Курсовая работа: Автокорреляционная функция Примеры расчётов. Автокорреляционная функция и аддитивная модель временного ряда

Изучая АКФ пачки прямоугольных видеоимпульсов, читатель, безусловно, обратил внимание на то, что соответствующий график имел специфический лепестковый вид. С практической точки зрения, имея в виду использование АКФ для решения задачи обнаружения такого сигнала или измерения его параметров, совершенно несущественно, что отдельные лепестки имеют треугольную форму. Важен лишь их относительный уровень по сравнению с центральным максимумом при .

Наша ближайшая задача - изменить определение автокорреляционной функции таким образом, чтобы можно было извлекать из нее полезную информацию, абстрагируясь от второстепенных подробностей. Основой для этого служит идея математической модели дискретного сигнала (см. гл. 1).

Описание сложных сигналов с дискретной структурой.

Пачка одинаковых прямоугольных видеоимпульсов - простейший представитель класса сложных сигналов, построенных в соответствии со следующим принципом. Весь интервал времени существования сигнала разделен на целое число М > 1 равных промежутков, называемых позициями. На каждой из позиций сигнал может находиться в одном из даух состояний, которым отвечают числа +1 и -1.

Рис. 3.6 поясняет некоторые способы формирования многопозиционного сложного сигнала. Для определенности здесь М = 3.

Видно, что физический облик дискретного сигнала может быть различным.

Рис. 3.6. Трехпозиционный сложный сигнал: а - амплитудное кодирование; б - фазовое кодирование

В случае а символу соответствует положительное значение высоты видеоимпульса, передаваемого на соответствующей позиции; символу -1 отвечает отрицательное значение - . Говорят, что при этом реализовано амплитудное кодирование сложного сигнала. В случае б происходит фазовое кодирование. Для передачи символа +1 на соответствующей позиции генерируется отрезок гармонического сигнала с нулевой начальной фазой. Чтобы отобразить символ -1, используется отрезок синусоиды такой же длительности и с той же частотой, но его фаза получает дополнительный сдвиг на 180°.

Несмотря на различие графиков этих даух сигйалов, между ними, в сущности, можно установить полное тождество с точки зрения их математических моделей. Действительно, модель любого такого сигнала - это последовательность чисел в которой каждый символ принимает одно из даух возможных значений +1. Для удобства договоримся в дальнейшем дополнять такую последовательность нулями на «пустых» позициях, где сигнал не определен. При этом, например, развернутая форма записи дискретного сигнала {1 1, -1, 1} будет иметь вид

Важнейшая операция при обработке дискретных сигналов состоит в сдвиге такого сигнала на некоторое число позиций относительно исходного положения без. изменения его формы. В качестве примера ниже представлен некоторый исходный сигнал (первая строка) и его копии (последующие строки), сдвинутые на 1, 2 и 3 позиции в сторону запаздывания:

Дискретная автокорреляционная функция.

Постараемся так обобщить формулу (3.15), чтобы можно было вычислять дискретный аналог АКФ применительно к многопозиционным сигналам. Ясно, что операцию интегрирования здесь следует заменить суммированием, а вместо переменной использовать целое число (положительное или отрицательное), указывающее, на сколько позиций сдвинута копия относительно исходного сигнала.

Так как в «пустых» позициях математическая модель сигнала содержит нули, запишем дискретную АКФ в виде

Эта функция целочисленного аргумента , естественно, обладает многими уже известными свойствами обычной автокорреляционной функции. Так, легко видеть, что дискретная АКФ четна:

При Пулевом сдвиге эта АКФ определяет энергию дискретного сигнала:

Некоторые примеры.

Для иллюстрации сказанного вычислим дискретную АКФ трехпозиционного сигнала с одинаковыми значениями на каждой позиции: Выпишем этот сигнал вместе с копиями, сдвинутыми на 1, 2 и 3 позиции:

Видно, что уже при сигнал и копия перестают накладываться друг на друга, так что произведения, входящие в формулу (3.29), становятся равными нулю при . Вычисляя суммы, получаем

Боковые лепестки автокорреляционной функции линейно спадают с ростом номера и, подобно тому, как в случае автокорреляционной функции трех аналоговых видеоимпульсов.

Рассмотрим дискретный сигнал, отличающийся от предыдущего знаком отсчета на второй позиции:

Поступая аналогичным образом, вычислим для этого сигнала значения дискретной автокорреляционной функции:

Можно обнаружить, что первый боковой лепесток изменяет свой знак, оставаясь неизменным по абсолютному значению.

Наконец, рассмотрим трехпозиционный дискретный сигнал с математической моделью вида

Его автокорреляционная функция такова:

Из трех изученных здесь дискретных сигналов именно третий наиболее совершенен с точки зрения корреляционных свойств, поскольку при этом реализуется наименьший уровень боковых лепестков автокорреляционной функции.

Сигналы Баркера.

Дискретные сигналы с наилучшей структурой автокорреляционной функции явились в 50-60-е годы объектом интенсивных исследований специалистов в области теоретической радиотехники и прикладной математики. Были найдены целые классы сигналов с совершенными корреляционными свойствами. Среди них большую известность получили так называемые сигналы (коды) Баркера. Эти сигналы обладают уникальным свойством: независимо от числа позиции М значения их автокорреляционных функций, вычисляемые по формуле (3.29), при всех не превышают единицы. В то же время энергия этих сигналов, т. е. величина численно равна М.

Сигналы Баркера удается реализовать лишь при числе позиций М = 2, 3, 4, 5, 7, 11 и 13. Случай является тривиальным. Сигнал Баркера при был исследован нами в конце предыдущего пункта. Математические модели сигналов Баркера и отвечающие им автокорреляционные функции приведены в табл. 3.2.

Таблица 3.2 Модели сигналов Баркера

Для иллюстрации на рис. 3.7 приведен вид наиболее часто используемого 13-позиционного сигнала Баркера при даух способах кодирования, а также графическое представление его АКФ.

Рис. 3.7. Сигнал Баркера при М = 13: а - амплитудное кодирование; б - фазовое кодирование; в - автокорреляционная функция

Отметим в заключение, что исследование некоторых свойств дискретных сигналов и их автокорреляционных функций, проведенное в данной главе, имеет предварительный, вводный характер. Систематическое изучение этого круга вопросов будет предпринято в гл. 15.

Задача корреляционного анализа возникла из радиолокации, когда нужно было сравнить одинаковые сигналы, смещённые во времени.

Для количественного определения степени отличия сигнала и его смещённой во времени копии
принято вводить автокорреляционную функцию (АКФ) сигнала равную скалярному произведению сигнала и его сдвинутой копии.

(4.1)

Свойства АКФ

1) При
автокорреляционная функция становится равной энергии сигнала:

(4.2)

2) АКФ – функция чётная

(4.3)

3) Важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

4) Обычно, АКФ представляется симметричной линей с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала автокорреляционная функция может иметь как монотонно убывающей, так и колеблющийся характер.

Существует тесная связь между АКФ и энергетическим спектром сигнала.

В соответствии с формулой (4.1) АКФ есть скалярное произведение
. Здесь символомобозначена смещённая во времени копия сигнала
.

Обратившись к теореме Планшереля – можно записать равенство:

(4.4) Таким образом, приходим к результату

(4.5)

Квадрат модуля спектральной плотности представляет собой энергетический спектр сигнала. Итак энергетический спектр и автокорреляционная функция связаны парой преобразований Фурье.

Ясно, что имеется и обратное соотношение

(4.6)

Эти результаты принципиально важны по двум причинам: во-первых, оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Во-вторых, формулы (4.5), (4.6) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить АКФ, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой приём получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.

Часто вводят удобный числовой параметр – интервал корреляции , представляющий собой оценку ширины основного лепестка АКФ.

9.. Взаимокорреляционная функция и ее свойства. Связь взаимокорреляционной функции и взаимного энергетического спектра.

Взаимокорреляционная функция двух сигналов

Взаимокорреляционной функцией (ВКФ) двух вещественных сигналов и называется скалярное произведение вида:

(4.8)

ВКФ служит мерой «устойчивости» ортогонального состояния при сдвигах сигналов во времени.

При прохождении этих сигналов через различные устройства возможно, что сигнал будет сдвинут относительно сигнала на некоторое время .

Свойства ВКФ.

1) В отличие от АКФ одиночного сигнала, ВКФ, описывающая свойства системы двух независимых сигналов, не является чётной функцией аргумента :

(4.9)

2) Если рассматриваемые сигналы имеют конечные энергии, то их ВКФ ограничена.

3) При
значения ВКФ вовсе не обязаны достигать максимума.

Примером ВКФ может служить взаимокорреляционная функция прямоугольного и треугольного видеоимпульсов.

На основании теоремы Планшереля

получаем

(4.11)

Таким образом, взаимокорреляционная функция и взаимный энергетический спектр связаны между собой парой преобразований Фурье.

Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц .

Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Глава 1. Теоретические сведения

Коэффициент автокорреляции и его оценка

Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации –

g (k) = E[(x(t) - m)(x(t + k) - m)] –

и автокорреляции

r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t 1),x(t 2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t 1 , t 2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как

r (k) = g (k) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

Наиболее важным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

Автокорреляционные функции

Последовательность коэффициентов корреляции r k , где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция r k для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой .

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам :

· в детерминированных или стохастических моделях динамики не учтен существенный фактор

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2)-e(1)) 2 + ... + (e(n)-e(n -1)) 2 ]/,

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r 1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие – отрицательной .

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Все данные взяты с сайта http://e3.prime-tass.ru/macro/

Пример 1. ВВП РФ

Приведем данные о ВВП РФ

первая разность

Исследуем ряд

На диаграммах показаны: исходный ряд (сверху) и автокорреляционная функция до лага 9 (снизу). На нижней диаграмме штриховой линией обозначен уровень «белого шума» - граница статистической значимости коэффициентов корреляции. Видно, что имеется сильная корреляция 1 и 2 порядка, соседних членов ряда, но и удаленных на 1 единицу времени друг от друга. Корреляционные коэффициенты значительно превышают уровень «белого шума». По графику автокорреляции видим наличие четкого тренда.

Ниже даны значения автокорреляционной функции и уровня белого шума

Ошибка АКФ

Если нас интересует внутренняя динамика ряда необходимо найти первую разность его членов, т.е. для каждого квартала найти изменение значения по сравнению с предыдущим кварталом. Для первой разности построим автокорреляционную функцию.

Пример 2. Импорт

значение

разность

Построим автокорреляционную функцию

Ошибка АКФ

Видим, что есть автокорреляция 1-го и 2-го порядков. График показывает наличие тренда. Положительная автокорреляция объясняется неправильно выбранной спецификацией, т.к. линейный тренд тут непригоден, он скорее экспоненциальный. Поэтому сделаем ряд стационарным, взяв первую разность.

Ошибка АКФ

Видим наличие автокорреляции 4-го порядка, что соответствует корреляции данных, отдаленных на год. Автокорреляцию первого порядка не имеем.

Статистика Дарбина-Ватсона (DW) =2,023

Пример 3. Экспорт

Приведем данные

значение

разность


Для исходного ряда имеем:

Ошибка АКФ

Очевидно наличие четкого тренда, значимыми являются коэффициенты автокорреляции 1-го и 2-го порядков. Для первой разности

Ошибка АКФ

Автокорреляции уже не видим, остатки распределены как «белый шум».

Заключение

Другой полезный метод исследования периодичности состоит в исследовании частной автокорреляционной функции (ЧАКФ), представляющей собой углубление понятия обычной автокорреляционной функции. В ЧАКФ устраняется зависимость между промежуточными наблюдениями (наблюдениями внутри лага). Другими словами, частная автокорреляция на данном лаге аналогична обычной автокорреляции, за исключением того, что при вычислении из нее удаляется влияние автокорреляций с меньшими лагами. На лаге 1 (когда нет промежуточных элементов внутри лага), частная автокорреляция равна, очевидно, обычной автокорреляции. На самом деле, частная автокорреляция дает более "чистую" картину периодических зависимостей.

Как отмечалось выше, периодическая составляющая для данного лага k может быть удалена взятием разности соответствующего порядка. Это означает, что из каждого i-го элемента ряда вычитается (i-k)-й элемент. Имеются два довода в пользу таких преобразований. Во-первых, таким образом можно определить скрытые периодические составляющие ряда. Напомним, что автокорреляции на последовательных лагах зависимы. Поэтому удаление некоторых автокорреляций изменит другие автокорреляции, которые, возможно, подавляли их, и сделает некоторые другие сезонные составляющие более заметными. Во-вторых, удаление периодических составляющих делает ряд стационарным, что необходимо для применения некоторых методов анализа.

Литература

1. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1977.

2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 1997.

3. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высшая школа, 1994.

4. Мацкевич И.П., Свирид Г.П., Булдык Г.М. Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика). Минск: Вышейша школа, 1996.

5. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Сборник задач по теории вероятностей и математической статистике / Самарск. экон. ин-т. Самара, 1992.

6. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Теория вероятностей и математическая статистика / Самарск. гос. экон. акад. Самара, 1994.

7. Тимофеева Л.К., Суханова Е.И. Математика для экономистов. Сборник задач по теории вероятностей и математической статистике. –М.: УМиИЦ «Учебная литература», 1998.


А, следовательно, высоко значимые

Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

Фактически, нарушен принцип омнипотентности

Понятие автокорреляционных функций сигналов . Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной интегральной характеристикой формы сигнала, выявления в сигнале характера и параметров взаимной временной связи отсчетов, что всегда имеет место для периодических сигналов, а также интервала и степени зависимости значений отсчетов в текущие моменты времени от предыстории текущего момента. АКФ определяется интегралом от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время :

B s () =s(t) s(t+) dt = ás(t), s(t+)ñ = ||s(t)|| ||s(t+)|| cos (). (6.1.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига . Соответственно, АКФ имеет физическую размерность энергии, а при  = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

B s (0) =s(t) 2 dt = E s .

АКФ относится к четным функциям, в чем нетрудно убедиться заменой переменной t = t- в выражении (6.1.1):

B s () = s(t-) s(t) dt = B s (-).

Максимум АКФ, равный энергии сигнала при =0, всегда положителен, а модуль АКФ при любом значении временного сдвига не превосходит энергии сигнала. Последнее прямо вытекает из свойств скалярного произведения (как и неравенство Коши-Буняковского):

ás(t), s(t+)ñ = ||s(t)||||s(t+||cos (),

cos () = 1 при  = 0, ás(t), s(t+)ñ = ||s(t)||||s(t)|| = E s ,

cos () < 1 при   0, ás(t), s(t+)ñ = ||s(t)||||s(t+)||cos () < E s .

В качестве примера на рис. 6.1.1 приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной
амплитуды прямоугольного импульса, при этом энергии сигналов также будут одинаковыми, что подтверждается равными значениями центральных максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений . На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак + в выражении (6.1.1) означает, что при увеличении значений  копия сигнала s(t+) сдвигается влево по оси t и уходит за 0. Для цифровых сигналов это требует соответствующего продления данных в область отрицательных значений аргумента. А так как при вычислениях интервал задания  обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (6.1.1) функции s(t-) вместо s(t+).

B s () = s(t) s(t-) dt. (6.1.1")

Для финитных сигналов по мере увеличения значения величины сдвига  временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

= 0.

АКФ, вычисленная по центрированному значению сигнала s(t), представляет собой автоковариационную функцию сигнала:

C s () = dt, (6.1.2)

где  s – среднее значение сигнала. Ковариационные функции связаны с корреляционным функциями достаточно простым соотношением:

C s () = B s () -  s 2 .

АКФ сигналов, ограниченных во времени. На практике обычно исследуются и анализируются сигналы, заданные на определенном интервале. Для сравнения АКФ сигналов, заданных на различных временных интервалах, практическое применение находит модификация АКФ с нормировкой на длину интервала. Так, например, при задании сигнала на интервале :

B s () =
s(t) s(t+) dt. (6.1.3)

АКФ может быть вычислена и для слабозатухающих сигналов с бесконечной энергией, как среднее значение скалярного произведения сигнала и его копии при устремлении интервала задания сигнала к бесконечности:

B s () 
. (6.1.4)

АКФ по данным выражениям имеет физическую размерность мощности, и равна средней взаимной мощности сигнала и его копии в функциональной зависимости от сдвига копии.

АКФ периодических сигналов. Энергия периодических сигналов бесконечна, поэтому АКФ периодических сигналов вычисляется по одному периоду Т, с усреднением скалярного произведения сигнала и его сдвинутой копии в пределах периода:

B s () = (1/Т)s(t) s(t-) dt. (6.1.5)

Математически более строгое выражение:

B s () 
.

При =0 значение нормированной на период АКФ равно средней мощности сигналов в пределах периода. При этом АКФ периодических сигналов является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos( 0 t+ 0) при T=2/ 0 имеем:

B s () =
A cos( 0 t+ 0) A cos( 0 (t-)+ 0) = (A 2 /2) cos( 0 ). (6.1.6)

Полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ. С помощью функций автокорреляции можно проверять наличие периодических свойств в любых произвольных сигналах. Пример автокорреляционной функции периодического сигнала приведен на рис. 6.1.2.

Функции автоковариации (ФАК) вычисляются аналогично, по центрированным значениям сигнала. Замечательной особенностью этих функций являются их простые соотношения с дисперсией  s 2 сигналов (квадратом стандарта - среднего квадратического отклонения значений сигнала от среднего значения). Как известно, значение дисперсии равно средней мощности сигналов, откуда следует:

|C s ()| ≤  s 2 , C s (0) =  s 2  ||s(t)|| 2 . (6.1.7)

Значения ФАК, нормированные на значение дисперсии, представляют собой функцию автокорреляционных коэффициентов:

 s () = C s ()/C s (0) = C s ()/ s 2  cos ). (6.1.8)

Иногда эту функцию называют "истинной" автокорреляционной функцией. В силу нормировки ее значения не зависят от единиц (масштаба) представления значений сигнала s(t) и характеризуют степень линейной связи между значениями сигнала в зависимости от величины сдвига  между отсчетами сигнала. Значения  s ()  cos () могут изменяться от 1 (полная прямая корреляция отсчетов) до -1 (обратная корреляция).

На рис. 6.1.3 приведен пример сигналов s(k) и s1(k) = s(k)+шум с соответствующими этим сигналам коэффициентами ФАК -  s и  s1 . Как видно на графиках, ФАК уверенно выявила наличие периодических колебаний в сигналах. Шум в сигнале s1(k) понизил амплитуду периодических колебаний без изменения периода. Это подтверждает график кривой C s / s 1 , т.е. ФАК сигнала s(k) с нормировкой (для сопоставления) на значение дисперсии сигнала s1(k), где наглядно можно видеть, что шумовые импульсы при полной статистической независимости своих отсчетов вызвали увеличение значения С s1 (0) по отношению к значению C s (0) и несколько "размыли" функцию коэффициентов автоковариации. Это вызвано тем, что значение  s () шумовых сигналов стремится к 1 при   0 и флюктуирует относительно нуля при  ≠ 0, при этом амплитуды флюктуаций статистически независимы и зависят от количества выборок сигнала (стремятся к нулю при увеличении количества отсчетов).

АКФ дискретных сигналов. При интервале дискретизации данных t = const вычисление АКФ выполняется по интервалам  = t и обычно записывается, как дискретная функция номеров n сдвига отсчетов n:

B s (nt) = ts k s k-n . (6.1.9)

Дискретные сигналы обычно задаются в виде числовых массивов определенной длины с нумерацией отсчетов к = 0,1,…К при t=1, а вычисление дискретной АКФ в единицах энергии выполняется в одностороннем варианте с учетом длины массивов. Если используется весь массив сигнала и число отсчетов АКФ равно числу отсчетов массива, то вычисление выполняется по формуле:

B s (n) =
s k s k-n . (6.1.10)

Множитель K/(K-n) в данной функции является поправочным коэффициентом на постепенное уменьшение числа перемножаемых и суммируемых значений по мере увеличения сдвига n. Без этой поправки для нецентрированных сигналов в значениях АКФ появляется тренд суммирования средних значений. При измерениях в единицах мощности сигнала множитель К/(K-n) заменяется на множитель 1/(K-n).

Формула (6.1.10) применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

B s (n) = s k s k-n , s k-n = 0 при k-n < 0, (6.1.11)

т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (6.1.10). Разницу между нормировками по формулам (6.1.10) и (6.1.11) можно наглядно видеть на рис. 6.1.4.

Формулу (6.1.11) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:

B s (n) = M{s k s k - n } 
. (6.1.12)

Практически, дискретная АКФ имеет такие же свойства, как и непрерывная АКФ. Она также является четной, а ее значение при n = 0 равно энергии или мощности дискретного сигнала в зависимости от нормировки.

АКФ зашумленных сигналов . Зашумленный сигнал записывается в виде суммы v(k) = s(k)+q(k). В общем случае, шум не обязательно должен иметь нулевое среднее значение, и нормированная по мощности автокорреляционная функция цифрового сигнала, содержащая N – отсчетов, записывается в следующем виде:

B v (n) = (1/N) s(k)+q(k), s(k-n)+q(k-n) =

= (1/N) [s(k), s(k-n) + s(k), q(k-n) + q(k), s(k-n) + q(k), q(k-n)] =

B s (n) + M{s k q k-n } + M{q k s k-n } + M{q k q k-n }.

B v (n) = B s (n) +
+
+
. (6.1.13)

При статистической независимости полезного сигнала s(k) и шума q(k) с учетом разложения математического ожидания

M{s k q k-n } = M{s k } M{q k-n } =

может использоваться следующая формула:

B v (n) = B s (n) + 2+ . (6.1.13")

Пример зашумленного сигнала и его АКФ в сопоставлении с незашумленным сигналом приведен на рис. 6.1.5.

Из формул (6.1.13) следует, что АКФ зашумленного сигнала состоит из АКФ сигнальной компоненты полезного сигнала с наложенной затухающей до значения 2+шумовой функцией. При больших значениях K, когда→ 0, имеет местоB v (n)  B s (n). Это дает возможность не только выделять по АКФ периодические сигналы, практически полностью скрытые в шуме (мощность шумов много больше мощности сигнала), но и с высокой точностью определять их период и форму в пределах периода, а для одночастотных гармонических сигналов – и их амплитуду с использованием выражения (6.1.6).

Таблица 6.1.

Сигнал Баркера

АКФ сигнала

1, 1, 1, -1, -1, 1, -1

7, 0, -1, 0, -1, 0, -1

1,1,1,-1,-1,-1,1,-1,-1,1,-1

11,0,-1,0,-1,0,-1,0,-1,0,-1

1,1,1,1,1,-1,-1,1,1-1,1,-1,1

13,0,1,0,1,0,1,0,1,0,1,0,1

Кодовые сигналы являются разновидностью дискретных сигналов. На определенном интервале кодового слова Мt они могут иметь только два амплитудных значения: 0 и 1 или 1 и –1. При выделении кодов на существенном уровне шумов форма АКФ кодового слова имеет особое значение. С этой позиции наилучшими считаются такие коды, значения боковых лепестков АКФ которых минимальны по всей длине интервала кодового слова при максимальном значении центрального пика. К числу таких кодов относится код Баркера, приведенный в таблице 6.1. Как видно из таблицы, амплитуда центрального пика кода численно равна значению М, при этом амплитуда боковых осцилляций при n  0 не превышает 1.

3.2. Найти среднее ряда и среднеквадратическое отклонение s t , нанести их на график:

3.3. Найти коэффициенты автокорреляции для лагов τ = 1;2.

Решение . Расчет выполним по формуле

Для τ = 1 и наших значений формула примет вид:


14
12
10
8
6 s t = 3,69
4
s t = 3,69
2
T
1 2 3 4 5 6 7

Рисунок 4.1 – Нестационарный случайный процесс роста выручки

Все промежуточные расчеты см. в таблице 4.2. Окончательно:

Аналогично для r(2), см. таблицу 4.3:

Таблица 4.2 – Лаг τ = 1

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 3 -3,72 -2,72 10,12 13,84
2 3 4 -2,72 -1,72 4,68 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 5 -0,72 -0,72 0,52 0,52
5 5 7 -0,72 1,28 -0,92 0,52
6 7 14 1,28 8,28 10,60 1,64
7 - - - - - 68,56
26 38 - - 26,23 95,43

3.4. Построить по трем точкам (0,00; 1,00), (1,00; 0,32), (2,00; 0,10) автокорреляционную функцию.

Решение . См. рисунок 4.1.

r

Рисунок 4.1 Автокорреляционная функция для случайного процесса

Примечание: точки 4 и 5 вычислять необязательно.

Таблица 4.3 – Лаг τ = 2

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 4 -3,72 -1,72 6,40 13,84
2 3 5 -2,72 -0,72 1,96 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 7 -0,72 1,28 -0,92 0,52
5 5 14 -0,72 8,28 -5,96 0,52
6 - - - - - 1,64
7 - - - - - 68,56
19 35 - - 2,71 95,43

1. Мнацаканян, А.Г. Методические указания по оформлению учебных текстовых работ (рефератов, контрольных, курсовых, выпускных квалификационных) / А.Г. Мнацаканян, Ю.Я. Настин, Э.С. Круглова. – Калининград, Изд-во КГТУ, 2017. – 22 с.

2. Кремер, Н.Ш. Эконометрика: учебник / Н.Ш. Кремер, Б.А. Путко. – Эконометрика: учебник. – М.: ЮНИТИ-ДАНА, 2012. – 387 с.

3. Настин, Ю,Я. Эконометрика: учеб пос. / Ю. Я. Настин. – Калининград: НОУ ВПО БИЭФ, 2004. – 82 с.

4. Настин, Ю.Я. Эконометрика: метод. указ. и задания по контрольной работе / Ю.Я. Настин. – Калининград: ФГОУ ВПО КГТУ, 2015. – 40 с.

5. Пахнутов, И.А. Введение в эконометрику: учебно-метод пос. / И.А. Пахнутов. – Калининград: ФГОУ ВПО «КГТУ», 2009. – 108 с.

6. Буравлев, А.И. Эконометрика: учебник / А.И. Буравлев. – М.: Бином. Лаборатория знаний, 2012. – 164 с.

7. Уткин, В.Б. Эконометрика: учебник / В.Б. Уткин – изд. 2-е – М.: Дашков и К, 2011. – 564 с.

8. Эконометрика: учебник /под ред. И.И. Елисеевой. –М.: Проспект, 2011.-288 с.

9. Валентинов, В.А. Эконометрика: учебник / В.А. Валентинов – изд. 2-е – М.: Дашков и К, 2010. – 448 с.

10. Магнус, Я.Р. Эконометрика: начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. – 8-е издание, М.: Дело, 2008. – 504 с.

11. http://window.edu.ru/resource/022/45022 Скляров Ю.С. Эконометрика. Краткий курс: Учебное пособие. - СПб.: ГУАП, 2007. - 140 с.

12. http://window.edu.ru/resource/537/74537 Шанченко, Н. И. Эконометрика: лабораторный практикум: учебное пособие / Н. И. Шанченко. - Ульяновск: УлГТУ, 2011. - 117 с.

13. Берндт, Э.Р. Практика эконометрики: классика и современность: Учебник / пер с англ / Э.Р. Берндт. – М.: ЮНИТИ-ДАНА, 2005. – 863 с.

Приложение А

Значения функции Лапласа