раз в декабре 1992 г. и получив новое ускорение, он устремился к основной цели своего путешествия — Юпитеру. Оказавшись в августе 1993 г. снова в поясе астероидов, он сфотографировал ещё одну малую планету, Иду.

Спустя два года «Галилео» достиг окрестностей Юпитера. По команде с Земли от него отделился спускаемый зонд и в течение пяти месяцев совершал самостоятельный полёт к границам атмосферы Юпитера со скоростью 45 км/с. За счёт сопротивления её верхних слоев в течение двух минут скорость снизилась до нескольких сот метров в секунду. При этом перегрузки превосходили земную силу тяжести в 230 раз. Аппарат проник в атмосферу на глубину 156 км и функционировал в течение 57 мин. Данные об атмосфере ретранслировались через основной блок «Галилео».

Исследования Сатурна

Первым космическим аппаратом, посетившим окрестности Сатурна, был «Пионер-11», который 1 сентября 1979 г. прошёл на расстоянии 21 400 км от облачного слоя планеты. Магнитное поле Сатурна оказалось сильнее земного, но слабее, чем у Юпитера. Была уточнена масса Сатурна. По характеру поля тяготения сделан вывод, что внутреннее строение Сатурна похоже на строение Юпитера. По данным измерений инфракрасного излучения учёные определили температуру видимой поверхности Сатурна. Она оказалась равной 100 К, и этот факт свидетельствовал о том, что планета излучает приблизительно в два раза больше тепла, чем получает от Солнца. В высоких широтах Сатурна предполагалось наличие полярных сияний.

Впервые были получены изображения Титана, самого крупного из семейства спутников Сатурна, но, к сожалению, разрешение было очень низким.

Необычно выглядели фотографии колец. К аппарату была обращена не освещённая Солнцем сторона колец, поэтому приборы фиксировали свет, не отражённый от колец, а прошедший сквозь них.

«Пионер-11» покинул Солнечную систему, но слабые сигналы с него ещё улавливаются земными антеннами.

Более качественные изображения были получены во время пролёта двух «Вояджеров», которые под действием притяжения Юпитера изменили свои траектории и направились к Сатурну. На снимках облачного покрова планеты видны завихряющиеся полосы, вихри, ореолы и пятна разных цветов — от жёлтого до коричневого, напоминающие образования на Юпитере. Обнаружено и красное пятно поперечником около 1250 км, а также быстро исчезающие тёмные овальные образования. «Вояджер- 1» впервые показал, что система колец Сатурна состоит из тысяч отдельных узких колечек, обнаружил шесть новых спутников и, пройдя на расстоянии 4030 км от Титана, установил, что основным компонентом его атмосферы является азот, а не метан, как предполагалось ранее. Получены интересные данные и о некоторых других спутниках Сатурна: Тефии, Мимасе, Дионе, Рее и Энцеладе. «Вояджер-1» выполнил основные задачи и отправился за пределы Солнечной системы.

Ни самое близкое расстояние к Сатурну подошёл «Вояджер-2». В системе его колец оказалось ещё больше отдельных колечек, состоящих из бесчисленного множества частиц льда, крупных и мелких обломков. На спутнике Тефия «Вояджер-2» обнаружил крупнейший кратер во всей системе

Сатурна диаметром 400 км и глубиной 16 км. После встречи с Сатурном траектория полёта «Вояджера-2» была изменена таким образом, чтобы он в январе 1986 г. прошёл около Урана.

Новые исследования Сатурна, его колец и спутников запланированы в проекте, названном «Кассини». Запуск аппарата намечен на октябрь 1997 г. По сложной траектории аппарат достигнет окрестностей Сатурна в июне 2004 г. и будет проводить исследования в течение четырёх лет. Самым интересным в проекте является спуск специального зонда в атмосферу Титана.

Исследования Урана

В окрестностях Урана побывал только один космический аппарат «Вояджер-2», пролетевший на расстоянии 81 200 км от внешнего покрова облаков. Траектория аппарата была почти перпендикулярна плоскости, в которой находятся спутники, поэтому с близкого расстояния удалось сфотографировать только Миранду, самый маленький из известных до этого полёта спутников. Напряжённость магнитного поля Урана оказалась больше, чем у Сатурна, а интенсивность поясов радиации такая же, как у поясов Земли. В ультрафиолетовой области спектра зарегистрировано свечение атмосферы Урана, простирающееся на 50 тыс. километров от планеты.

Как и у других планет-гигантов, в атмосфере Урана обнаружены вихри, струйные течения, пятна (но их гораздо меньше), а в глубине её зарегистрированы метановые облака. Гелия оказалось в три раза меньше, чем предполагалось ранее: всего 15%. Циркуляция атмосферы происходит в высоких широтах с большей скоростью, чем у экватора.

Девять колец Урана были известны ещё по наземным наблюдениям покрытий звёзд планетой. «Вояджер-2» обнаружил десятое кольцо шириной 3 км и несколько неполных колец тёмного цвета. Частицы, слагающие кольца, имеют в поперечнике около 1 м.

Получены изображения пяти ранее известных спутников и десяти новых, небольших по размерам. На Обероне обнаружено несколько крупных кратеров и гора высотой около 6000 м, на Титании — многочисленные кратеры и долины. Поверхность Умбриэля очень гладкая, на ней видны кратеры и светлое пятно. Сильно кратерированная поверхность Ариэля со следами различных геологических процессов напоминает спутник Сатурна Энцелад. Наиболее сложной оказалась поверхность Миранды, испещрённая бороздами, хребтами и разломами глубиной несколько километров. Такая активная тектоническая деятельность оказалась неожиданной на спутнике, диаметр которого меньше 500 км.

Под действием поля тяготения Урана траектория «Вояджера-2» снова изменилась, и он направился к Нептуну.

Исследования Нептуна

К моменту встречи с Нептуном 25 августа 1989 г. «Вояджер-2» преодолел расстояние 4,5 млрд километров. Несмотря на долгий путь, занявший 12 лет, и многочисленные коррекции траектории при перелёте от Юпитера к Сатурну и Урану, «Вояджер» оказался на минимальном расстоянии от Нептуна (менее 5 тыс. километров) в точно рассчитанное на Земле время.

На цветных снимках, синтезированных на основе слабых сигналов с «Вояджера», видимая поверхность Нептуна представляет собой плотный облачный слой голубого цвета с полосами и белыми и тёмными пятнами. Сильный вихревой шторм размером с нашу планету вращается против часовой стрелки. У Нептуна обнаружено магнитное поле, ось магнитных полюсов отклонена на 50° от оси вращения планеты. «Вояджер-2» выявил у Нептуна также пять слабых колец.

По наземным исследованиям были известны лишь два спутника: Тритон и Нереида, обращающиеся вокруг Нептуна в обратном направлении. «Вояджер» открыл ещё шесть спутников размерами от 200 до 50 км, вращающихся в том же направлении, что и Нептун. У Тритона и Нереиды в ультрафиолетовом диапазоне обнаружены явления, напоминающие земные полярные сияния.

Тритон имеет очень тонкую газовую оболочку, верхний слой которой состоит из азота. В нижних слоях обнаружены метан и твёрдые частицы азотных образований. Наряду с кратерами на его поверхности открыты действующие вулканы, каньоны и горы.

«Вояджер-2» продолжает исследование космического пространства за пределами Солнечной системы. Учёные надеются получать сведения с этого космического аппарата до 2013 г.

Ученые не могут прийти к общему мнению о происхождении спутника Марса -Фобоса. Одна из версий гласит: Фобос имеет искусственное происхождение. Оба спутника Марса были открыты американским астрономом Асафом Холлом в 1877г. Он назвал их Фобос и Деймос, что в переводе с греческого означает «страх» и «ужас».

Один из спутников Марса, Фобос, расположен в 9400км от Марса. У него неправильная, не характерная для космических тел форма, и он, как и Луна, всегда обращен к планете только одной стороной. Его размеры составляют 26,6×22,3×18,5 километров.

По одной из теорий о происхождении марсианского спутника, Фобос является астероидом, захваченным тяготением планеты. Подобных небесных тел много в основном поясе астероидов между Юпитером и Марсом.

По другой теории, Фобос откололся от Марса при столкновении планеты с астероидом, или какой-то другой катастрофы планетарного масштаба. Что частично подтверждается обнаружением в породе спутника большого количества филлосиликата. Этот минерал, формирующийся только при наличии воды, ранее был обнаружен на Марсе.

Но существует еще и теория об искусственном происхождении Фобоса. Исследователям удалось выяснить, что под оболочкой спутника находится огромное по размерам пустое пространство. Вывод о наличии пустого пространства сделали две независимые группы ученых, сопоставив информацию о массе Фобоса и его силе гравитации. Эти данные представил космический аппарат Европейского космического агентства Mars Express Orbiter, запущенный 2 июля 2003г. российской ракетой с космодрома Байконур.

12 июля 1988г. к Марсу стартовали две советские космические станции - «Фобос-1» и «Фобос-2». Связь со станцией «Фобос-1» по невыясненной причине прекратилась 2 сентября того же года, а «Фобос-2» сумел достигнуть заданной орбиты.

27 марта 1989г. станция начала сближение со спутником Марса. По непонятной причине связь с ним прервалась, и восстановить ее не удалось. Никаких данных он будто бы не передал.

Еще в семидесятых годах прошлого века американский аппарат «Викинг» передал на Землю фотоснимки Фобоса. И на некоторых из них видны четкие цепочки кратеров. Если эти кратеры имеют метеоритное происхождение, то метеориты падали на поверхность очень странно. Один за другим четкой линией. Вначале специалисты в шутку говорили, что он подвергся бомбардировке. Потом эту версию стали рассматривать вполне серьезно.

После того, как было установлено, что внутри есть огромные пустоты, советский астрофизик Шкловский выдвинул казавшееся тогда фантастическим предположение, что Фобос есть не что иное, как гигантская космическая станция.

С ним сразу согласилась Марина Попович. Она же рассказала о том, что произошло перед тем, как «Фобос-2» прервал связь с Землей. Он успел передать несколько изображений. На одном видна эллипсовидная тень на поверхности Марса. И видна она не только в обычном, но и в инфракрасном диапазоне. То есть, это не тень, потому что тень не может быть теплой.

На втором снимке, рядом с поверхностью Фобоса, отчетливо виден гигантских размеров цилиндрический объект. Он имел форму сигары длинной около 20км и диаметр 1,5км. Как считает Марина Попович, именно этот объект и уничтожил станцию. Уничтожил как раз в тот момент, когда «Фобос-2» собрался послать на поверхность спутника приборы для исследования.

Снимки были сразу же засекречены.

Американский астронавт Эдвин Олдрин, выступая по одному из американских телевизионных каналов, заявил, что обязательно, и в первую очередь, надо посетить спутник Марса Фобос. По его словам, на поверхности Фобоса находится «странная штуковина, какой-то монолит». Он сказал, что все, кто видел фото этого монолита, ни секунды не сомневаются в том, что он кем-то установлен.

НАСА отказалось комментировать снимок полусферы размером с пятиэтажный дом, в которой видны многочисленные углубления. Именно этот объект Олдрин назвал монолитом.

По этому поводу высказался только представитель Канадского космического агентства доктор Алан Хильдебранд. И сказал он довольно странную фразу, смысл которой сводится к тому, что если удастся добраться до монолита, то лететь куда-либо еще, возможно, и не понадобится.

После этого интервью, многие ученые сделали вывод, что НАСА обладает какими-то очень важными сведениями. И старается их скрыть.

С каждым годом Фобос становится ближе к поверхности планеты. Рано или поздно, притяжение Марса обязательно разорвет его на части. Но пока этого не произошло, есть время для исследования этого таинственного и загадочного спутника. Пока еще есть.

К сожалению попытка России отправить аппарат для исследования таинственного Фобоса завершилась неудачей. Случайность?

Российская межпланетная станция «Фобос-Грунт» не могла стать жертвой сеансов радиолокации астероида, которые американские ученые проводили в период запуска зонда и сразу после него, свидетельствуют расчеты канадского астронома-любителя Теда Молчана (Ted Molczan).

Ранее неназванный источник в ракетно-космической отрасли сообщил газете «Коммерсант», что «Фобос-Грунт» мог оказаться в зоне действия американского радара на тихоокеанском атолле Кваджалейн, который на тот момент отслеживал траекторию одного из астероидов. Воздействие мощного радиоимпульса, по этой версии, могло привести к сбою в электронике, из-за чего зонд не включил маршевую двигательную установку и не перешел на траекторию перелета к Марсу.

В период 8-9 ноября, тогда же, когда бы запущен «Фобос», американские ученые действительно проводили эксперимент по радиолокации 400-метрового астероида 2005 YU55, который приблизился к Земле на расстояние в 325 тысяч километров — на 60 тысяч километров меньше лунной орбиты. Однако в нем участвовали лишь 70-метровый радиотелескоп в Голдстоуне и радиотелескоп Аресибо (Пуэрто-Рико).

«Я все еще ищу свидетельства об участии в этом каких-либо радаров на атолле Кваджалейн, но даже если они действительно участвовали, астероид был за горизонтом с точки зрения наблюдателя с атолла во время обоих пролетов "Фобос-Грунта”, — пишет Молчан в сообщении на сайте наблюдателей за спутниками.

Таким образом, даже если радары на Кваджалейн участвовали в программе радиолокации 2005 YU55, в момент, когда над ними проходил "Фобос-Грунт”, радарам нечего было "разглядывать” — астероид был невидим для них.

Автоматическая межпланетная станция (АМС) "Фобос-Грунт” — первая за 15 лет российская АМС, предназначенная для доставки образцов грунта со спутника Марса, — была запущена с космодрома "Байконур” в ночь на 9 ноября. Обе ступени ракеты-носителя "Зенит-2 SБ” отработали штатно, однако маршевая двигательная установка межпланетной станции не включилась и не смогла перевести аппарат на траекторию перелета к Марсу. В результате вместо 34-месячной межпланетной одиссеи "Фобос-Грунту” выпало два с небольшим месяца летать вокруг Земли.

В воскресенье, 15 января, обломки "Фобоса” упали на Землю, вот только ясности со временем и территорией падения фрагментов станции до сих пор нет.

В Минобороны РФ сообщили, что обломки станции в 21.45 мск упали в Тихом океане — в 1250 километрах западнее чилийского острова Веллингтон. Эту информацию подтвердил еще один источник РИА Новости в силовых структурах.

Однако источник в ракетно-космической отрасли РФ со ссылкой на данные гражданских российских баллистиков сказал РИА Новости, что фрагменты аппарата могли упасть в промежутке с 21.40 мск по 22.20 мск с координатами центральной точки 310,7 градуса восточной долготы (эквивалент 49,3 градуса западной долготы в 180-градусной системе) и 18,2 градуса южной широты.

После взрыва "Фобос-Грунта” в плотных слоях атмосферы Земли, рассеивание и падение обломков началось, скорее всего, над Атлантическим океаном и продолжилось на широкой полосе, включая территорию бразильского штата Гояс.

Роскосмос пока не дал официальной информации о месте и времени падения станции.

Тайна...

У этого крошечного спутника Марса с замечательным названием «Страх», а именно так Фобос и переводится, оказалось так много тайн, что просто удивительно как он ещё не рассыпался под их тяжестью… Ой не похож он на спутник, а похож на космический корабль. Но чей?

Начинать рассказ о тайнах Фобоса глупо, не предъявив собственно его фото. Вот он красавец:И глядя на это изображение, к слову сказать, сделанное 7 марта 2010 года космическим аппаратом NASA Mars Express перед нами предстаёт самый явный предмет споров. В чём тайна многочисленных полос на поверхности этого космического тела? Официальное объяснение этого феномена, думаю, известно всем, но всё же я его озвучу.

Конечно это следы от метеоритных ударов! Путешествуя по космосу, какой только мусор не встретишь. Вот только странные они эти «следы». Почему-то идут они параллельно и перпендикулярно друг другу. Ай, да метеориты - какая точность… Видели вы на каком-нибудь другом теле такие следы? Лично мне не встречались.

Зато если, согласно гипотезе, предположить, что Фобос это не что иное, как космический корабль, полосы находят вполне разумное объяснение. Взгляните на увеличенное изображение:Это не что иное, как каркас и переборки. Обшивка корабля за столько лет пришла в негодность, и внутренние части начали помаленьку «оголяться»

Следующая тайна Фобоса заключается в самом факте обнаружения последнего. Два брата (Ужас (Деймос) и Страх) были обнаружены в 1877 году Асафом Холлом. Это не смотря на довольно развитые технологии наблюдения за планетами и их спутниками в то время. Из этого факта И.С. Шкловский сделал вывод, что спутниками Марс обзавёлся совсем недавно. Более того он так же был уверен, что Фобос это космический корабль.

В 1989 году уже наш аппарат «Фобос-2», находясь в тех краях и проводя свои измерения, получил данные о том, что спутник Марса на одну треть полый. А вышеупомянутый Mars Express подтвердил эти данные. Но и это ещё не всё.

Небезызвестный радарный комплекс MARSIS (как мы помним, подобные устройства были разработаны и внедрены благодаря проекту SETI) решив «пощупать» Страх своими радиоволнами получил очень интересный отражённый сигнал. Сигнал этот неоднозначно указывает на наличие пустот в теле спутника, и не абы каких, а пустот геометрических!

А слышали Вы когда-нибудь про так называемый Монолит на поверхности Фобоса, открытый в 1998 году Э. Палермо? Про него как-то обмолвился сам Баз Олдрин.

Вот как выглядит это загадочный объект:Так или иначе, Фобос спутник явно искусственный. Но какая цивилизация построила его? А это, друзья, мы бы узнали в этом году, но снова какой-то «случай» не дал покинуть пределы нашей планеты «Фобос - Грунту»…

Если верить Википедии, то теперь ждать нам придётся до 2020 года! Прямо какой-то злой рок преследует космические аппараты, посланные к Марсу! Сначала «Mars Observer», который должен был подтвердить или опровергнуть наличие знаменитого Лица на Марсе в районе Сидонии, теперь вот «Фобос - Грунт» просто случайность за случайностью…

Огромный космический корабль на орбите Марса

Астрофизик доктор Иосиф Самуилович Шкловский рассчитал орбитальное движение марсианского спутника Фобос, и пришёл к потрясающему выводу, что луна Марса искусственная, полая, и по сути является гигантским кораблём.

Страх и ужас

У Марса два спутника - Фобос и Деймос, названия которых переводятся как Страх и Ужас. Коль скоро Марс назван в честь бога войны, имена спутников кажутся подходящими. Оба спутника были открыты в 1877 году американским астрономом Асафом Холлом, который никогда и не подозревал, что они могут быть искусственными. Обе луны чрезвычайно странны, особенно Фобос. Шкловский долго ломал над ними голову. Фобос и Деймос.

Глубоко тревожные факты

Два факта глубоко обеспокоили Шкловского.
Во-первых, оба спутника слишком мелки. Ни у одной планеты в Солнечной системе нет таких маленьких спутников как у Марса. Они уникальны.
Во-вторых, его беспокоило их происхождение. Являлись ли они просто захваченными притяжением Марса астероидами? Нет и нет! Вся их орбита была неправильна. И они очень близко к Марсу. Слишком близко. Но самое удивительное в том, что Фобос время от времени меняет свою скорость.
Невероятно, но факт!
Фобос имеет форму межзвёздного космического корабля
Русский астроном Герман Струве потратил месяцы, вычисляя в начале 20 века орбиты марсианских лун с чрезвычайной точностью. Тем не менее, Шкловский проницательно отметил, что с течением времени орбитальная скорость загадочной луны и её позиция перестали соответствовать математически рассчитанной позиции.
После продолжительного изучения приливов, гравитационных и магнитных сил, Шкловский пришел к неизбежному выводу, что никакими естественными причинами нельзя объяснить происхождение двух странных лун и их странное поведение, в частности, Фобоса
Орбита этой фантастической луны была настолько своеобразной, и настолько странной, что Фобос мог быть гигантским космическим кораблём.
Любая возможная причина была тщательно изучена, и решительно отклонена. Либо альтернативные объяснения не имели никаких доказательств, либо не бились с математическими выкладками.
Таким образом Фобос с потерей высоты ускорялся, но, возможно, на него воздействовал внешний край тонкой марсианской атмосферы? Могла ли атмосфера в действительности вызвать торможение?

Фобос пуст, как консервная банка

Во время интервью, где обсуждались особенности, окружающие Фобос, Шкловский сказал, «Чтобы произвести достаточный тормозящий эффект, и принимая во внимание крайне разреженную атмосферу Марса на высоте, Фобос должен иметь чрезвычайно малую массу, (которой он и обладает), то есть очень низкой плотностью, примерно в тысячу раз меньше чем плотность воды.
Такая низкая плотность, которая даже ниже чем плотность земного облака должна была давным-давно рассеять Фобос без следа.
«Но может ли его очевидная твёрдость иметь такую чрезвычайно низкую плотность, которая, возможно, меньше чем у воздуха? Конечно нет! Существует только одна конфигурация, при которой форма Фобоса и его крайне малая плотность могут согласовываться. Здесь мы приходим к выводу, что Фобос представляет собой полый, пустой корпус, напоминающий пустую консервную банку».
По своим целям и исполнению лунный модуль Аполло являлся такой же, по сути, консервной банкой, только конечно гораздо меньшего, чем Фобос, размера.
«Так вот, может ли небесное тело быть полым? Никогда! Таким образом Фобос должен иметь искусственное происхождение, и являться искусственным спутником Марса. Своеборазные свойства Деймоса хотя и менее ярко выражены, чем у Фобоса, также указывают на его искусственное происхождение».
Корабли пришельцев, размером с небольшую марсианскую луну? Так называемое марсианское лицо не идёт с этим ни в какое сравнение!
Сама Военно-морская обсерватория США придала веса словам российского астрофизика, заявив: доктор Шкловский довольно точно вычислил то, что если ускорение Фобоса является правдой, то марсианская луна должна быть полой, поскольку у неё отсутствует вес, присущий природному телу, и сообразное этому весу поведение.
Таким образом даже августейшая американская институция признала, что на орбите Марса может находиться корабль пришельцев… происхождение странного объекта и его конечные цели пока остаются абсолютно неизвестными.
Предположения о его назначении варьируются от гигантской марсианской космической обсерватории, до наполовину законченного межзвёздного космического корабля, или даже огромной бомбы убийцы-планет, оставшейся после межпланетной войны много миллионов лет назад

Фобос...искусственный спутник

Престижное европейское космическое агентство заявило, что Фобос, таинственная марсианская луна является искусственной. По крайней мере, одна треть его является полой, и происхождение спутника не является естественным, чуждым по своей природе. ЕКА является аналогом НАСА в Европе. Может ли это откровение мотивировать NASA, снять покров тайны со своих секретов? Не рассчитывайте на это...

Известные астрофизики считали Фобос искусственным.

Астрофизик доктор Иосиф Самуилович Шкловский сначала рассчитал орбитальное движение Фобоса, марсианского спутника. Он пришел к неизбежному выводу, что Луна является искусственной и полой, в принципе, огромным кораблем.

Русский астроном, доктор Герман Струве, месяцами рассчитывал орбиты двух марсианских лун с чрезвычайной точностью в начале 20 века. Изучив отчет астронома, Шкловский понял, с течением времени - орбитальная скорость и положение Фобоса в пространстве не соответствуют математически предсказаниям Струве.

После длительного изучения приливов, гравитационных и магнитных сил, Шкловский пришел к твердому убеждению, что нет естественных причин, которые могли бы объяснить происхождение двух нечетных Луны или их странное поведение, в частности, то, что демонстрирует Фобос.

Луны были искусственными. Кто-то или что-то создало их.

Как Марс появился многие миллионы лет назад

Во время интервью о таинственной марсианской луне Шкловский объяснил: "Существует только одно объяснение, в котором характеристики согласуются, постоянство формы Фобоса и его крайне малая средняя плотность могут примириться. Надо полагать, что Фобос полый, пустой корпус, напоминающий пустую консервную банку ».

На протяжении десятилетий большинство представителей официальной науки игнорировали прорыв Шкловского, пока ESA не начала присматриваться к странной маленькой луне.

Абстрактное исследование ESA, которое появилось в рецензируемом журнале Geophysical Research Letters, показывает, что Фобос не то, что астрофизики и астрономы многих поколений о нем думали: захваченный астероид.

"Мы сообщаем о независимых результатах двух подгрупп команды Mars Express Radio Science (MaRS), которые самостоятельно проанализировали и отслеживали данные для целей определения последовательного гравитационное притяжение луны Фобоса на космическом корабле MEX, и, следовательно, массы Фобоса. Новые значения гравитационного параметра (GM = 0,7127 ± 0,0021 х 10 - км ³ ³ / с ²) и плотности Фобоса (1876 ± 20 кг / м ³) обеспечивают значимые новые ограничения на соответствующий диапазон пористости тела (30% ± 5%), обеспечивают основу для улучшения интерпретации внутренней структуры. Мы пришли к выводу, что интерьер Фобоса вероятно, содержит большие пустоты. При рассмотрении различных гипотез о происхождении Фобоса, эти результаты не согласуются с предположением, что Фобос является захваченным астероидом ".
Кейси Казани пишет в ЕКА: Луна Марса Фобос -«Искусственная», что «... официальный сайт ЕКА Фобос содержал конкретное научные данные, с разных точек зрения, которые основательно "поддерживает идею, что радиолокационные сигналы выглядят будто возвращаются изнутри "огромного геометрически... ... полого корабля». Совпадение всех этих трех независимых экспериментов Mars Express - «изображение»," внутреннее распределение массы "," (слежение) и «внутренняя радиолокационная съемка" теперь приводят к выводу, что " Фобос внутри частично является полым, с внутренней, геометрической пустотой, что Фобос является искусственным ".

Иными словами, Фобос не является естественным спутником, это не "захваченный астероид", и объект является полым. Это именно то, что доктор Шкловский определил еще в 1960-х годах.

Фобос был искусственно построен и выведен на марсианскую орбиту…как, кем?

Данные показывают, Фобос не является естественным. В настоящее время нет достаточной информации, чтобы обнаружить, чем именно являются марсианские луны, но есть несколько интригующих предположений.

1. Это гигантский космический корабль мог быть построен как орбитальная станция или космическая обсерватория.

2. Это сгенерированный корабль, который прибыл из другой звездной системы и был помещен в парковочную орбиту вокруг Марса.

3. Луна была построена на орбите Марса межзвездными путешественниками, но не была завершена.

Четвертая возможность более зловещая и тревожная.

4. Это функциональная (или нефункциональная) гигантская планета - убийца, пространственная бомба, возможно, осталась от некоторых межпланетных конфликтов в окружающем пространстве миллионы лет назад. (Некоторые исследователи на самом деле предлагают эту гипотезу.)

Инопланетный корабль, сверхбомба или незавершенный проект?

Независимо от состояния современного Фобоса, его происхождение и цель являются совершенно неизвестными.

Отправка аппаратов к Марсу и Венере стали обыденностью для исследователей NASA и ЕКА. СМИ всего мира, последнее время подробно освещают приключения марсоходов Curiosity и Opportunity. Однако исследования внешних планет требуют намного большего терпения от учёных. Ракеты-носители пока не имеют достаточной мощности, чтобы отправить массивные космические аппараты непосредственно к планетам-гигантам. Поэтому учёным приходится довольствоваться компактными зондами, которые должны использовать так называемые гравитационные манёвры по облёту Земли и Венеры, чтобы получить достаточный импульс для полёта к поясу астероидов и за его пределы. Преследование астероидов и комет является ещё более сложной задачей, так как у этих объектов нет достаточной массы, чтобы удержать на своей орбите быстро движущиеся космические аппараты. Проблемой также являются источники энергии, обладающие достаточной ёмкостью, чтобы питать аппарат.

В общем, все эти миссии, целью которых является изучение внешних планет, очень амбициозны и поэтому заслуживают особого внимания. Look At Me рассказывает о тех, которые действуют в настоящее время.


New Horizons
(«Новые горизонты»)

Цель: изучение Плутона, его спутника Харона и пояса Койпера
Продолжительность: 2006-2026
Дальность полёта: 8,2 млрд км
Бюджет: около $650 млн

Одна из самых интересных миссий NASA нацелена на изучение Плутона и его спутника Харона. Специально для этого космическое агентство 19 января 2006 года запустило аппарат New Horizons. Автоматическая межпланетная станция в 2007 году пролетела Юпитер, сделав около него гравитационный манёвр, который позволил ускориться благодаря полю притяжения планеты. Ближайшая точка сближения аппарата с системой Плутон - Харон произойдёт 15 июля 2015 года - в этот же момент New Horizons окажется в 32 раза дальше от Земли, чем Земля от Солнца.

В 2016-2020 годах аппарат, вероятно, изучит объекты пояса Койпера - области Солнечной системы, похожей на пояс астероидов, но примерно в 20 раз шире и массивнее его. Из-за очень ограниченного запаса топлива эта часть миссии до сих пор под вопросом.

Разработка автоматической межпланетной станции New Horizons Pluto-Kuiper Belt стартовала ещё в начале 90-х, но вскоре проект оказался под угрозой закрытия из-за проблем с финансированием. Власти США отдали приоритеты миссиям к Луне и Марсу. Но из-за того что атмосфера Плутона находится под угрозой замерзания (из-за постепенного удаления от Солнца), конгресс предоставил необходимые средства.

Масса аппарата - 478 кг , включая около 80 кг топлива. Размеры - 2,2×2,7×3,2 метра


New Horizons оборудован комплексом зондирования PERSI , включающим оптические приборы для съёмки в видимом, инфракрасном и ультрафиолетовом диапазонах, анализатор космического ветра SWAP, радиоспектрометр энергичных частиц EPSSI, блок с двухметровой антенной для изучения атмосферы Плутона и «студенческий счётчик пыли» SDC для измерения концентрации пылевых частиц в поясе Койпера.

В начале июля 2013 года камера аппарата сфотографировала Плутон и его крупнейший спутник Харон с расстояния 880 млн километров. Пока фотографии нельзя назвать впечатляющими, но специалисты обещают, что 14 июля 2015 года, пролетая мимо цели на расстоянии 12500 километров, станция отснимет одно полушарие Плутона и Харона с разрешением около 1 км, а второе - с разрешением около 40 км. Также будут проведены спектральные съёмки и создана карта температур поверхности.

«Вояджер-1»

Voyager-1
и её окрестностей

«Вояджер-1» - Космический зонд NASA, запущенный 5 сентября 1977 года для изучения внешней части Солнечной системы. Вот уже 36 лет аппарат регулярно связывается с Сетью дальней космической связи NASA, удалившись на расстояние 19 млрд километров от Земли. На данный момент он является самым далёким рукотворным объектом.

Основная миссия «Вояджера-1» завершена 20 ноября 1980 года, после того как аппарат изучил систему Юпитера и систему Сатурна. Это был первый зонд, представивший подробные изображения двух планет и их спутников.

Последний год СМИ пестрили заголовками о том, что «Вояджер-1» покинул Солнечную систему. 12 сентября 2013 года NASA, наконец, официально объявило, что «Вояджер-1» пересёк гелиопаузу и вошёл в межзвёздное пространство. Как ожидается, аппарат продолжит свою миссию до 2025 года.


JUNO («Юнона»)

Цель: исследование Юпитера
Продолжительность: 2011-2017
Дальность полёта: более 1 млрд км
Бюджет: около $1,1 млрд

Автоматическая межпланетная станция НАСА Juno («Юнона») была запущена в августе 2011 года. Из-за того что ракета-носитель обладала недостаточной мощностью, чтобы вывести аппарат прямо на орбиту Юпитера, Juno пришлось сделать гравитационный манёвр вокруг Земли. То есть сначала аппарат долетел до орбиты Марса, а затем вернулся обратно к Земле, закончив её облёт лишь в середине октября этого года. Манёвр позволил аппарату набрать необходимую скорость, и в данный момент он уже находится на пути к газовому гиганту, исследовать который он начнёт 4 июля 2016 года. В первую очередь учёные надеются заполучить информацию о магнитном поле Юпитера и о его атмосфере, а также проверить гипотезу о наличии у планеты твёрдого ядра.

Как известно, Юпитер не имеет твёрдой поверхности, а под его облаками лежит слой смеси водорода и гелия толщиной около 21 тыс. км с плавным переходом от газообразной фазы к жидкой. Затем слой жидкого и металлического водорода глубиной 30-50 тыс. км. В центре него, по теории, может скрываться твёрдое ядро диаметром около 20 тыс. км

На борту Juno имеется микроволновый радиометр (MWR) , фиксирующий излучения, он позволит исследовать глубокие слои атмосферы Юпитера и узнать о количестве аммиака и воды в ней. Магнитометр (FGM) и прибор для регистрации положения относительно магнитного поля планеты (ASC) - эти приборы помогут изучить магнитосферу, динамические процессы в ней, а также представить её трёхмерную структуру. Также у аппарата имеются спектрометры и прочие датчики для исследования полярных сияний на планете.

Внутреннюю структуру планируется изучить путём измерения гравитационного поля в ходе программы Gravity Science Experiment

Основная камера космического корабля JunoCam, которая позволит отснять поверхность Юпитера во время максимальных сближений с ним (на высотах 1800-4300 км от облаков) с разрешением 3-15 км на пиксель. Остальные изображения будут иметь значительно более низкое разрешение (около 232 км на пиксель).

Камера уже была успешно протестирована - она сфотографировала Землю
и Луну во время облёта аппарата. Изображения были выложены в Сеть для изучения любителями и энтузиастами. Полученные изображения также будут смонтированы вместе в ролик, который продемонстрирует вращение Луны вокруг Земли с беспрецедентной точки обзора - прямо из глубокого космоса. По словам специалистов из NASA, «это будет очень отличаться от всего, что когда-либо раньше видели обычные люди».

«Вояджер-2»

Voyager-2
Исследует внешнюю часть Солнечной системы и межзвёздного пространства

«Вояджер-2» - космический зонд, запущенный NASAА 20 августа 1977 года, который исследует внешнюю часть Солнечной системы и межзвёздного пространства в конечном итоге. Фактически аппарат был запущен до «Вояджера-1», но тот набрал скорость и в итоге обогнал его. Зонд действует в течение 36 лет, 2 месяцев и 10 дней. Космический аппарат по-прежнему получает и передаёт данные через Сети дальней космической связи.

По состоянию на конец октября 2013 года, он находится на расстоянии 15 млрд километров от Земли. Его основная миссия закончилась 31 декабря 1989 года, после того как он успешно исследовал системы Юпитера, Сатурна, Урана и Нептуна. Ожидается, что «Вояджер-2» продолжит передавать слабые радиограммы как минимум до 2025 года.


DAWN
(«Доун», «Заря»)

Цель: исследование астероида Веста и протопланеты Церера
Продолжительность: 2007-2015
Дальность полёта: 2,8 млрд км
Бюджет: более $500 млн

DAWN - автоматическая космическая станция, которая была запущена в 2007 году для изучения двух самых больших объектов в поясе астероидов - Весты и Цереры. Уже 6 лет аппарат бороздит пространства космоса очень и очень далеко от Земли - между орбитами Марса и Юпитера.

В 2009 году он провёл манёвр в гравитационном поле Марса, набрав дополнительную скорость, и уже к августу 2011 года при помощи ионных двигателей вышел на орбиту астероида Весты, где провёл 14 месяцев, сопровождая объект на его пути вокруг Солнца.

На борту DAWN установлены две чёрно-белые матрицы (1024×1024 пикселя) с двумя объективами и цветными фильтрами. Также имеется детектор нейтронов и гамма-квантов (GraND) и спектрометр видимого и инфракрасного диапазонов (VIR) , анализирующий состав поверхности астероидов.

Веста - один из крупнейших астероидов в главном астероидном поясе. Среди астероидов занимает первое место по массе и второе по размеру после Паллады


Несмотря на то что аппарат имеет довольно скромное оснащение (по сравнению с вышеописанными), он отснял поверхность Весты с максимально возможным разрешением - до 23 метров на пиксель. Все эти изображения будут использованы для создания карты Весты высокого разрешения.

Одно из любопытных открытий DAWN состоит в том, что Веста имеет базальтовую кору и ядро из никеля и железа, также как Земля, Марс или Меркурий. Это значит, что в ходе формирования тела произошло разделение его неоднородного состава под влиянием гравитационных сил. То же самое происходит со всеми объектами на пути их превращения из космического камня в планету.

Dawn также подтвердил гипотезу о том, что Веста является источником метеоритов, обнаруженных на Земле и Марсе. Эти тела, по мнению учёных, образовались после древнего столкновения Весты с другим крупным космическим объектом, после чего она чуть не разлетелась на куски. Об этом событии свидетельствует глубокий след на поверхности Весты, известный как кратер Реясильвия.

В данный момент DAWN находится на пути к своему следующему пункту назначения - карликовой планете Церера, на орбите которой он окажется только в феврале 2015 года. Сначала аппарат приблизится на расстояние 5900 км от её поверхности, покрытой льдом, а в течение следующих 5-ти месяцев сократит его до 700 км.

Более подробное изучение двух данных «зародышей планет» позволит глубже понять процесс формирования Солнечной системы.

«Кассини-Гюйгенс»

отправлен в систему Сатурна

«Кассини-Гюйгенс» - космический аппарат, созданный nASA и Европейским космическим агентством, был отправлен в систему Сатурна. Стартовавший в 1997 году, аппарат дважды облетел Венеру (26 апреля 1998 г. и 24 июня 1999 г.) , один раз - Землю (18 августа 1999 г.) , один раз - Юпитер (30 декабря 2010 г.) . Во время сближения с Юпитером Кассини проводил скоординированные наблюдения совместно с «Галилеем». В 2005 году аппарат спустил зонд «Гюйгенс» на спутник Сатурна - Титан. Высадка прошла успешно, и аппарат открыл странный новый мир метановых каналов и бассейнов. Станция Кассини при этом стала первым искусственным спутником Сатурна. Её миссия была расширена, и прогнозируется, что она закончится 15 сентября 2017 года, после 293 полных оборотов вокруг Сатурна.


Rosetta («Розетта»)

Цель: исследование кометы 67P/Чурюмова - Герасименко и нескольких астероидов
Продолжительность: 2004-2015
Дальность полёта: 600 млн км
Бюджет: $1,4 млрд

Rosetta - это космический аппарат, запущенный в марте 2004 года Европейским Космическим Агентством (ЕКА) для исследования кометы 67P/Чурюмова - Герасименко и понимания того, как выглядела Солнечная система до формирования планет.

Rosetta состоит из двух частей - зонда Rosetta Space Probe и спускаемого аппарата Philae («Фила») . За 9 лет, проведённых в космосе, он облетел Марс, затем вернулся, чтобы совершить манёвр вокруг Земли, и в сентябре 2008 года приблизился к астероиду Штейнс, сделав снимки 60 % его поверхности. Затем аппарат снова вернулся к Земле, облетел её, чтобы набрать дополнительную скорость, и в июле 2010 года «встретился» с астероидом Лютеция.

В июле 2011 года Rosetta был переведён в «спящий» режим, а его внутренний «будильник» установлен на 20 января 2014 года, на 10:00 по Гринвичу. После пробуждения Rosetta будет находиться на расстоянии 9 млн километров от своей конечной цели - кометы Чурюмова - Герасименко.

после приближения к комете аппарат должен отправить к ней спускаемый аппарат Philae


Как говорят специалисты ЕКА, в конце мая следующего года Rosetta выполнит свои основные манёвры перед «встречей» с кометой в августе. Первые снимки далёкого объекта учёные получат уже в мае, что значительно поможет рассчитать положение кометы и её орбиту. В ноябре 2014 года, после приближения к комете, аппарат должен запустить к ней спускаемый аппарат Philae, который зацепится за ледяную поверхность при помощи двух гарпунов. После высадки аппарат соберёт образцы материала ядра, определит его химический состав и параметры, а также изучит другие особенности кометы: скорость вращения, ориентацию и изменения активности кометы.

Так как большая часть комет сформировались в одно время с Солнечной системой (примерно 4,6 миллиарда лет назад), они являются важнейшими источниками информации о том, как формировалась и как будет развиваться наша Система дальше. Также Rosetta поможет ответить на вопрос, возможно ли то, что именно кометы, которые сталкивались с Землёй в течение миллиардов лет, принесли на нашу планету воду и органические вещества.

Международный Кометный Исследователь (ICE)

Исследование Солнечной системы
и её окрестностей

Международный Кометный Исследователь (ICE) (ранее известный, как «Эксплорер-59») - аппарат, запущенный 12 августа 1978 года в рамках программы сотрудничества NASA и ЕКА. Первоначально программа была нацелена на изучение взаимодействия между магнитным полем Земли и солнечным ветром. В ней принимали участие три космических аппарата: пара ISEE-1 и ISEE-2 и гелиоцентрический космический аппарат ISEE-3 (позже переименованный в ICE) .

«Эксплорер-59» сменил название на «Международный Кометный Исследователь» 22 декабря 1983 года. В этот день, после гравитационного манёвра вокруг Луны, космический аппарат вышел на гелиоцентрическую орбиту, чтобы перехватить комету 21P/ Джакобини - Циннера . Он пролетел через хвост кометы 11 сентября 1985 года, после чего сблизился с кометой Галлея в марте 1986 года. Таким образом, он стал первым космическим аппаратом, исследовавшим сразу две кометы. После окончания миссии в 1999 году с аппаратом не связывались, однако 18 сентября 2008 года с ним удалось успешно установить контакт. Специалисты планируют вернуть ICE на орбиту Луны 10 августа 2014 года, после чего он, возможно, ещё раз исследует какую-нибудь комету.

Межпланетные космические аппараты «Венера»

«Венера» — наименование советских межпланетных космических аппаратов, запускаемых к планете Венера начиная с 1961 года. Аппараты, помимо научной аппаратуры, имеют комплект бортовой аппаратуры, включающий системы ориентации, энергопитания от солнечных батарей, корректирующую тормозную двигательную установку, радиосистему дальней связи и измерения орбиты и другое.

Космический аппарат «Венера-1» запущен 12.2.1961; масса 643,5 кг. 19-20 мая 1961 года прошел на расстоянии ~100 тыс. км от Венеры и вышел на орбиту искусственного спутника Солнца с высотой в перигелии 106 млн. км, с высотой в афелии 151 млн. км.

Космический аппарат «Венера-2» запущен 12.11.1965 с целью сближения с Венерой; масса 963 кг. Аппарат имел отсек с фототелевизионной системой и комплекс научной аппаратуры для изучения космического пространства. 27.2.1966 «Венера-2» прошел на расстоянии 24 тыс. км от поверхности Венеры и вышел на орбиту искусственного спутника Солнца с высотой в перигелии ~107 млн. км, с высотой в афелии ~179 млн. км.

Космический аппарат «Венера-3» запущен 16.11.1965 с целью достижения поверхности планеты Венера; масса 960 кг. Космический аппарат имел спускаемый аппарат в виде шара диаметром 0,9 м с теплозащитным покрытием. Посадка на поверхность планеты была предусмотрена с помощью парашютной системы. В спускаемом аппарате находились радиосистема, научная аппаратура, источники питания, В полете было проведено 63 сеанса радиосвязи, осуществлена коррекция траектории, обеспечившая попадание космического аппарата на планету. 1.3.1966 космический аппарат достиг поверхности Венеры, осуществив первый в мире перелет на другую планету.

Космический аппарат «Венера-4» запущен 12.6.1967; масса 1106 кг (масса спускаемого аппарата 383 кг). В полете проведено 114 сеансов радиосвязи с передачей научной информации. На расстоянии 12 млн. км от Земли осуществлена коррекция траектории для попадания на планету. 18.10.1967, пройдя расстояние ~350 млн. км, аппарат вошел со 2-й космической скоростью в атмосферу Венеры и от него отделился спускаемый аппарат (диаметр ~1 м), оснащенный 2 радиопередатчиками дециметрового диапазона, телеметрической системой, научной аппаратурой, радиовысотомером, системой терморегулирования, источниками электропитания. После аэродинамического торможения аппарата скорость снизилась с 10,7 км/с до 300 м/с, затем была введена в действие парашютная система; приборы в течение 1,5 ч спуска на парашюте на ночной стороне планеты измеряли давление, плотность, температуру и химический состав атмосферы Венеры. Космический аппарат впервые осуществил плавный спуск в атмосфере другой планеты. Получены непосредственные данные о характеристиках атмосферы Венеры в интервале давлений 0,05-1,8 МПа.

«Венера-5» и «Венера-6» запущены соответственно 5 и 10 января 1969 года; масса аппаратов по 1130 кг. Аппараты снабжены упрочненными спускаемыми аппаратами массой 405 кг с расширенным составом научной и измерительной аппаратуры для продолжения исследований межпланетной среды и атмосферы Венеры. В полете проводились регулярные сеансы радиосвязи (73 сеанса — с «Венерой-5», 63 сеанса — с «Венерой-6») и прием научной информации (на частоте 922,763 МГц). После выполнения предусмотренной коррекции траектории на расстоянии 15,5-15,7 млн. км от Земли космические корабли достигли Венеры 16 и 17 мая 1969 года; спускаемые аппараты с научной аппаратурой отделились от космических аппаратов, и в результате аэродинамического торможения в атмосфере планеты их скорость снизилась с 11,17 км/с до 210 м/с; затем были приведены в действие парашютные системы и спускаемые аппараты совершили плавный спуск в атмосфере в течение 51-53 мин на ночной стороне планеты. Совместный полет космических аппаратов позволил получить большой объем информации, включая уточненные данные об атмосфере Венеры в интервале давлений 0,05-2,7 МПа, т. е. до более глубоких слоев атмосферы, чем при полете «Венеры-4».

Космический аппарат «Венера-7» запущен 17.8.1970. Масса 1180 кг (масса спускаемого аппарата ~500 кг). На трассе полета были проведены две коррекции траектории, обеспечившие попадание на планету. 15.12.1970, пройдя ~330 млн. км, космический аппарат достиг Венеры; спускаемый аппарат, рассчитанный на давление 18 МПа и температуру 530 °С, совершил спуск на парашюте на поверхность Венеры. Радиосигналы на участке спуска принимались в течение 35 мин, с поверхности — в течение 22 мин 58 с. В спускаемом аппарате находились радиосистема, научная аппаратура, источники питания. В месте посадки «Венеры-7» температура поверхности составила (475±20)°С, давление (9±1,5) МПа.

Космический аппарат «Венера-8» запущен 27.3.1972; масса 1184 кг (масса спускаемого аппарата 495 кг). В полете было проведено 86 сеансов радиосвязи, осуществлена коррекция траектории. 22.7.1972, пройдя более 300 млн. км, аппарат достиг Венеры. Впервые вход в атмосферу и посадка спускаемого аппарата осуществлялись на освещенную Солнцем сторону планеты. Научная аппаратура спускаемого аппарата предназначалась для решения задач: исследования атмосферы (измерения температуры и давления); измерения освещенности в атмосфере и у поверхности планеты; определения скорости ветра на различных уровнях в атмосфере; определения содержания аммиака в атмосфере; измерения перегрузок, возникающих на участке аэродинамического торможения; определения физических характеристик поверхностного слоя и характера поверхностных пород в месте посадки. Работа бортовых систем спускаемого аппарата продолжалась на участке парашютирования ~1 ч и на поверхности 50 мин 11 с. Параметры атмосферы на дневной и ночной сторонах оказались близкими; в месте посадки «Венеры-8» температура составила (470±8) °С, давление (9±0,15) МПа.

«Венера-9» и «Венера-10» — космические аппараты нового типа. «Венера-9» запущен 8.6.1975, «Венера-10» — 14.6.1975. Масса аппаратов 4936 и 5033 кг (масса каждого спускаемого аппарата с теплозащитным корпусом 1560 кг). «Венера-9» и «Венера-10» включают в себя космический и спускаемый аппарат. Основной силовой элемент космического аппарата — блок баков, на нижнем днище которых закреплены ракетные двигатели, на верхнем — приборный отсек, выполненный в форме тора. В верхней части космического аппарата находится переходник для крепления спускаемого аппарата. В приборном отсеке размещены системы управления, терморегулирования и другое. Спускаемый аппарат имеет прочный корпус сферической формы (рассчитан на внешнее давление 10 МПа), покрытый внешней и внутренней теплоизоляцией. В верхней части к спускаемому аппарату крепится аэродинамическое тормозное устройство, в нижней — торовое посадочное устройство. В спускаемом аппарате установлены приборы радиокомплекса, оптико- механическое ТВ устройство, аккумулятор, блоки автоматики, средства терморегулирования, научные приборы. Спускаемый аппарат помещен внутри теплозащитного корпуса сферической формы (диаметр 2,4 м), защищающего его от высоких температур на всем участке торможения. В полете с «Венеры-9» и «Венеры-10» было проведено по две коррекции траектории. За двое суток до подлета к планете от космических аппаратов были отделены спускаемые аппараты, которые совершили мягкую посадку (22 и 25 октября 1975 года) на невидимую в это время с Земли освещенную сторону Венеры. После отделения спускаемых аппаратов космические аппараты были переведены на пролетные траектории, а затем выведены на орбиты искусственных спутников планеты. Для передачи научной информации была реализована необходимая баллистическая схема, обеспечившая требуемое пространственное взаимное положение космических и спускаемых аппаратов. Информация, полученная каждым спускаемым аппаратом, передавалась на свой космический аппарат, ставший к этому времени искусственным спутником Венеры, и ретранслировалась на Землю. Спускаемый аппарат вошел в атмосферу планеты под углом 20-23°.

После аэродинамического торможения осуществлялся спуск на парашютах в течение 20 мин (для проведения исследования облачного слоя), затем был сброшен парашют и осуществлен быстрый спуск. Спускаемый аппарат оснащен комплексом научной аппаратуры, включающим панорамный телефотометр для изучения оптических свойств и получения изображения поверхности в месте посадки; фотометр для измерения световых потоков в зеленых, желтых и красных лучах и в двух участках инфракрасных лучей; фотометр для измерения яркости атмосферы в инфракрасном спектре и определения химического состава атмосферы методом спектрального анализа; датчики давления и температуры; акселерометры для измерения перегрузок на участке входа в атмосферу; масс- спектрометр для измерения химического состава атмосферы на высоте 63-34 км; анемометр для определения скорости ветра на поверхности планеты; гамма- спектрометр для определения содержания естественных радиоактивных элементов в венерианских породах; радиационный плотномер для определения плотности грунта в поверхностном слое планеты.

«Венера-11» и «Венера-12» (модификация космического аппарата «Венера-9») запущены соответственно 9 и 14 сентября 1978 года; масса 4450 и 4461 кг (масса спускаемых аппаратов с теплозащитным корпусом 1600 и 1612 кг). Конструктивно «Венера-11» и «Венера-12» аналогичны «Венере-9» и «Венере-10». В полете с «Венеры-11» и «Венеры-12» было проведено по две коррекции. За двое суток до подлета к планете от космических аппаратов были отделены спускаемые аппараты, совершившие мягкую посадку 21.12.1978 («Венера-12») и 25.12.1978 («Венера-11») на расстоянии 800 км один от другого. После отделения спускаемых аппаратов космические аппараты были переведены на пролетные траектории и стали обращаться вокруг Солнца. Для передачи научной информации была реализована баллистическая схема, обеспечившая требуемое пространственное взаимное положение космических и спускаемых аппаратов. Информация, полученная каждым спускаемым аппаратом, передавалась на свой космический аппарат, затем ретранслировалась на Землю. Спускаемый аппарат вошел в атмосферу планеты под углом ~20°. После аэродинамического торможения осуществлялся спуск на парашюте в течение 10 мин (для проведения исследования облачного слоя), затем был сброшен парашют и осуществлен быстрый спуск на поверхность. Спускаемый аппарат оснащен комплексом научной аппаратуры: масс- спектрометром и газовым хроматографом для проведения тонкого химического анализа атмосферы, нефелометром и рентгенофлюоресцентным анализатором для определения химического состава аэрозолей, измерителем характеристик солнечного излучения, измерителем электрической активности в атмосфере, датчиками давления и температуры, акселерометрами для измерения перегрузок.

На космических аппаратах «Венера-11» и «Венера-12» наряду с советской аппаратурой для исследования корпускулярного, гамма- и рентгеновского излучения Солнца и Галактики была установлена также французская аппаратура для проведения экспериментов по изучению характера солнечного ветра, гамма-излучения Солнца, гамма-всплесков космического происхождения, регистрации дискретных источников гамма-излучения с высокой разрешающей способностью путем совместной работы с искусственным спутником Земли «Прогноз-7», имеющим аналогичную аппаратуру. Научная аппаратура на космическом аппарате «Венера-11» и «Венера-12» проводила регистрацию данных на трассе полета Земля — Венера и после пролета планеты Венера.
Космические аппараты «Венера-13» и «Венера-14» выведены на орбиту соответственно 30.10.1981 и 4.11.1981. По конструкции и назначению аналогичны аппаратам «Венера-11» и «Венера-12». В программу полета входят также исследования характеристик солнечного ветра, космических лучей и межпланетной плазмы. На аппарате наряду с советской научной аппаратурой установлены приборы, созданные во Франции и Австрии. Спускаемые аппараты космических аппаратов «Венера-13» и «Венера-14» по конструкции аналогичны «Венере-9» и «Венере-10»; их масса составляет 4363 и 4363,5 кг соответственно. Масса спускаемого аппарата с теплозащитным кожухом 1645 кг, масса посадочного аппарата 760 кг. В полете были проведены 2 коррекции. Мягкая посадка на Венеру совершена 1 и 5 марта 1982 года соответственно. Аппараты после отделения спускаемых аппаратов переведены на пролетную траекторию и вышли на гелиоцентрическую орбиту. На спускаемом аппарате установлена аппаратура, аналогичная аппаратуре «Венера-9» и «Венера-10». Дополнительно (в отличие от аппаратов «Венера-9» и «Венера-10») получены цветные панорамы места посадки, а с помощью грунтозаборного устройства взяты пробы грунта внутрь спускаемого аппарата и проведен его химический анализ.

Космические аппараты «Венера-15» и «Венера-16» выведены на орбиту 2 и 7 июня 1983 года. Их масса 5250 и 5300 кг соответственно. Предназначены для исследования Венеры с орбиты искусственного спутника Венеры. Выведены на эту орбиту 10 и 14 октября 1983 года. Запуски осуществлялись ракетой-носителем «Молния» («Венера-1» — «Венера-8»), ракетой-носителем «Протон» с дополнительной 4-й ступенью («Венера-9» — «Венера-16»).

Клементина — 25 января1994 года. Цель — картографирование и наблюдение Луны в различных диапазонах: видимом, УФ, ИК; лазерная альтиметрия и гравиметрия. Впервые была составлена глобальная карта элементного состава Луны, были обнаружены большие запасы льда на её южном полюсе.
  • Lunar Prospector — 7 января1998 года. Был уточнён возможный объём льда на южном полюсе Луны, его содержание в грунте оценили в 1—10 %, ещё более сильный сигнал указывает на наличие льда на северном полюсе. На обратной стороне Луны магнитометром были обнаружены сравнительно мощные локальные магнитые поля — 40 нТл, которые сформировали 2 небольшие магнитосферы диаметром около 200 км. По возмущениям в движении аппарата было обнаружено 7 новых масконов. Была проведена первая глобальная спектрометрическая съёмка в гамма-лучах, по итогам которой были составлены карты распределения титана, железа, алюминия, калия, кальция, кремния, магния, кислорода, урана, редкоземельных элементов и фосфора, и создана модель гравитационного поля Луны с гармониками до 100-го порядка, что позволяет очень точно рассчитывать орбиту спутников Луны.
  • Смарт-1 — 27 сентября2003 года. Аппарат создавался как экспериментальная АМС для отработки перспективных технологий, в первую очередь — электрореактивной двигательной установки для будущих миссий к Меркурию и Солнцу.
  • Кагуя — 14 сентября2007 года. Полученные данные дали возможность составить топографическую карту Луны с разрешением около 15 км. При помощи вспомогательного спутника «Окина» удалось составить карту распределении сил тяжести на обратной стороне Луны. Также полученные данные позволили сделать выводы о затухании вулканической активности Луны 2,84 миллиарда лет назад.
  • Чанъэ-1 — 24 октября2007 года. Планировалось, что аппарат выполнит несколько задач: построение трёхмерной топографической карты Луны — для научных целей и для определения места посадок будущих аппаратов; составление карт распределения химических элементов типа титана и железа (необходимы для оценки возможности промышленной разработки месторождений); оценка глубинного распределения элементов с помощью микроволнового излучения — поможет уточнить как распределяется гелий-3 и велико ли его содержание; изучение среды между Землёй и Луной, например, «хвостовой» области магнитосферы Земли, плазмы в солнечном ветре и т. д.
  • Чандраян-1 — 22 октября2008 года. В число основных целей запуска «Чандраян-1» входит поиск полезных ископаемых и запасов льда в полярных регионах Луны, а также составление трёхмерной карты поверхности. Часть программы — запуск ударного зонда. Он был запущен с окололунной орбиты и в течение 25 минут достиг поверхности Луны, совершив жёсткую посадку. Выбросы лунной породы на месте падения модуля будут проанализированы орбитальным аппаратом. Данные, полученные при жёсткой посадке ударного зонда, будут использованы для мягкой посадки будущего индийского лунохода, доставка которого на Луну запланирована в ходе полёта следующего зонда «Чандраян-2».
  • Lunar Crater Observation and Sensing Satellite — 18 июня2009 года. От полёта LCROSS ожидалось получить окончательные сведения о наличии водяного льда на южном полюсе луны, который мог бы сыграть важную роль для будущих пилотируемых экспедиций на Луну. 9 октября 2009 года в 11:31:19 UTC в районе кратераКабеус упал разгонный блок «Центавр». В результате падения выброшено облако из газа и пыли. LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера и упал в тот же кратер в 11:35:45 UTC, успев передать на Землю результаты своих исследований. С лунной орбиты за падением следил зонд «LRO», с околоземной — космический телескоп Хаббл и европейский спутник «Odin». С Земли — крупные обсерватории.
  • Gravity Recovery and Interior Laboratory — 10 сентября2011 года. Программа изучения гравитационного поля и внутреннего строения Луны, реконструкции её тепловой истории.
  • — 4 сентября2013 год. После завершения миссии 17 апреля2014 годаLADEE столкнулся с поверхностью Луны
  • Чанъэ-5Т1 — 23 октября 2014 года. Китайская автоматическая лунная станция для испытаний возвращения на Землю спускаемого аппарата. Китай стал третьей после СССР и США страной, выполнившей возвращение аппарата который облетел Луну и двигался со скоростью близкой ко второй космической.
  • Текущие миссии

    • Lunar Reconnaissance Orbiter — 19 июня2009 года. Аппарат будет производить следующие исследования: изучение лунной глобальной топографии; измерение радиации на лунной орбите; изучение лунных полярных регионов, включающее в себя поиск залежей водяного льда и исследование параметров освещённости; составление сверхточных карт с нанесением объектов не менее 0,5 метра с целью найти лучшие посадочные площадки.
    • ARTEMIS P1 и ARTEMIS P2 — 17 февраля2009 года. Изучения магнитного поля Луны.
    • Чанъэ-2 — 1 октября2010 года. 27 октября аппарат начал фотосъёмку участков Луны, пригодных для посадки следующих космических аппаратов. Для решения данной задачи спутник приблизится к Луне на расстояние 15 километров.
    • Чанъэ-3 — Запуск аппарата осуществлён 1 декабря 2013 года с космодрома Сичан.
    • Юйту — первый китайский луноход , запущен вместе с Чанъэ-3.

    Марс

    Успешные миссии

    Текущие миссии

    • Марс Одиссей — 7 апреля2001 года. Искусственный спутник Марса.
    • Марс-экспресс — 2 июня2003 года. Искусственный спутник Марса.
    • Оппортьюнити — 7 июля2003 года.Марсоход.
    • Mars Reconnaissance Orbiter — 12 августа2005 года. Искусственный спутник Марса.
    • Кьюриосити — 26 ноября2011 года. Марсоход.
    • Mangalyaan — 4 ноября2013 года, искусственный спутник Марса.
    • — 18 ноября 2013 года, искусственный спутник Марса.
    • Трейс Гас Орбитер — запущен 14 марта 2016 года. Аппарат исследует и выяснит природу возникновения в атмосфере Марса малых составляющих метана, других газов и водяного пара, о содержании которых известно с 2003 года. Наличие метана, быстро разлагающегося под ультрафиолетовым излучением, означает его постоянное поступление из неизвестного источника. Таким источником могут быть ископаемые или биосфера — живые организмы.

    Юпитер

    Успешные миссии

    Текущие миссии

    Сатурн