Кристаллические решетки. Типы кристаллических решеток. Кристаллическая решётка

Поваренная соль — это хлорид натрия, применяемый в качестве добавки к пище, консерванта продуктов питания. Используется также в химической промышленности, медицине. Служит важнейшим сырьем для получения едкого натра, соды и других веществ. Формула соли поваренной — NaCl.

Образование ионной связи между натрием и хлором

Химический состав хлорида натрия отражает условная формула NaCl, которая дает представление о равном количестве атомов натрия и хлора. Но вещество образовано не двухатомными молекулами, а состоит из кристаллов. При взаимодействии щелочного металла с сильным неметаллом каждый атом натрия отдает более электроотрицательному хлору. Возникают катионы натрия Na + и анионы кислотного остатка соляной кислоты Cl - . Разноименно заряженные частицы притягиваются, образуя вещество с ионной кристаллической решеткой. Маленькие катионы натрия расположены между крупными анионами хлора. Число положительных частиц в составе хлорида натрия равно количеству отрицательных, вещество в целом является нейтральным.

Химическая формула. Поваренная соль и галит

Соли — это сложные вещества ионного строения, названия которых начинаются с наименования кислотного остатка. Формула соли поваренной — NaCl. Геологи минерал такого состава называют «галит», а осадочную породу — «каменная соль». Устаревшей химический термин, который часто употребляется на производстве, — «хлористый натрий». Это вещество известно людям с глубокой древности, когда-то его считали «белым золотом». Современные ученики школ и студенты при чтении уравнений реакций с участием хлорида натрия называют химические знаки («натрий хлор»).

Проведем несложные расчеты по формуле вещества:

1) Mr (NaCl) = Ar (Na) + Ar (Cl) = 22,99 + 35,45 = 58,44.

Относительная составляет 58,44 (в а.е.м.).

2) Численно равна молекулярному весу молярная масса, но эта величина имеет единицы измерения г/моль: М (NaCl) = 58,44 г/моль.

3) Образец соли массой 100 г содержит 60,663 г атомов хлора и 39,337 г натрия.

Физические свойства поваренной соли

Хрупкие кристаллы галита — бесцветные или белые. В природе также встречаются месторождения каменной соли, окрашенной в серый, желтый либо голубой цвет. Иногда минеральное вещество обладает красным оттенком, что обусловлено видами и количеством примесей. Твердость галита по составляет всего 2-2,5, стекло оставляет на его поверхности черту.

Другие физические параметры хлорида натрия:

  • запах — отсутствует;
  • вкус — соленый;
  • плотность — 2,165 г/ см3 (20 °C);
  • температура плавления — 801 °C;
  • точка кипения — 1413 °C;
  • растворимость в воде — 359 г/л (25 °C);

Получение хлорида натрия в лаборатории

При взаимодействии металлического натрия с газообразным хлором в пробирке образуется вещество белого цвета — хлорид натрия NaCl (формула поваренной соли).

Химия дает представление о различных способах получения одного и того же соединения. Вот некоторые примеры:

NaOH (водн.) + HCl = NaCl + H 2 O.

Окислительно-восстановительная реакция между металлом и кислотой:

2Na + 2HCl = 2NaCl + Н 2 .

Действие кислоты на оксид металла: Na 2 O + 2HCl (водн.) = 2NaCl + H 2 O

Вытеснение слабой кислоты из раствора ее соли более сильной:

Na 2 CO 3 + 2HCl (водн.) = 2NaCl + H 2 O + CO 2 (газ).

Для применения в промышленных масштабах все эти методы слишком дорогие и сложные.

Производство поваренной соли

Еще на заре цивилизации люди знали, что после засолки мясо и рыба сохраняются дольше. Прозрачные, правильной формы кристаллы галита использовались в некоторых древних странах вместо денег и были на вес золота. Поиск и разработка месторождений галита позволили удовлетворить растущие потребности населения и промышленности. Важнейшие природные источники поваренной соли:

  • залежи минерала галита в разных странах;
  • вода морей, океанов и соленых озер;
  • прослойки и корки каменной соли на берегах соленых водоемов;
  • кристаллы галита на стенках вулканических кратеров;
  • солончаки.

В промышленности используются четыре основных способа получения поваренной соли:

  • выщелачивание галита из подземного слоя, испарение полученного рассола;
  • добыча в ;
  • выпаривание или рассола соленых озер (77% от массы сухого остатка приходится на хлорид натрия);
  • использование побочного продукта опреснения соленых вод.

Химические свойства хлорида натрия

По своему составу NaCl — это средняя соль, образованная щелочью и растворимой кислотой. Хлорид натрия — сильный электролит. Притяжение между ионами настолько велико, что его могут разрушить только сильно полярные растворители. В воде вещества распадается, освобождаются катионы и анионы (Na + , Cl -). Их присутствием обусловлена электропроводность, которой обладает раствор поваренной соли. Формула в этом случае записывается так же, как для сухого вещества — NaCl. Одна из качественных реакций на катион натрия — окрашивание в желтый цвет пламени горелки. Для получения результата опыта нужно набрать на чистую проволочную петлю немного твердой соли и внести в среднюю часть пламени. Свойства поваренной соли также связаны с особенностью аниона, которая заключается в качественной реакции на хлорид-ион. При взаимодействии с нитратом серебра в растворе выпадает белый осадок хлорида серебра (фото). Хлороводород вытесняется из соли более сильными кислотами, чем соляная: 2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl. При обычных условиях хлорид натрия не подвергается гидролизу.

Сферы применения каменной соли

Хлорид натрия снижает температуру плавления льда, поэтому зимой на дорогах и тротуарах используется смесь соли с песком. Она впитывает в себя большое количество примесей, при таянии загрязняет реки и ручьи. Дорожная соль также ускоряет процесс коррозии автомобильных кузовов, повреждает деревья, посаженные рядом с дорогами. В химической промышленности хлорид натрия используется как сырье для получения большой группы химических веществ:

  • соляной кислоты;
  • металлического натрия;
  • газообразного хлора;
  • каустической соды и других соединений.

Кроме того, поваренная соль применяется в производстве мыла, красителей. Как пищевой антисептик используется при консервировании, засолке грибов, рыбы и овощей. Для борьбы с нарушениями работы щитовидной железы у населения формула соли поваренной обогащается за счет добавления безопасных соединений йода, например, KIO 3 , KI, NaI. Такие добавки поддерживают выработку гормона щитовидной железы, предотвращают заболевание эндемическим зобом.

Значение хлорида натрия для организма человека

Формула соли поваренной, ее состав приобрел жизненно важное значение для здоровья человека. Ионы натрия участвуют в передаче нервных импульсов. Анионы хлора необходимы для выработки соляной кислоты в желудке. Но слишком большое содержание поваренной соли в пище может приводить к высокому кровяному давлению и повышению риска развития заболеваний сердца и сосудов. В медицине при большой кровопотере пациентам вводят физиологический солевой раствор. Для его получения в одном литре дистиллированной воды растворяют 9 г хлорида натрия. Человеческий организм нуждается в непрерывном поступлении этого вещества с пищей. Выводится соль через органы выделения и кожу. Среднее содержание хлорида натрия в теле человека составляет примерно 200 г. Европейцы потребляют в день около 2-6 г поваренной соли, в жарких странах эта цифра выше в связи с более высоким потоотделением.

Раздел 3. ХИМИЧЕСКИЙ СВЯЗЬ

§ 3.7. Типы кристаллических решеток

Твердые вещества, как правило, имеют кристаллическое строение. Она характеризуется правильным расположением частиц в четко определенных точках пространства. При мысленном соединении этих точек прямыми линиями, которые пересекаются, образуется пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки Могут находиться ионы, атомы или молекулы. Они совершают колебательное движение. С повышением температуры амплитуда колебаний увеличивается, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Кристаллические решетки, состоящие из ионов, называются іонними. их образуют вещества с ионными связями. Примером может быть кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион - шестью ионами натрия. Такому размещению отвечает самая плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле (рис. 3.15). Очень часто кристаллические решетки изображают так, как показано на рис. 3.16, где указано лишь взаимное размещение частиц, но не их размеры.

Число ближайших соседних частиц, плотно присоединяются к данной частицы в кристалле или в отдельной молекуле, называется координационным числом.

В решетке хлорида натрия координационные числа обоих ионов равны 6. Следовательно, в кристалле хлорида натрия невозможно выделить отдельные молекулы соли. их нет. Весь кристалл следует рассматривать как гігантськумакромолекулу, состоящая из одинакового числа ионов Na + и С l - , Na n Cl n , где n - большое число (см. рис. 3.15). Связи между ионами в таком кристалле достаточно прочные. Поэтому вещества с ионной решеткой имеют сравнительно высокую твердость. Они тугоплавкие и малолеткі.

Плавления ионных кристаллов вызывает в нарушение геометрически правильной ориентации ионов относительно друг друга и уменьшение прочности связи между ними. Поэтому их расплавы проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

Рис. 3.15. Пространственное размещение ионов в ионной решетке NaCl (мелкие шарики - ионы натрия)

Рис. 3.16. Кристаллическая решетка NaCl

Кристаллические решетки,в узлах которых размещаются отдельные атомы, называются атомными. Атомы в таких решетках соединенные между собой прочными ковалентними связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе - 4. Структура алмаза представлена на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекул нет. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известная значительное количество веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (для алмаза свыше 500°С), крепкие и твердые, практически не растворимые в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с карбоном и силіцієм. Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными. Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, низкие температуры плавления, нерастворимые или малорастворимые в воде, их растворы почти не проводят электрического тока. Число неорганических веществ с молекулярной решеткой незначительное. Примерами их являются лед, твердый оксид углерода(И V ) (“сухой лед”), твердые галогеноводні, твердые простые вещества, образованные одно- (благородные газы), двух- (F 2 , С l 2 , r 2 , l 2 , Н 2 , О 2 , N 2 ), трех- (О 3), четырех- (Г 4), восьми- (S 8) атомными молекулами. Молекулярная кристаллическая решетка йода представлена на рис. 3.17. Большинство кристаллических органических соединений имеют молекулярную решетку.

Рис. 3.17. Кристаллическая решетка йода

Рис. 3.18. Схематическое изображение металлической решетки

В твердом состоянии металлы образуют металлические кристаллические решетки. Последние обычно описывают как сочетание катионов металла, соединенных в одно целое валентными электронами, то есть негативно заряженным “электронным газом”. Электроны электростатически притягиваются катионами, что обеспечивает стабильность решетки. На рис. 3.18 представлено схематическое изображение металлической решетки. На рис. 3.18 представлено схематическое изображение металлической решетки (свободные электроны изображены точками). Сравните ее с другими типами кристаллических решеток.


Кристаллические решетки

8 КЛАСС

* По учебнику: Габриелян О.С. Химия-8. М.: Дрофа, 2003.

Цели. Обучающие. Дать понятие о кристаллическом и аморфном состоянии твердых веществ; познакомиться с типами кристаллических решеток, их взаимосвязью с видами химической связи и влиянием на физические свойства веществ; дать представление о законе постоянства состава веществ.
Развивающие . Развивать логическое мышление, умения наблюдать и делать выводы.
Воспитательные . Формировать эстетический вкус и коллективизм, расширять кругозор.
Оборудование и реактивы. Модели кристаллических решеток, диафильм «Зависимость свойств веществ от состава и строения», диапозитивы «Химическая связь. Строение вещества»; пластилин, жевательная резинка, смолы, воск, поваренная соль NaCl, графит, сахар, вода.
Форма организации работы. Групповая.
Методы и приемы. Самостоятельная работа, демонстрационный опыт, лабораторная работа.
Эпиграф.

ХОД УРОКА

УЧИТЕЛЬ. Кристаллы встречаются нам повсюду. Мы ходим по кристаллам, строим из кристаллов, создаем приборы и изделия из кристаллов, широко применяем кристаллы в технике и в науке, едим кристаллы, лечимся кристаллами, находим кристаллы в живых организмах, выходим на просторы космических дорог с помощью приборов из кристаллов…
Что же такое кристаллы?
Вообразите на минутку, что ваши глаза стали видеть атомы или молекулы; рост уменьшился, и вы смогли войти внутрь кристалла. Цель нашего урока – понять, что такое кристаллическое и аморфное состояние твердых веществ, познакомиться с типами кристаллических решеток, получить представление о законе постоянства состава веществ.
Какие агрегатные состояния веществ известны? Твердое, жидкое и газообразное. Они взаимосвязаны (схема 1).

Сказка о жадном хлоре

В некотором царстве, химическом государстве, жил-был Хлор. И хотя принадлежал он к старинному роду Галогенов, да и наследство получил немалое (на внешнем энергетическом уровне у него было семь электронов), был он очень жадным и завистливым, а от злости даже стал желто-зеленым. Днем и ночью мучило его желание сделаться похожим на Аргон. Думал он думал и наконец придумал: «У Аргона на внешнем уровне восемь электронов, а у меня только семь. Значит, мне надо заполучить еще один электрон, тогда я тоже буду благородным». На следующий день собрался Хлор в дорогу за заветным электроном, но далеко идти ему не пришлось: возле самого дома встретил он атом, похожий на него как две капли воды.
– Слушай, брат, дай мне свой электрон, – заговорил Хлор.
– Нет уж, лучше ты дай мне электрон, – ответил близнец.
– Ладно, давай тогда объединим наши электроны, чтобы никому не было обидно, – сказал жадный Хлор, надеясь, что потом он заберет электрон себе.
Но не тут-то было: оба атома в равной степени пользовались общими электронами, несмотря на отчаянные усилия жадного Хлора перетянуть их на свою сторону.

УЧИТЕЛЬ. Посмотрите на вещества на ваших столах и распределите их на две группы. Пластилин, жевательная резинка, смола, воск – это аморфные вещества. У них часто нет постоянной температуры плавления, наблюдается текучесть, нет упорядоченного строения (кристаллической решетки). Напротив, соль NaCl, графит и сахар – кристаллические вещества. Для них характерны четкие температуры плавления, правильные геометрические формы, симметрия.
Применение находят и аморфные, и кристаллические вещества. Мы познакомимся с типами кристаллических решеток и их влиянием на физические свойства веществ. Помогут в повторении видов химической связи подготовленные вами творческие задания – сказки.

Сказка про ковалентную полярную связь

В некотором царстве, в некотором государстве с названием «Периодическая система» жил-был маленький электрончик. У него не было друзей. Но однажды к нему в село под названием «Внешний уровень» пришел другой электрончик, точь-в-точь похожий на первого. Они сразу же подружились, ходили всегда вместе и даже не заметили, как оказались спаренными. Эти электроны прозвали ковалентными.

Сказка про ионную связь

В доме периодической системы Менделеева жили два друга – металл Na и неметалл Cl. Каждый жил в своей квартире: Na – в квартире под № 11, а Cl – под № 17.
И вот решили друзья поступить в кружок, а там им сказали: чтобы поступить в этот кружок, надо завершить энергетический уровень. Друзья расстроились и поплелись домой. Дома они думали, как завершить энергетический уровень. И вдруг Сl сказал:
– Давай, ты мне подаришь со своего третьего уровня один электрон.
– То есть как подарю? – спросил Na.
– А так, возьмешь и подаришь. У тебя будет два уровня и все завершенные, а у меня будет три уровня и тоже все завершенные. Тогда нас примут в кружок.
– Ладно, забирай, – сказал Na и отдал свой электрон.
Когда они пришли в кружок, то директор кружка спросил: «Как вам это удалось?» Они все ему рассказали. Директор сказал: «Молодцы, ребята» – и принял их в свой кружок. Натрию директор дал карточку со знаком «+1», а хлору – со знаком «–1». И теперь он принимает в кружок всех желающих – металлы и неметаллы. А то, что сделали Na и Сl, он назвал ионной связью.

УЧИТЕЛЬ. Вы хорошо разобрались в типах химической связи? Эти знания пригодятся при изучении кристаллических решеток. Мир веществ велик и разнообразен. Они обладают самыми разными свойствами. Различают физические и химические свойства веществ. Какие свойства мы отнесем к физическим?
Ответы учеников: агрегатное состояние, цвет, плотность, температуры плавления и кипения, растворимость в воде, электропроводность.

УЧИТЕЛЬ. Опишите физические свойства веществ: O 2 , H 2 O, NaCl, графит С.
Ученики заполняют таблицу, которая в результате приобретает следующий вид.

Таблица

Физические
свойства
Вещества
О 2 Н 2 О NaCl C
Агрегатное состояние Газ Жидкость Твердое Твердое
Плотность, г/см 3 1,429 (г/л) 1,000 2,165 2,265
Цвет Бесцветный Бесцветный Белый Черный
t пл, °С –218,8 0,0 +801,0
t кип, °С –182,97 +100 +1465 +3700
Растворимость в воде Малорастворим Растворим Нерастворим
Электропроводность Неэлектропроводный Слабая Проводник Проводник

УЧИТЕЛЬ. По физическим свойствам веществ можно определить их строение.

Диапозитив.

УЧИТЕЛЬ. Кристалл – твердое тело, частицы которого (атомы, молекулы, ионы) расположены в определенном, периодически повторяющемся порядке (в узлах). При мысленном соединении узлов линиями образуется пространственный каркас – кристаллическая решетка. Различают четыре типа кристаллических решеток (схема 2 , см. с. 24).

Схема 2

КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ

УЧИТЕЛЬ. Какие кристаллические решетки у О 2 , Н 2 О, NaCl, С?

Ответ учеников. О 2 и Н 2 О – молекулярные кристаллические решетки, NaCl – ионная решетка,
С – атомная решетка.
Демонстрация моделей кристаллических решеток: NaCl, C (графит), Mg, CO 2 .

УЧИТЕЛЬ. Обратите внимание на типы кристаллических решеток простых веществ в зависимости от их положения в периодической системе (с. 79 учебника).
Какой тип решетки не встречается в простых веществах?

Ответ учеников. У простых веществ не бывает ионных решеток.


Ж.Л.Пруст
(1754–1826)

УЧИТЕЛЬ. Для веществ с молекулярной решеткой характерно явление возгонки или сублимации.
Демонстрационный опыт. Возгонка бензойной кислоты или нафталина. (Возгонка – это превращение (при нагревании) твердого вещества в газ, минуя жидкую фазу, а затем снова кристаллизация в виде инея.)

УЧИТЕЛЬ. Вещества с молекулярным строением подчиняются закону постоянства состава вещества; вещества молекулярного строения имеют постоянный состав независимо от способа их получения. Закон был открыт Ж.Л.Прустом. Он разрешил долгий спор К.Л.Бертолле и Дж.Дальтона в пользу первого.
Например, углекислый газ или оксид углерода(IV)
CO 2 – сложное вещество молекулярного строения. Оно состоит из двух элементов: углерода и кислорода, причем в молекуле один атом углерода и два атома кислорода. Относительная молекулярная масса M r (CO 2 ) = 44, молярная масса M(CO 2 ) = 44 г/моль. Молярный объем V M (CO 2 ) = 22,4 моль (н.у.). Число молекул в 1 моль вещества N A (CO 2 ) = 6 10 23 молекул.
Для веществ с ионным строением закон Пруста не всегда выполняется.

Графический диктант
«Виды химических связей и типы кристаллических решеток»

Знаками «+» и «–» отмечается, характерно ли данное утверждение (1–20) для типа химической связи указанного варианта.
Вариант 1. Ионная связь.
Вариант 2. Ковалентная неполярная связь.
Вариант 3. Ковалентная полярная связь.

Утверждения.

1. Связь образуется между атомами металлов и неметаллов.
2. Связь образуется между атомами металлов.
3. Связь образуется между атомами неметаллов.
4. В процессе взаимодействия атомов образуются ионы.
5. Образовавшиеся молекулы поляризованы.
6. Связь устанавливается за счет спаривания электронов без сдвига общих электронных пар.
7. Связь устанавливается путем спаривания электронов и сдвига общей пары к одному из атомов.
8. В процессе химической реакции происходит полная передача валентных электронов от одного атома реагирующих элементов к другому.
9. Степень окисления атомов в молекуле равна нулю.
10. Степени окисления атомов в молекуле равны количеству отданных или принятых электронов.
11. Степени окисления атомов в молекуле равны количеству смещенных общих электронных пар.
12. Соединения с данным видом связи образуют кристаллическую решетку ионного типа.
13. Для соединений с этим видом химической связи характерны кристаллические решетки молекулярного типа.
14. Соединения с таким видом связи образуют кристаллические решетки атомного типа.
15. Соединения могут быть газообразными при обычных условиях.
16. Соединения твердые при обычных условиях.
17. Соединения с таким видом связи обычно тугоплавкие.
18. Вещества с таким видом связи могут быть жидкими при обычных условиях.
19. Вещества с такой химической связью имеют запах.
20. Вещества с такой химической связью имеют металлический блеск.

Ответы (самооценка).

Вариант 1

1 2 3 4 5 6 7 8 9 10
+ + + + +
11 12 13 14 15 16 17 18 19 20
+ + +

Вариант 2

1 2 3 4 5 6 7 8 9 10
+ + +
11 12 13 14 15 16 17 18 19 20
+ + + + +

Вариант 3

1 2 3 4 5 6 7 8 9 10
+ + +
11 12 13 14 15 16 17 18 19 20
+ + + + + + +

Критерии оценки: 1–2 ошибки – «5», 3–4 ошибки – «4», 5–6 ошибок – «3».

Закрепление материала

Кремний имеет атомную кристаллическую решетку. Каковы его физические свойства?
Какой тип кристаллической решетки у Na 2 SO 4 ?
Оксид СО 2 имеет низкую t пл, а кварц SiO 2 – очень высокую (кварц плавится при 1725 °С). Какие кристаллические решетки они должны иметь?

УЧИТЕЛЬ. Мы заглянули в нутро вещей, не правда ли? В заключение хочется упомянуть драгоценные камни: алмаз, сапфир, изумруд, александрит, аметист, жемчуг, опал и др. Драгоценным камням издавна приписывали целебные свойства. Считали, что кристалл аметиста предохраняет от пьянства и навевает счастливые сны. Изумруд спасает от бурь. Алмаз бережет от болезней. Топаз приносит счастье в ноябре, а гранат – в январе.

Драгоценные камни служили мерой богатств князей и императоров. Иноземные послы, побывавшие в XVII в. в России, писали, что ими овладел «тихий ужас» при виде роскошных нарядов царской семьи, сплошь унизанных драгоценными камнями.
На голове царицы Ирины Годуновой была корона, «как стена с зубцами», разделенная на 12 башенок, искусно выделанных из рубинов, топазов, алмазов и «скатных жемчугов», кругом корона была унизана огромными аметистами и сапфирами.


Известно, что шляпа князя Потемкина Таврического так была усеяна бриллиантами и из-за этого столь тяжела, что владелец не мог носить ее на голове; адъютант нес шляпу в руках за князем. На одном из платьев императрицы Елизаветы было нашито столько драгоценных камней, что она, не выдержав их тяжести, упала на балу в обморок. Впрочем, еще раньше с супругой царя Александра Михайловича случилось более досадное происшествие: ей пришлось прервать обряд венчания, чтобы снять с себя усыпанный самоцветами наряд.
Самые большие в мире алмазы известны каждый под своим названием: «Орлов», «Шах», «Конкур», «Регент» и др.
Кристаллы необходимы – в часах, эхолотах, микрофонах; алмаз – «работник» (в подшипниках, стеклорезах и др.).
«Камень сейчас в руках человека – не забава и роскошь, а прекрасный материал, которому мы сумели вернуть его место, материал, среди которого прекраснее и веселее жить. Он не будет “драгоценным камнем” – его время прошло: это будет самоцвет, дающий красоту жизни. ...В нем человек будет видеть воплощение непревзойденных красок и нетленности самой природы, к которым может прикоснуться только горящим огнем вдохновения художник», – писал академик А.Е.Ферсман.
Кристаллы можно вырастить даже в бытовых условиях. Попробуйте выполнить творческое домашнее задание по выращиванию кристаллов.

Домашнее задание
«Выращивание кристаллов»

Оборудование и реактивы. Чистые стаканы, картон, карандаш, нитки; вода, соль (NaCl, или СuSO 4 , или KNO 3 .)

Ход работы

Первый способ . Приготовьте насыщенный раствор выбранной вами соли. Для этого в горячую воду насыпьте порциями соль и перемешивайте до растворения. Как только соль перестанет растворяться, раствор насыщен. Раствор профильтруйте через марлю. Этот раствор налейте в стакан, положите карандаш с ниткой и грузом (пуговичка, например). Через 2–3 дня груз должен обрасти кристалликами.
Второй способ . Банку с насыщенным раствором закройте картоном и подождите, пока при медленном охлаждении на дно выпадут кристаллы. Обсушите кристаллы на салфетке, несколько самых привлекательных укрепите на нитке, привяжите к карандашу и опустите в насыщенный раствор, освобожденный от других кристаллов. Кристаллы могут расти 2–3 недели.

Координационные структуры. Координационными называются решетки, Б которых каждый атом (нон) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). К координационным относятся ранее рассмотренные решетки хлорида натрия и хлорида цезия (см. рис. 58), алмаза (см. рис. 64) и металлов (см. рис. 65). 

    В больщинстве случаев поляризующее влияние катиона и поляризуемость анионов (особенно таких, как анион иода, серы,кислорода) приводят к увеличению ковалентного характера связей. Другим фактором, оказывающим действие на состояние связей, является степень экранирования катиона соединенными с ним анионами. Так, например, в решетке хлорида натрия анионы хлора в гораздо меньшей степени экранируют катион, чем в решетке хлорида алюминия или олова (IV). Решетка хлорида алюминия, возникшая при конденсации газообразного хлорида, имеет все шансы сохранить в узлах молекулы - ее ионный характер выражен очень слабо. Но уже фторид алюминия, в молекуле которого ион алюминия окружен анионами меньшего радиуса, дает при конденсации решетку ионного типа и само соединение имеет солеобразный характер. 

Кристаллические решетки, в узлах которых находятся отделе-ные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером можег служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на с. 127. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. Число веществ с атомной кристаллической решеткой в неорганической химии велико. Они имеют высокие температуры плавления (у алмаза свыше 3500 °С), прочны и тверды, практически нерастворимы в жидкостях. 

Упрощенная модель ионной решетки хлорида натрия. 

Для оценки точности формулы (11.6) представляет интерес сопоставить АСкаС с изменением энтальпии в ходе разрушения кристаллической решетки хлорида натрия АВ аа- Величину A/fsaa можно определить при помощи следующего термодинамического цикла  

Чем отличаются ионы, содержащиеся в кристаллической решетке хлорида натрия и гидроксида натрия, от ионов, содержащихся в растворах этих веществ  

    Пространственное расположение ионов в ионной решетке хлорида натрия. 

Рассмотрим структуру типичных неорганических веществ. На рис. 1 приведена кристаллическая решетка хлорида натрия. Приня- 

Дефекты этого типа наблюдаются, например, в решетке хлорида натрия - некоторые узлы, отвечающие катионам и анионам, остаются пустыми. Анионы вообще редко смещаются в междоузлия, так как они, как правило, крупнее катионов. Для катионов возможны оба типа дефектов. 

В другом цикле, предложенном Майером (1930), используются энергии сублимации галогенидов шелочных металлов, энергии диссоциации их газообразных молекул и некоторые другие термохимические величины, уже фигурировавшие в цикле Габера - Борна. Для Na l этот цикл дает AG = 75(5 кДж-м оль. Таким образом, можно полагать, что энергия решетки хлорида натрия должна лежать в пределах от 760 до 790 кДж-моль, куда попадают значения, подсчитанные по уравнениям. (1.23) и (1.25) величину 762 кДж-моль- можно считать наиболее вероятным значением энергии решетки Na l. 

Кристаллические решетки, в узлах которых находятся отдельные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на рис. 84. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. 

Тепловой эффект здееь характеризует энергию кристаллической решетки хлорида натрия. 

Способ образования ионных решеток приводит к тому, что они обладают компактной структурой. Кристаллическая решетка хлорида натрия построена как бы взаимопроникновением гранецентрированных кубических систем, одна из которых содержит только катионы N3+, а другая - анионы С1 рис. 19). 

В решетке хлорида натрия координационные числа обоих ион зв равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Ка+ и С1 , На С1 , где/г - большое число (см. рис. 3.15). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи. 

Некоторые электролиты уже до растворения состоят из ионов. Так, например, кристаллическая решетка хлорида натрия построена из ионов натрия и хлорид-ионов, решетка нитрата калия - из. ионов калия и нитрат-ионов и т. п. При растворении таких веществ ионы сольватируются и переходят в жидкую фазу. В растворе нет молекул растворенного вещества, имеются только ионы. Такие электролиты называют сильными электролитами. 

Воспол11зуемся приведенными уравЕ(ениямн для оценки энергии решетки хлорида натрия. Формула Борна (1.23) после подстановки численных значений всех входящих в нее величин дает для энергии решетки 

Энергии и теплоты сольватации электролитов были рассчитаны впервые Борном и Габером (1919) фи помощи циклов, основанных на термохимическом законе Гесса. Так, например, при вычислении теплоты гидратации хлорида натрия 1 моль твердой кристаллической соли мысленно переводят в бесконечно большсш объем воды при зтом выделяется теплота растворения -AHl, = Qь Тот же раствор хлорида натрия можно получить, если сначала разрушить кристаллическую решетку с образованием ионов натрия и хлора в газовой фазе на это затрачивается элергия, равная энергии решетки хлорида натрия -Д(5р = - V Затем эти ионы переводят в бесконечно большой объем воды, при этом освобождается суммарная теплота гидратации ионов натрия и хлора - Д/У, + 

Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  

Следовательно, энергия кулононского взаимодействия одною иона со всеми другими ионами в решетке хлорида натрия в а раз превышает энергию взаимодействия двух однозарядных иоков, находящихся на расстоянии г. Таким образом, коэффициент Маделунга а для Na l равен 1,7475. Аналогичным методом можно вычислить эти величины и для других кристаллических решеток. Значения коэффициентов Маделунга для некоторых типов кристаллических структур приведены в табл. 24. 

Помимо типов связи кристаллы отличаются своей геометрией. Кубическая решетка хлорида натрия является простейшим примером. Кристалл СзС1 образует так называемую объемно-центрированную кубическую решетку. В вершинах куба, образующего элементарную ячейку, находятся одноименно заряженные ионы, скажем, ионы С1 , а в центре куба - ион Сз+. В то же время этот центр может рассматриваться, как вершина другого куба, в вершинах которого находятся ионы цезия, а в центре-анион С1 . В этом варианте каждый ион окружен восемью (а не шестью, как в случае ЫаС1) противоионами, т. е. координационное число равно восьми (рис. 55). 

Для галидов щелочных и щелочноземельных металлов харак-кулярных, образующих молекулярные решетки. Степень ковалент-рированная решетка хлорида натрия. Хлорид, бромид и иодид цезия кристаллизуются в решетке типа объемно центрированного куба. Тип решетки ионного кристалла определяется правилом, основанным на простых геометрических соображениях отношение радиусов катиона и аниона 0,2 соответствует решетке типа сульфида цинка если это отношение лежит в пределах от 0,22 до 0,41, мож- 

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, назысается координационным числом. В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные ионные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов и С1 , например Ыа,Х, где п- большое число (см. рис. 1.21). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высоко11 твердостью. Они тугоплавки и малолетучи. 

Существенно то, что в структуре поваренной соли нельзя очертить отдельные молекулы ЫаС1, так как их нет. Атомы натрия и хлора в решетке хлорида натрия не связаны попарно между собой. Между тем в условиях повышенной температуры в парах хлорида натрия существуют молекулы ЫаС1. При этом равновесное расстояние между натрием и хлором в кристалле на 15% больше, чем в газообразной молекуле Na l, т. е. последняя менее ионна. 

Таким образом, во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической решетке. Такие кристаллические решетки, в которых отсутствуют дискретные молекулы, называются координационными решетками. Для большинства неорганических веществ (более 95%) характерны именно координационные решетки. К ним относятся условно ионные, металлические и ковалентные решетки. К условно ионным решеткам принадлежит решетка хлорида натрия, металлическим - решетка натрия и ковалентным - решетки кремния и сульфида цинка. Это деление, основанное на преобладающем типе химической связи, условно. В реальных кристаллах сосуществуют различные типы химической связи, и можно рассматривать решетки ионно-ко-валентные, ковалентно-металлические и т. п. На рис. 5 для сравнения приведены элементарные ячейки м.о. 1екулярных решеток иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле, в то время как в координационных решетках все расстояния одинаковы. Однако молекулярные решетки не характерны для твердых неорганических веществ. В неорганической химии молекулы являются типичной формой существования химического соединения в наро- и газообразном состоянии. 

Отсюда Ещ, = -772,4 кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. Расчеты по приведенной схеме, называемой циклом Борна - Габера, крайне важны в неорганической химии, поскольку позволяют оценить энергию связи в соединении и другие важные энергетические характеристики твердых тел. 

Отсюда и = -772,А кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. 

Термохимический цикл для расчета эиергаи кристаллической решетки хлорида натрия складывается из следующих реакций  

Смотреть страницы где упоминается термин Решетка хлорида натрия :                   Общая химия (1968) -- [

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).