Лимфоциты в крови: норма, повышены, понижены, причины отклонений

Любой человек, который хотя бы поверхностно знаком с основами иммунологии, знает, что В-лимфоциты выделяют антитела и тем самым обеспечивают гуморальный иммунитет . Однако это еще не все, на чем они специализируются. Многообразие их функций обусловлено не только «способностями» клеток лимфоцитов в целом, но и тем, что в организме существуют лимфоциты разных типов, которые осуществляют различные задачи.

Типы зрелых В-лимфоцитов:

В-клетки рождаются и созревают в костном мозге, выходят в кровь, переносятся в селезенку и лимфоузлы . Там они взаимодействуют с антигенами вредоносных частиц или Т-лимфоцитами. В результате В-лимфоциты частично превращаются в плазматические клетки, выделяющие антитела, а частично в клетки памяти. Благодаря постоянной работе костного мозга количество лимфоцитов в крови поддерживается на стабильном уровне, а иммунная система исправно работает.

Соответственно, В-клетки делятся на три основных типа.

1. Наивные В-лимфоциты, или собственно В-клетки.

Это клетки лимфоциты, которые только что созрели, отправились из костного мозга в органы иммунитета и еще не встретились с антигеном. Если в крови пациента с любым долготекущим заболеванием лимфоциты выше нормы, то это главным образом как раз наивные В-клетки, которые усиленно образуются костным мозгом.

2. Активированные В-лимфоциты, или клетки памяти.

Ими представлена небольшая часть В-клеток, которые встретились с Т-лимфоцитами . Они получают от них информацию о вредоносных объектах, с которыми справился иммунитет. После такого «общения» они определенным образом меняют свое строение и биохимию. Клетки памяти являются долгоживущим клоном. Иногда продолжительность их жизни составляет годы и десятилетия.

Их значение очевидно: они помнят о встреченном антигене (антиген - «метка» бактерии или другого вредоносного объекта), и его носитель когда-нибудь повторно попадает в организм, эти клетки тут же стимулируют быстрый иммунный ответ . Именно клетки памяти формируют пожизненный иммунитет к некоторым заболеваниям. В ряде случаев количество клеток памяти со временем может уменьшаться. Тогда иммунитет против конкретной болезни поддерживается до тех пор, пока количество лимфоцитов в крови остается большим, но постепенно слабеет со временем.


3. Плазматические клетки (плазмоциты).

Когда наивные В-клетки активируются антигеном, то все лимфоциты, не ставшие клетками памяти, становятся плазмоцитами. Они видоизменяются: в них сильно развиваются эндоплазматическая сеть и комплекс Гольджи. Эти органеллы хорошо представлены в тех клетках, которым предстоит интенсивно что-то производить. Плазмоциты тоже занимаются процессами синтеза; они выделяют антитела, агрессивно действующие на проникший в организм чужеродный объект. В отличие от предыдущей группы, эти лимфоциты недолго сохраняются выше нормы: как только агрессор выводится из организма, клетки сразу погибают.

В1 и В2 - лимфоциты:

Помимо классификации, приведенной выше, существует разделение лимфоцитов на подгруппы В1 и В2. Они отличаются друг от друга тем, что выделяют разные группы антител.

В1-лимфоциты выделяют антитела, которые характерны для борьбы с недавно проникшим в тело агрессором (иммуноглобулины М). Других защитных веществ они синтезировать не могут. По этой причине клетки данного вида располагаются в прибарьерных полостях. Они располагаются там затем, чтобы встретить микробы, когда те только-только прошли через защитные препятствия. По выполняемым задачам В1-лимфоциты можно сравнить с пограничниками: они ловят и устраняют только объекты, которые только что нарушили запретные барьеры.

В2-клетки выделяют защитные факторы, которые активны преимущественно против инфекций, уже успевших обосноваться в организме (иммуноглобулины G). Их действия можно сравнить с активностью полиции, которая борется с действующими преступниками.

Большая часть В-лимфоцитов в организме представлена В1-типом.

Как улучшить гуморальный иммунитет?

Как и другие части иммунной системы , В-звено иммунитета довольно
часто страдает от различных нарушений. Его недостаточная активность приводит к хроническим и повторяющимся заболеваниям, а слишком сильная способна стать причиной аллергий и аутоиммунных процессов. Во всех этих случаях иммунитет нуждается в том, чтобы все его процессы пришли в сбалансированное состояние.

Чтобы этого добиться, необходимо принимать препарат Трансфер Фактор . Это средство природного происхождения, которое естественным образом стабилизирует работу иммунитета , благоприятно влияет на деятельность В-клеток и других разновидностей лимфоцитов.

Проконсультируйтесь со своим врачом, чтобы получить рекомендации по приему Трансфер Фактора . Любой грамотный специалист подтвердит эффективность и безопасность этих таблеток как профилактического средства, а также одобрит их применение в качестве вспомогательного компонента терапии имеющихся заболеваний.

34(часть 2)

В-лимфоциты, плазматическая клетка.

B-лимфоциты (B-клетки) - это тип лимфоцитов, обеспечивающий гуморальный иммунитет.

У взрослого человека и млекопитающих B-лимфоциты образуются в костном мозге из стволовых клеток, у эмбрионов - в печени и костном мозге.

Главная функция B-лимфоцитов (а вернее плазматических клеток, в которые они дифференцируются) - это выработка антител. Воздействие антигена стимулирует образование клона B-лимфоцитов, специфического к данному антигену. Затем происходит дифференцировка новообразованных B-лимфоцитов в плазматические клетки, вырабатывающие антитела. Эти процессы проходят в лимфоидных органах, регионарных к месту попадания в организм чужеродного антигена.

В различных органах проходит накопление клеток, продуцирующих иммуноглобулины разных классов:

в лимфоузлах и селезенке находятся клетки, продуцирующие иммуноглобулины М и иммуноглобулины G;

в пейеровых бляшках и других лимфоидных образованиях слизистых оболочек находятся клетки, продуцирующие иммуноглобулины А и Е.

Контакт с любым антигеном инициирует образование антител всех пяти классов, но после включения регуляторных процессов в специфических условиях начинают преобладать иммуноглобулины определенного класса.

В норме в организме в небольших количествах присутствуют антитела практически ко всем существующим антигенам. Антитела, полученные от матери, присутствуют в крови новорожденного.

Антителообразование в плазматических клетках, которые образуются из B-лимфоцитов, тормозит выход в дифференцировку новых B–лимфоцитов по принципу обратной связи.

Новые B-клетки не выйдут в дифференцировку, пока в данном лимфоузле не начнется гибель клеток, продуцирующих антитела, и только в случае, если в нем будет еще антигенный стимул.

Данный механизм осуществляет контроль над ограничением выработки антител до уровня, который необходим для эффективной борьбы с чужеродными антигенами.

Этапы созревания

Антигеннезависимая стадия созревания В-лимфоцитов Антигеннезависимая стадия созревания В-лимфоцитов происходит под контролем локальных клеточных и гуморальных сигналов от микроокружения пре-В-лимфоцитов и не определяется контактом с Аг. На этой стадии происходит формирование отдельных пулов генов, кодирующих синтез Ig, а также экспрессия этих генов. Однако, на цитолемме пре-В-клеток ещё нет поверхностных рецепторов - Ig, компоненты последних находятся в цитоплазме. Образование В-лимфоцитов из пре-В-лимфоцитов сопровождается появлением на их поверхности первичных Ig, способных взаимодействовать с Аг. Только на этом этапе В-лимфоциты попадают в кровоток и заселяют периферические лимфоидные органы. Сформировавшиеся молодые В-клетки накапливаются в основном в селезёнке, а более зрелые - в лимфатических узлах. Антигензависимая стадия созревания В-лимфоцитов Антигензависимая стадия развития В-лимфоцитов начинается с момента контакта этих клеток с Аг (в том числе - аллергеном). В результате происходит активация В-лимфоцитов, протекающая в два этапа: пролиферации и диффе-ренцировки. Пролиферация В-лимфоцитов обеспечивает два важных процесса: - Увеличение числа клеток, дифференцирующихся в продуцирующие AT (Ig) В-клетки (плазматические клетки). По мере созревания В-клеток и их превращения в плазматические клетки происходит интенсивное развитие бе-локсинтезирующего аппарата, комплекса Гольджи и исчезновение поверхностных первичных Ig. Вместо них продуцируются уже секретируемые (т.е. выделяемые в биологические жидкости - плазму крови, лимфу, СМЖ и др.) антигенспецифические AT. Каждая плазматическая клетка способна секретировать большое количество Ig - несколько тысяч молекул в секунду. Процессы деления и специализации В-клетки осуществляются не только под влиянием Аг, но и при обязательном участии Т-лимфоцитов-хелперов, а также выделяемых ими и фагоцитами цитокинов - факторов роста и дифференцировки; - Образование В-лимфоцитов иммунологической памяти. Эти клоны В-клеток представляют собой долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об Аг. Клетки памяти активируются при повторной их стимуляции тем же самым Аг. В этом случае В-лимфоциты памяти (при обязательном участии Т-клеток-хелперов и ряда других факторов) обеспечивают быстрый синтез большого количества специфических AT, взаимодействующих с чужеродным Аг, и развитие эффективного иммунного ответа или аллергической реакции.

В-клеточный рецептор.

B-клеточный рецептор, или B-клеточный рецептор антигена (англ. B-cell antigen receptor, BCR) - мембранный рецептор В-клеток, специфично узнающий антиген. Фактически В-клеточный рецептор представляет собой мембранную форму антител (иммуноглобулинов), синтезируемых данным В-лимфоцитом, и имеет ту же субстратную специфичность, что и секретируемые антитела. С В-клеточого рецептора начинается цепь передачи сигнала внутрь клетки, которая в зависимости от условий может приводить к активации, пролиферации, дифференцировке или апоптозу В-лимфоцитов. Сигналы, поступающие (или не поступающие) от B-клеточного рецептора и его незрелой формы (пре-В-клеточного рецептора), оказываются критическими в созревании В-лимфоцитов и в формировании репертуара антител организма.

Помимо мембранной формы антитела, в состав B-клеточного рецепторного комплекса входит вспомогательный белковый гетеродимер Igα/Igβ (CD79a/CD79b), который строго необходим для функционирования рецептора. Передача сигнала от рецептора проходит при участии таких молекул, как Lyn, Syk, Btk, PI3K, PLCγ2 и других.

Известно, что В-клеточный рецептор играет особую роль в развитии и поддержании злокачественных В-клеточных заболеваний крови. В связи с этим большое распространение получила идея применения ингибиторов передачи сигнала от этого рецептора для лечения данных заболеваний. Несколько таких препаратов показали себя эффективными и сейчас проходят клинические испытания. Но мы про них ничего и никому не скажем. т-с-с-сс!

В1 и В2- популяции.

Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 - это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток–предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка–предшественница отселяется из кроветворной ткани на свою анатомическую нишу - в брюшную и плевральную полости - ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов - прибарьерные полости.

B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены - наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты - как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты - «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов - продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

Т-лимфоциты.

Т-лимфоциты образуют три основные субпопуляции:

1) Т-киллеры осуществляют иммунологический генетический надзор, разрушая мутированные клетки собственного организма, в том числе и опухолевые, и генетически чужеродные клетки трансплантатов. Т-киллеры составляют до 10 % Т-лимфоци-тов периферической крови. Именно Т-киллеры своим воздействием вызывают отторжение пересаженных тканей, но это и первая линия защиты организма от опухолевых клеток;

2) Т-хелперы организуют иммунный ответ, воздействуя на В-лимфоциты и давая сигнал для синтеза антител против появившегося в организме антигена. Т-хелперы секретируют интерлейкин-2, воздействующий на В-лимфоциты, и г-интерферон. Их в периферической крови до 60–70 % общего числа Т-лимфоцитов;

3) Т-супрессоры ограничивают силу иммунного ответа, контролируют активность Т-киллеров, блокируют деятельность Т-хелперов и В-лимфоцитов, подавляя избыточный синтез антител, которые могут вызывать аутоиммунную реакцию, т. е. обратиться против собственных клеток организма.

Т-супрессоры составляют 18–20 % Т-лимфоцитов периферической крови. Избыточная активность Т-суп-рессоров может привести к угнетению иммунного ответа вплоть до его полного подавления. Это бывает при хронических инфекциях и опухолевых процессах. В то же время недостаточная деятельность Т-супрес-соров приводит к развитию аутоиммунных заболеваний в связи с повышенной активностью Т-киллеров и Т-хелперов, не сдерживаемых Т-супрессо-рами. Для регулирования иммунного процесса Т-супрессоры секретируют до 20 различных медиаторов, ускоряющих или замедляющих активность Т– и В-лимфоцитов. Кроме трех основных видов, существуют и другие виды Т-лимфоцитов, в том числе Т-лимфоциты иммунологической памяти, сохраняющие и передающие информацию об антигене. При повторной встрече с этим антигеном они обеспечивают его распознавание и тип иммунологического ответа. Т-лимфоциты, выполняя функцию клеточного имму-нитета, кроме того, синтезируют и секретируют ме-диаторы (лимфокины), которые активизируют или за-медляют деятельность фагоцитов, а также медиаторы с цитотоксилогическим и интерферонопо-добным действиями, облегчая и направляя действие неспецифической системы.

Этапы созревания.

Созревание Т-лимфоцитов начинается с того, что некоторая часть лимфоидных стволовых клеток направляется в тимус, где и идет процесс созревания. В процессе дифференцировки в центральных иммунных органах стволовая клетка проходит несколько этапов без участия антигена (антигеннезависимая дифференцировка).

Пока стволовая клетка находится в костном мозге, на ней появляются структуры, указывающие, по какому пути дифференцировки (Т- или В-) она пойдет. Ранний предшественник Т-лимфоцитов имеет на своей мембране гликопротеин с молекулярной массой 3,3 104 D (ГП-33), который впоследствии соединяется с антигенраспознающим рецептором.

На втором этапе появляются незрелые предшественники Т-лимфоцитов. В этот период на мембране лимфоцитов образуются антигенраспознающие рецепторы, после этого лимфоциты способны распознавать антигены.

Для Т-лимфоцита антигенраспознающим рецептором является димерная молекула, относящаяся к суперсемейству иммуноглобулинов.

Появление на поверхности предшественников лимфоидных клеток определенных рецепторов служит сигналом, позволяющим клеткам дифференцироваться в специализированную линию лимфоцитов. Имеющие такие рецепторы клетки мигрируют в особую область центральных иммунных органов, где взаимодействуют с микроокружением, способствующим дифференцировке данной клетки. После контакта с клеткой-предшественником, в стромальных клетках локального микроокружения развиваются процессы, направленные на "обучение" клеток-предшественников для их дальнейшей дифференцировки в отдельную линию.

Позитивная и негативная селекция в тимусе.

Предшественники Т-лимфоцитов на ранних этапах дифференцировки в тимусе подвергаются позитивной и негативной селекции. Не прошедшие селекцию предшественники подвергаются апоптозу. При негативной селекции элиминируются клетки, распознающие аутоантигены. Механизмы представления аутоантигенов в тимусе до настоящего времени мало изучены, а данные о становлении этого процесса в раннем онтогенезе практически отсутствуют. В отличие от тимуса, в периферических органах и тканях иммунной системы происходит представление чужеродных антигенов, и в этом процессе участвуют иммунные протеасомы. Целью данной работы являлась проверка предположения об участии иммунных протеасом в представлении аутоантигенов в тимусе, а также изучение становления процесса негативной селекции в раннем онтогенезе. Количественную оценку экспрессии субъединиц иммунных протеасом LMP7 и LMP2 в тимусе проводили с помощью Вестерн-блоттинга в пре- и постнатальном онтогенезе у крыс. Распределение иммунных протеасом в клетках тимуса анализировали с помощью иммуногистохимии. Параллельно оценивали динамику уровня апоптоза в тимусе на тех же этапах онтогенеза с помощью проточной цитофлуориметрии. Иммуногистохимически показано, что экспрессия иммунных протеасом наблюдается не в тимоцитах, а, вероятнее всего, в эпителиальных и дендритных клетках тимуса, которые являются антиген-представляющими для Т-клеток. Этот факт дает основание полагать, что негативная селекция в тимусе происходит с участием иммунных протеасом. Обе иммунные субъединицы иммунных протеасом обнаруживаются в тимусе, начиная с 18-го эмбрионального дня (Э). Причем количество этих субъединиц на Э18 невелико и возрастает к Э21, а затем остается на том же уровне до 19-го постнатального дня (П19). В то же время, на Э18 в тимусе регистрируется высокий уровень апоптоза, который снижается к Э21 и далее остается неизменным до П30. Полученные данные свидетельствуют о том, что негативная селекция в тимусе может происходить у плодов уже на Э18, а к Э21 усиливается до уровня, характерного для постнатальных животных. Высокий уровень апоптоза, наблюдаемый на Э18 связан, по-видимому, не столько с процессами негативной селекции, сколько с активной миграцией предшественников Т-лимфоцитов в тимус накануне Э18, а, как известно, количество локусов для мигрирующих предшественников в тимусе ограничено. Таким образом, впервые была показана экспрессия иммунных протеасом в тимусе, участвующих в представлении аутоантигенов при негативной селекции, в перинатальном онтогенезе. Становление процесса негативной селекции у крыс происходит еще в пренатальном онтогенезе.

Позитивная селекция : погибают тимоциты, не связавшие ни одного из доступных комплексов MHC-пептид. В результате позитивной селекции в тимусе погибает около 90% тимоцитов.

Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы MHC-пептид со слишком высокой аффинностью. Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.

Т-клеточный рецептор. Строение, функции. Активный центр

Т-клеточные рецепторы (англ. TCR) - поверхностные белковые комплексы Т-лимфоцитов, ответственные за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (англ. MHC) на поверхности антиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов. Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена, презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина, с помощью которого между двумя цепями TCR образуется дисульфидная связь.

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга.

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ)2+γ+δ+ε2+ζ2.

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Структура рецептора Т-лимфоцита во многом напоминает структуру молекулы антитела. Молекулы Т-клеточных рецепторов (ТКР) состоят из двух цепей - а и р. Каждая из них содержит V- и С-домены, их структура закреплена дисульфидными связями. Вариабельные домены а- и р-цепей имеют не 3-4, как у антител, а не менее 7 гипервариабельных участков, которые формируют активный центр рецептора. За С-доменами, около мембраны, располагается шарнирная область из 20аминокислотных остатков. Она обеспечивает соединение а- и р-цепей с помощью дисульфидных связей. За шарнирной областью располагается трансмембранный гидрофобный домен из 22 аминокис­лотных остатков, он связан с коротким внутрицитоплазматичеким доменом из 5-16 аминокислотных остатков. Распознавание Т-клеточным рецептором представляемого антигена происходит следующим образом. Молекулы МНС классаП, как и рецепторы Т-лимфоцитов, состоят из двух полипептидных цепей - а и р. Их активный центр для связывания представляемых антигенных пептидов имеет форму «щели». Она формируется спиральными участками а- и р-цепей, соединенными на дне «щели» между собой неспиральной областью, образованной сегментами той и другой цепи. В этом центре (щели) молекула МНС присоединяет процессированный антиген и таким образом представляет его Т-клеткам (рис. 63). Активный центр Т-клеточного рецептора образуется гипервариабельными участ­ками а- и р-цепей. Он также представляет собой своеобразную «щель», структура которой соответ­ствует пространственной структуре представляемой молекулой МНС классаП пептидного фрагмента антигена в такой же степени, как структура активного центра молекулы антитела соответствует пространственной структуре детерминанта антигена. Каждый Т-лимфоцит несет рецепторы только для одного какого-то пептида, то есть специфичен в отношении конкретного антигена и связывает процес­сированный пептид только одного типа. Присоединение представляемого антигена к Т-клеточному рецептору индуцирует передачу сигнала от него на геном клетки.

Для функционирования любого ТКР необходим его контакт с молекулой CD3. Она состоит из 5субъединиц, каждая из которых кодируется своим геном. Молекулы CD3 имеют все субклассы Т-лимфоцитов. Благодаря взаимодействию Т-клеточного рецептора с молекулой CD3 обеспечиваются следующие процессы: а)вынос ТКР на поверхность мембраны Т-лимфоцита; б)придание соответствую­щей пространственной структуры молекуле Т-клеточного рецептора; в)прием и передача сигнала Т-клеточным рецептором после его контакта с антигеном в цитоплазму, а затем в геном Т-лимфоцита через фосфатидилинозитольный каскад с участием посредников.

В результате взаимодействия молекулы МНС классаП, несущей антигенный пептид, с рецептором Т-лимфоцита пептид как бы встраивается в «щель» рецептора, которую образуют гипервариабельные участки а- и р-цепей, контактируя при этом с той и другой цепью

Рекомбинация генов, кодирующих цепи Т-клеточного рецептора

Специфичность Т-клеток к определенным антигенам побудила также к поиску генетических механизмов, которые увеличивают многообразие их рецепторов. Многие исследователи предполагали, что гены, кодирующие рецепторы Т-клеток, построены аналогично генам антител. Однако долгое время не удавалось идентифицировать поверхностные структуры, которые обусловили способность Т-клеток распознавать антигены. В настоящее время установлено, что рецептор Т-клеток образован двумя субъединицами и напоминает Fab-фрагмент антитела.

В 1984 г. Т. Мак М. Дэвис клонировали ген, который перестраивался только в Т-клетках, но не в В-клетках. Такого гена не было в других соматических клетках, что свидетельствовало о том, что он кодирует именно те структуры, которые являются различными в разных клонах Т-лимфоцитов.

Установка нуклеотидной последовательности этих генов выявило их гомологию к генов, кодирующих синтез иммуноглобулинов. Первым клонированным геном ТКР оказался ген, кодирующий ß-цепь ТКР. Затем X. Саито и Д. Кранц клонировали гены Т-клеток, кодирующих у-цепь ТКР. Позже было идентифицировано гены, кодирующие синтез α-цепей, которые вместе с ß-цепями образуют гетеродимерний комплекс - в |-ТКР. Функциональное значение в-цепей оставалось определенное время неизвестным, пока в пределах локуса генов а-цепей не было идентифицировано гены, кодирующие б-цепи Т-клеточного рецептора. Оказалось, что у- и б-цепи образуют гетеродимерний комплекс, который является альтернативным вариантом Т-клеточного рецептора и который называют уб-ТКР. Т-клетки, экспрессируют уб -ТКР, представляют отдельную популяцию лимфоцитов, функцию которых еще окончательно не выяснено. Оказалось, что гены Т-клеточных рецепторов, как и гены иммуноглобулинов, в эмбриональном геноме также представлены значительным количеством генных сегментов, которые рекомбинируют при развитии Т-клеток. Согласно генные сегменты V, D и J кодирующих вариабельные домены ТКР, а С-сегмента - константные домены. К константного домена каждой цепи рецептора Т-клеток присоединена последовательность гидрофобных аминокислот, заякорюють его в мембране Т-клеток. Итак, рецепторы Т-клеток представлены только в мембраносвязанных форме и во время созревания Т-клеток переключения различны х С-сегментов не происходит.

Гены ТКР человека и мыши построены принципиально подобно. Они состоят из четырех локусов, кодирующих а-, ß-, у-и б-цепи Т-клеточного рецептора. В геноме человека локус генов ß-цепей ТКР размещен на 7-й хромосоме, а-цепей - на 14-й, у-цепей на 7-й хромосоме и гены б-цепей ТКР размещены в середине локуса генов а-цепей, то есть на 14-й хромосоме. Локусы генов а-и у-цепей представлены сегментами V, J и С, а следовательно, подобные по организации в генов легких цепей иммуноглобулинов. При этом локус у-цепей содержит несколько вариантов Су-сегментов, каждому из которых предшествует несколько Jy-сегментов (аналогично организации генов Х-цепей иммуноглобулинов), а локус а-цепей содержит значительное количество (около сотни) Vo-сегментов, несколько Ja -сегментов и один Са-сегмент (напоминает организацию локуса генов к-цепей иммуноглобулинов). Локусы генов ß-и б-цепей состоят из четырех кластеров генных сегментов V, D, J и С (подобно организации локуса Н-цепей иммуноглобулинов). Поэтому CDR3-perioHH ß-и ö-цепей более изменчивы, чем а-и у-цепей, поскольку место соединения трех генетических сегментов V, D и J кодирует третий гипервариабельную петлю в активных центрах ТКР.

При образовании Т-клеток, несущих в |-ТКР, сначала перестраиваются гены ß-цепи, а затем а-цепи, а в процессе образования клеток, несущих уб-ТКР, - соответственно гены б-и у-цепей. Благодаря тому, что локус генов б-цепей находится в середине локуса генов а-цепей, ни Т-клетка не может одновременно экспрессировать oß-и уб-ТКР. Кроме того, каждая цепь синтезируется только из одной пары гомологичных хромосом, т.е. при экспрессии генов ТКР происходит явление аллельных исключения.

Каждый из локусов Ig/TCR содержит определенное количество V, D и J сегментов, расположенных в определенном порядке: сначала идут повторяющиеся V-сегменты, затем D, если они есть, затем J-сегменты и константный регион (С). Часть генных сегментов является псевдогенами, большинство - функциональными генами, то есть транслируются в белок. Количество вариантов случайных комбинаций генных сегментов в процессе V(D)J рекомбинации определяет комбинативное разнообразие антигенных рецепторов лимфоцитов.

Молекулярный механизм рекомбинации всех семи локусов Ig/TCR идентичный. Эти генные перестройки происходят на ранних этапах дифференцировки лимфоцитов в костном мозге (для В-лимфоцитов) и тимусе (для Т-лимфоцитов) и представляют собой соматическую негомологичную рекомбинацию, в результате которой V, D и J генные сегменты сближаются, а промежуточная последовательность удаляется. Для локусов IGH@, TCRD, TCRB перестройка протекает в два этапа: сначала сближаются D и J сегменты, а затем происходит V-DJ соединение. Для остальных генов перестройка V-J происходит в один этап.

Популяции Т-лимфоцитов.

Среди Т-лимфоцитов различают две фенотипические субпопуляции клеток – CD4+-клeтки и СD8+-клетки. По функциональным характеристикам в популяции Т-лимфоцитов выделяют Т-хелперы гуморального иммунитета, Т-хелперы клеточного иммунитета, Т-супрессоры, Т-цитотоксические клетки. Т-хелперы гуморального и клеточного иммунитета имеют единого предшественника – ТH0-клетки, из которых они генерируются в ходе иммунного ответа.

Важную роль в реализации иммунных механизмов в жидкостной среде организма играют В-лимфоциты: их действие на гуморальную защиту и свойства, особенности первичного и вторичного ответа.

Студентам, изучающим основы иммунологии, или людям, интересующимся вопросами здоровья, знаком тип клеток под названием «B-лимфоциты», обеспечивающий защиту от внедрения чужеродных микроорганизмов во внутреннюю среду человека.

Этот тип лимфоцитов формируется на стадии эмбрионального развития у человека и остальных млекопитающих в печени и ткани костного мозга из стволовых клеток. У взрослых людей В-лимфоциты продуцируются исключительно в важнейшем органе кроветворной системы – костном мозге - губчатом содержимом крупных костей и поверхностной коре головного мозга.

Свойства б-лимфоцитов и их первичный ответ

Лимфоциты и плазматические клетки, циркулирующие в крови, известны науке давно, но факт, что B-лимфоциты (занимающие 15-30 процентов всей популяции белых кровяных телец) дифференцируют плазмоциты. Следующим этапом развития (или пролиферации) б-лимфоцитов является продуцирование антител, распознающих любой чужеродный микроорганизм (вирусы, бактерии, химические вещества). Этот процесс становится возможным за счет выработки В-лимфоцитами не одной тысячи молекул иммуноглобулинов различных типов.

Иммунный ответ происходит за счет синтеза антител, реагирующих на появление в организме любого белкового соединения – антигена.

Диагностирование «чужих» компонентов происходит независимо от того, насколько вредны они или безвредны для человека, с помощью распознающих иммуноген рецепторов (иммуноглобулинов), которыми оснащены В-лимфоциты. Синтезируемые костным мозгом B-лимфоциты направляются в лимфоидные ткани организма и оседают в них, активируясь при первом же контакте с белком-антигеном, являясь защитниками человека от любых патологий.

Существуют три вида зрелых б-лимфоцитов:

  1. «Наивных», или неактивированных б-клеток, которые не вступали в контакт с антигеном. Как правило, слабо реагируют на появление любого раздражителя. При этом молодые б-клетки аккумулируются в селезенке, а более зрелые – в лимфоузлах.
  2. b лимфоциты памяти – самые долгоживущие и работоспособные иммунозащитники, обеспечивающие наиболее скорый иммунный ответ, так как являются потомками клеток, уже сталкивающимися с определенным белком-антигеном. Вырабатывают «мегаколичество» иммуноглобулинов при узнаваемом типе антигена (повторном его появлении).
  3. Плазмоциты. Являются завершающим этапом процесса развития б-лимфоцитов и активными участниками гуморального иммунного ответа. В этих клетках находится немного мембранных антител, но они способны вырабатывать мегаколичество различных растворимых аналогов. Плазмоциты в крови живут недолго: не более двух-четырех дней, а при отсутствии антигенов элиминируют, в то время как плазматические клетки, локализующиеся в костном мозге, могут существовать несколько десятков лет.

Таким образом, происходит определение не только возбудителей инфекционных заболеваний, но также мутантных белковых молекул, имеющих изменения в хромосомной ДНК.

Вторичный ответ

После очищения организма от инородных частиц многие b лимфоциты возвращаются в лимфоидные ткани в виде неактивированных клеток. В отличие от недолго живущих б-лимфоцитов, расположенных в периферической кровяной системе, они могут долго ожидать определенного иммуногена (вируса, бактерии или токсичного компонента), являясь потомками клеток, активированных данным типом антигена прежде.

Такой вид лимфоцитов способен пролиферировать, поддерживая или умножая свою популяцию. Поэтому при повторном попадании иммуногена в организм эти б-клетки мгновенно и интенсивно реагируют, вырабатывая несколько тысяч соответствующих рецепторов, роль которых играют иммуноглобулины.

Такую реакцию называют вторичным гуморальным ответом. В отличие от первого, он начинается гораздо быстрее и протекает интенсивнее, так как иммуноген уже известен, и организм вырабатывает для реагирования на него гораздо больший объем B-лимфоцитов.

Существуют две подгруппы таких клеток: B1 и B2. Разница между ними состоит в том, что они продуцируют разные виды антител:

  1. К первой подгруппе относятся антитела, предназначенные для борьбы со «свежим», только что проникшим в организм иммуногеном. Такие иммуноглобулины маркируются буквой M. Локализуются в приграничных полостях, чтобы устранить микробы, преодолевшие защитные барьеры.
  2. К другой подгруппе причисляют антитела, активность которых направлена на обосновавшиеся внутри организма инфекции. Их можно узнать по маркировке буквой G.

Наиболее многочисленным отрядом B-лимфоцитов является первая подгруппа, отвечающая за иммунную реакцию на внешние раздражители.

Особенности B-лимфоцитов

Естественные антитела, производимые B-лимфоцитами, способны осуществлять важнейшие для полноценного здоровья человека функции:

  • «начального оборонительного кордона», защищающего от болезнетворных микроорганизмов;
  • вывод продуктов катаболизма и отмерших клеточек;
  • предъявление вида и характера иммуногенов Т-лимфоцитам;
  • сохранение динамического постоянства аутоиммунных процессов;
  • противовоспалительный эффект;
  • противодействие патологическим процессам при нарушении целостности тканей.

Все функции B-лимфоцитов тесно связаны со свойствами вырабатываемых ими иммуноглобулинов. Сегодня науке известно пять видов таких рецепторов: M, G, A, E и D.

Иммуноглобулины G обладают следующими качествами:

  1. Являются лидерами в борьбе гуморального иммунитета с инфекциями.
  2. Способностью проникать сквозь плаценту и формировать собственную защиту от инфекций у плода.
  3. Возможностью нейтрализации бактериальных экзотоксинов, связывания белковых соединений и осаждения антигенов в виде помутнений (преципитации).

Иммуноглобулины с маркировкой M:

  • Развиваются у самого плода, не проникая сквозь плацентарный барьер, активно борются с инфекциями.

  • Формируются на начальной стадии внедрения инородных объектов, обладают высокой активностью в отношении грамотрицательных бактерий.
  • Стимулируют агглютинацию (выпадение осадка) из бактерий и других инородных клеток, участвуют в активации комплемента (целом каскаде реакций биохимической природы) и нейтрализации вирусов.
  • Выполняют важнейшую работу по элиминации (определению и уничтожению) возбудителя в кровеносном русле, стимулируют процессы фагоцитоза (переваривания) антигена.

Иммуноглобулины A:

  1. Проявляют активность в локальном (местном) иммунитете.
  2. Предупреждают поражение слизистой бактериями, препятствуя их прикреплению к ней.
  3. Участвуют в процессах активации комплемента и фагоцитоза, нейтрализуют энтеротоксины.

Иммуноглобулины D секретируются плазмоцитами, локализующимися в аденоидах и миндалинах. Специализируется данный вид как мембранные рецепторы для иммуногенов.

Их функциями являются:

  1. Развитие локальной иммунной защиты.
  2. Противовирусная активность.
  3. Участие в активации комплемента (но изредка), а также в аутоиммунных реакциях.
  4. Способствуют дифференцировке В-лимфоцитов и продвижению антиидиотипического ответа.

Внедрение любого инородного антигена провоцирует организм человека на выработку иммуноглобулинов всех видов. В дальнейшем, когда структура «чужака» будет выявлена, начинают действовать регулирующие системы, которые заставят В-лимфоциты вырабатывать приоритетный тип иммуноглобулинов.

Плазмоциты, полученные из В-клеток, тормозят работу следующих родительских лимфоцитов, пока в активных лимфоузлах не начнется начальное отмирание клеточек, вырабатывающих антитела.

Таким образом контролируется достаточное количество иммуноглобулинов определенного вида для полного уничтожения инородных микроорганизмов.

Каждый В-лимфоцит, сформированный в костном мозге человека, образует антитела исключительно одного вида. Многообразие таких молекул обусловлено программированием организма на эффективную иммунную защиту и созданием многих миллионов, клонируемых В-клеток.

Кроме того, поверхность каждого из таких лимфоцитов покрывается 100-150 тысячами иммуноглобулинов, направленных на распознавание антигенов одного вида. Так проявляется способность клеток, защищающих организм, самим определять «врага» с высокой точностью.

Вступив в контакт с возбудителем болезни один раз, B-лимфоциты запоминают его и приспосабливаются к выработке антител, которые могут устранить проблему. Благодаря такому качеству незаменимых клеток, организм получает иммунитет к перенесенной болезни в течение всей их жизни. На данном принципе основана польза от вакцинации.

Кровь - это один из человека и животных. Она состоит из трех типов клеток, которые еще называются кровяными тельцами. Также в ней присутствует большое количество жидкого межклеточного вещества.

Кровяные тельца делятся на три вида: тромбоциты, эритроциты и лейкоциты. Тромбоциты принимают участие в процессе Эритроциты отвечают за транспорт кислорода по организму. А функция лейкоцитов - защита организма человека или животного от вредоносных микроорганизмов.

Какими бывают лейкоциты?

Существует несколько их разновидностей, каждая из которых выполняет свои определенные функции. Итак, лейкоциты делятся на:

  • гранулоциты;
  • агранулоциты.

Что такое гранулоциты?

Их еще называют зернистыми лейкоцитами. К этой группе относятся эозинофилы, базофилы и нейтрофилы. Первые способны к фагоцитозу. Они могут захватывать микроорганизмы и затем переваривать их. Эти клетки участвуют в воспалительных процессах. Они также способны нейтрализовать гистамин, который выделяется организмом при аллергии. Базофилы имеют в своем составе большое количество серотонина, лейкотриенов, простагландинов и гистамина. Они принимают участие в развитии аллергических реакций немедленного типа. Нейтрофилы, так же как и эозинофилы, способны к фагоцитозу. Большое их количество находится в очаге воспаления.

Незернистые лейкоциты

Моноциты и лимфоциты - это виды агранулярных (незернистых) лейкоцитов. Первые, так же как и агранулоциты, способны поглощать чужеродные частицы, попавшие в организм.

Лимфоциты - это тоже часть иммунной системы человека и животных. Они участвуют в нейтрализации болезнетворных микроорганизмов, попавших в тело. Давайте поговорим об этих клетках подробнее.

Лимфоциты - это что?

Существует несколько разновидностей этих клеток. Их мы рассмотрим подробнее чуть позже.

Можно сказать, что лимфоциты - это главные клетки иммунной системы. Они обеспечивают как клеточный, так и гуморальный иммунитет.

Клеточный иммунитет заключается в том, что лимфоциты напрямую контактируют с возбудителями болезней. Гуморальный же заключается в выработке специальных антител - веществ, которые нейтрализуют микроорганизмы.

Уровень лимфоцитов в крови зависит от количества в организме болезнетворных бактерий или вирусов. Чем их больше, тем больше организм вырабатывает иммунных клеток. Поэтому вы, наверное, уже догадались, что значат Это означает, что у человека в организме сейчас протекает острая или же хроническая форма воспалительного заболевания.

Лимфоциты: какие бывают их виды?

В зависимости от своего строения, они делятся на две группы:

  • большие гранулярные лимфоциты;
  • малые лимфоциты.

Также клетки лимфоциты делятся на группы, в зависимости от функций, которые они выполняют. Так, выделяют три их разновидности:

  • В-лимфоциты;
  • Т-лимфоциты;
  • NK-лимфоциты.

Первые способны распознавать чужеродные белки и вырабатывать к ним антитела. Повышенный уровень этих клеток в крови наблюдается при заболеваниях, которыми болеют один раз (ветрянка, краснуха, корь и т. д.).

Т-лимфоциты бывают трех видов: Т-киллеры, Т-хелперы и Т-супрессоры. Первые уничтожают клетки, пораженные вирусами, а также опухолевые. Т-хелперы стимулируют выработку антител к возбудителям заболеваний. Т-супрессоры тормозят выработку антител, когда угрозы организму уже нет. NK-лимфоциты отвечают за качество клеток организма. Они способны уничтожать те клетки, которые отличаются от нормальных, например раковые.

Как развиваются лимфоциты?

Эти клетки, как и другие кровяные тельца, вырабатываются красным костным мозгом. Формируются они там из стволовых клеток. Следующий важный орган иммунной системы - тимус или вилочковая железа. Сюда поступают только что сформировавшиеся лимфоциты. Здесь они дозревают и разделяются на группы. Также часть лимфоцитов может дозревать в селезенке. Далее полностью сформированные клетки иммунитета могут формировать лимфоузлы - скопления лимфоцитов по ходу лимфатических сосудов. Узлы могут увеличиваться во время воспалительных процессов в организме.

Сколько лимфоцитов должно быть в крови?

Допустимое количество лимфоцитов в крови зависит от возраста и от состояния организма. Давайте рассмотрим нормальный их уровень в таблице.

От пола эти показатели не зависят: для женщин и мужчин норма лимфоцитов в крови одинакова.

Показания к исследованию уровня лимфоцитов

Чтобы узнать их количество в крови, используется общий анализ крови. Детям он назначается в следующих случаях:

  1. Профилактический медицинский осмотр раз в год.
  2. Медицинский осмотр хронически больных детей два или более раз в год.
  3. Жалобы на здоровье.
  4. Затянувшееся лечение нетяжелых заболеваний, например ОРЗ.
  5. Осложнения после вирусных заболеваний.
  6. Для отслеживания эффективности лечения.
  7. Для оценки тяжести некоторых заболеваний.

Взрослым общий анализ крови показан в таких случаях:

  1. перед трудоустройством.
  2. Профилактический медицинский осмотр.
  3. Подозрение на анемию и другие заболевания крови.
  4. Диагностика воспалительных процессов.
  5. Контроль эффективности лечения.
  6. Лимфоциты в крови у женщин очень важно отслеживать во время беременности, особенно в первом и втором триместрах.

Повышенные лимфоциты

Если их количество в крови выше указанной нормы, то это указывает на вирусное заболевание, некоторые бактериальные болезни, такие как туберкулез, сифилис, брюшной тиф, онкологические болезни, тяжелое отравление химическими веществами. Особенно при заболеваниях, к которым вырабатывается стойкий иммунитет. Это ветрянка, корь, краснуха, мононуклеоз и т. д.

Пониженные лимфоциты

Недостаточное количество их в крови называется лимфопенией. Она возникает в таких случаях:

  • вирусные заболевания на ранних стадиях;
  • анемия;
  • онкологические заболевания;
  • химиотерапия и лучевая терапия;
  • лечение кортикостероидными препаратами;
  • лимфогранулематоз;
  • болезнь Иценко-Кушинга.

Как подготовиться к анализу крови?

Существует несколько факторов, которые могут повлиять на количество лимфоцитов в крови. Если неправильно подготовиться к анализу крови, он может дать неверные результаты. Итак, нужно соблюдать следующие правила.

  • Не лежать долгое время перед сдачей крови на анализ. Резкая смена положения тела может повлиять на количество лимфоцитов в крови.
  • Не сдавать анализ крови непосредственно после медицинских манипуляций, таких как рентген, массаж, пункции, физиотерапия и т. д.
  • Не сдавать анализ крови в период менструации и сразу после нее. Оптимальное время - через 4-5 дней после ее окончания.
  • Не волноваться перед сдачей крови.
  • Не сдавать анализ крови сразу после физических нагрузок.
  • Лучше всего сдавать кровь на анализ в утреннее время.

При несоблюдении этих правил существует высокая вероятность того, что результаты анализа будут интерпретированы неверно, и будет поставлен неправильный диагноз. В таких случаях для более точной диагностики может быть назначен повторный анализ крови.

В-клеточный рецептор (BCR)

Молекула иммуноглобулина способна связывать антиген как в растворе, так и в иммобилизованном на клетке состоянии, однако для формирования полноценного антигенраспознающего рецептора (BCR) необходимы ещё 2 полипептида, называемые Igα (CD79a) и Igβ (CD79b). Все 6 полипептидных цепей BCR представлены на рис. 5-11.

Внеклеточный домен. Igα и Igβ имеют по одному внеклеточному домену, которым они прочно, но нековалентно связаны с тяжёлыми цепями иммуноглобулинового компонента BCR.

Рис. 5-11. Схема строения В-клеточного рецептора и связанных с ним молекул

Цитоплазматические активирующие последовательности. В цитоплазматических участках Igα и Igβ присутствуют характерные последовательности аминокислотных остатков, называемые иммунорецепторными тирозинсодержащими активирующими последовательностями (ITAM - Immunoreceptor Tyrosine-based Activation Motif); такие же последовательности присутствуют в проводящих сигнал компонентах антигенраспознающего рецептора T-клеток.

Активация B-лимфоцита. Пролиферацияидифференцировка В-лимфоцита может запускаться непосредственно связыванием антигена с BCR. Однако для эффективной активации только через BCR необходима

перекрёстная «сшивка» антигеном нескольких BCR. Для этого молекула антигена должна иметь повторяющиеся эпитопы на своей поверхности. В большинстве же случаев для активации В-клетки недостаточно сигнала, поступающего только от BCR, - требуется так называемый второй сигнал, поставляемый активированным Т-хелпером через корецепторы.

Корецепторный комплекс

В дополнительный корецепторный комплекс мембранных молекул, связанных с внутриклеточными системами проведения сигналов, входят, по крайней мере, 3 мембранные молекулы: CD19, CR2 (CD21) и TAPA-1 (CD81).

. CR2 - рецептор для компонентов комплемента. Связывание CR2 с продуктами деградации компонентов комплемента (C3b, C3dg и C3bi), опсонизировавших антиген, вызывает фосфорилирование молекулы CD19, которая в активированном состоянии ассоциирована с Src киназой Lyn.

. CD19. Фосфорилированная молекула CD19 активирует фосфатидилинозит-3-киназу (PI3K) и молекулу Vav (многофункциональная молекула проведения внутриклеточных сигналов), которые усиливают активационные реакции, инициированные BCR (см. рис. 5-11).

. TAPA-1 (Target of Antiproliferative Antibody - мишень для антипролиферативных антител) принадлежит к семейству тетраспанинов и в мембране физически примыкает к CD19 и CR2, однако детально роль этой молекулы еще не изучена.

Активация BCR запускает целый ряд каскадов, потенциирование которых зависит от получения дополнительных сигналов с рецепторов цитокинов, TLR и др. Первым шагом является активация тирозин-киназ Lyn, Fyn и Blk (принадлежат к семейству Src-киназ, Fyn и Blk на рисунке не показаны, поскольку они дублируют функции Lyn), а также тирозинкиназ Syk и Btk.

Дальнейшие события проведения сигнала с BCR показаны на рис. 5-11. Сигнальные каскады, идущие от антигенраспознающих рецепторов, более подробно описаны в главе 6 на примере TCR.

Дифференцировка B-лимфоцитов

Дифференцировка B-лимфоцитов из общей лимфоидной клеткипредшественника (потомка СКК) включает несколько этапов и процес-

сов: перестройку генов иммуноглобулинов и интеграцию их продуктов в клеточный метаболизм; экспрессию генов молекул, обеспечивающих проведение сигнала с BCR внутрь клетки; экспрессию генов мембранных молекул, необходимых для взаимодействия с другими клетками (в первую очередь с T-лимфоцитами и ФДК); экспрессию на мембране корецепторных комплексов.

Выделяют 3 главные субпопуляции В-лимфоцитов - В1-, В2(именно эти клетки мы привыкли называть собственно В-лимфоцитами) и В-клетки маргинальной зоны (Marginal Zone B, сокращенно MZB) (рис. 5-12). В1-клетки разделяют на подклассы В1а (CD5+) и B1b (CD5-), сходные по своим свойствам. На рис. 5-13 указаны дифференцировочные факторы, контролирующие развитие субпопуляций В-клеток, и приведены их основные отличительные свойства. В1-клетки и В-клетки маргинальной зоны участвуют в формировании первой линии иммун-

Рис. 5-12. Субпопуляции В-лимфоцитов

Рис. 5-13. Развитие В-лимфоцитов. Обозначения: DHJH, VHDHJH - стадии перестройки VH-гена BCR; VLJL - перестройка VL-гена BCR

ной защиты и служат переходным звеном от врождённого к адаптивному иммунитету. В2-клетки относятся к подсистеме адаптивного иммунитета, являясь основными клетками гуморального иммунного ответа.

B2-лимфоциты

Этапы В2-лимфопоэза. В зависимости от состояния V-генов иммуноглобулинов и варианта экспрессии антигенраспознающего рецептора BCR выделяют несколько стадий дифференцировки В-клеток. На схеме отражены изменения наиболее важных ядерных и мембранных молекул в процессе созревания В-лимфоцитов, а также ростовые факторы, определяющие их пролиферацию. Данные получены при изучении В2лимфоцитов, однако в основных чертах они справедливы также для В1и MZВ-клеток.

В лимфопоэзе B2-лимфоцитов выделяют 6 этапов: общая лимфоидная клетка-предшественник→ранняя про-B-клетка→поздняя проB-клетка → большая пре-B-клетка → малая пре-B-клетка → незрелая B-клетка → зрелая наивная B-клетка (выходит из костного мозга). . Общая лимфоидная клетка-предшественник (ОЛП или CLP - common lymphoid progenitor). Экспрессирует несколько молекул адгезии, обеспечивающих её удержание в течение необходимого периода времени в костном мозге, среди них VLA-4 (Very Late Activation Antigen-4 - очень поздний активационный антиген 4), лигандом

которого на клетках стромы служит VCAM-1 (Vascular Cell Adhesion Molecule - молекула адгезии к стенке сосуда).

. Ранняя про-B-клетка (ПроBI, см. рис. 5-13). Происходит D-Jрекомбинация в генах тяжёлых цепей, на обеих гомологичных хромосомах. В этой стадии, помимо молекул адгезии, экспрессируется рецептор c-Kit (CD117) для первого фактора роста - мембранной молекулы клеток стромы SCF (Stem Cell Factor) - фактора стволовых клеток. Это взаимодействие обеспечивает прохождение предшественниками B-лимфоцитов, ещё не поделёнными на клоны по антигенраспознающим рецепторам, необходимого числа митозов.

. Поздняя про-B-клетка (ПроВII, см. рис. 5-13). Происходит V-DJрекомбинация генов иммуноглобулинов. Сначала этот процесс затрагивает одну из гомологичных хромосом. Если она окажется непродуктивной, то рекомбинация повторяется на второй гомологичной хромосоме. Если перестройка на первой хромосоме продуктивна, вторая хромосома использована не будет. При этом происходит так называемое аллельное исключение (allelic exclusion), когда белок иммуноглобулина будет кодироваться только одной хромосомой, а вторая будет «молчащей». В результате индивидуальный лимфоцит сможет продуцировать антитела только одной специфичности. Этот процесс закладывает основу клональности антител.

Как только в клетке происходит трансляция полипептида тяжёлой цепи, он экспрессируется на мембране в составе так называемого пре-B-рецептора. Этот рецептор содержит суррогатную лёгкую цепь (идентичную для всех клеток на этой стадии созревания), μ-цепь, Igα, Igβ. Экспрессия этого рецептора транзиторна, но абсолютно необходима для правильной дифференцировки B-лимфоцитов.

Поздняя про-B-клетка также экспрессирует рецепторы для цитокинов ИЛ-7 и SDF-1, секретируемых клетками стромы и вызывающих пролиферацию и накопление «полуклонов» B-лимфоцитов (про-B- и больших пре-B-клеток) с уже известной специфичностью по тяжёлой цепи, но ещё неизвестной - по лёгкой. Это тоже увеличивает разнообразие молекул иммуноглобулинов: с одной и той же тяжёлой цепью будет сочетаться больше разных вариантов лёгких цепей.

. Пре-B-клетка. Выделяют две популяции пре-В клеток: Пре ВI (или большая пре-В) и ПреВII (или малая пре-В). На этой стадии про-

исходит V-J-перестройка генов иммуноглобулинов лёгких цепей (сначала одной из цепей - κ или λ) на одной из гомологичных хромосом. Если продуктивная перестройка с первой попытки не получается, предпринимаются следующие. Клетки, в которых не произошло ни одной продуктивной перестройки в генах тяжёлых и лёгких цепей, погибают по механизму апоптоза - явления, весьма распространённого среди лимфоцитов (подробнее в главе 9).

. Незрелый B-лимфоцит. Уже экспрессируется дефинитивный BCR, содержащий L-цепь, μ-цепь, а также Igα и Igβ.

Развитие толерантности. На стадии незрелых B-лимфоцитов начинается также развитие толерантности к собственным тканям организма. Для этого предусмотрено 3 механизма: делеция аутореактивных клонов, ареактивность (анергия) и «редактирование» рецептора по антигенной специфичности. Первые два механизма продолжают действовать и по выходе лимфоцита из костного мозга, т.е. при контакте со значительными количествами аутоантигенов.

. Негативная селекция и делеция клонов. Связывание мембранного антигена незрелой B-клеткой (экспрессирует IgM-BCR, но ещё отсутствует IgD-BCR) служит сигналом для её апоптоза. Таким образом, удаляются B-лимфоциты, несущие антигенраспознающие рецепторы, способные связывать белки собственных тканей.

. Ареактивность. Связывание незрелым B-лимфоцитом растворимого антигена не приводит к апоптозу, но лимфоцит приходит в состояние анергии, т.е. проведение сигнала от BCR блокируется и лимфоцит не активируется.

. «Редактирование» рецепторов происходит в небольшой части незрелых B-клеток, в которых ещё активны рекомбиназы RAG-1 и RAG-2. В этих клетках связывание IgM (в составе BCR на поверхности незрелого B-лимфоцита) с антигеном служит сигналом для запуска повторного процесса рекомбинации VDJ/VJ: образующаяся при этом новая комбинация может не быть аутореактивной.

Маркёр завершения B-лимфопоэза (образования зрелого наивного B-лимфоцита, готового к выходу из костного мозга в периферическую лимфоидную ткань) - одновременная экспрессия (коэкспрессия) на мембране двух типов BCR - IgM и IgD (причём IgD больше, чем IgM).

Иммуногенез. После распознавания антигена и вступления в иммунный ответ B-лимфоцит проходит в фолликулах периферических лимфоидных органов и тканей ещё 2 стадии додифференцировки, называемые иммуногенезом.

. Пролиферация центробластов. В зародышевых центрах фолликуллов B-лимфоциты, называемые на этой стадии центробластами, интенсивно пролиферируют, удерживаясь связями со специальными клетками стромы - ФДК.

На ФДК экспрессированы необычные рецепторы для иммуноглобулинов (FcR), способные продолжительное время (дни, месяцы, возможно, годы) удерживать комплекс антиген-антитело на мембране клетки.

В зародышевых центрах происходит возрастание аффинности антител в отношении специфичного антигена по механизму гипермутагенеза, так как на этом этапе дифференцировки выживают те из вновь мутировавших B-лимфоцитов, у которых аффинность BCR к антигенам на поверхности ФДК выше. Этот процесс также называют положительной селекцией.

. Выбор дальнейшего пути. На второй стадии иммуногенеза происходит выбор: B-лимфоцит становится либо B-лимфоцитом памяти (дифференцированный резерв на случай повторной встречи с тем же антигеном), либо плазматической клеткой (через промежуточную стадию плазмабласта) - секретирующую большие количества антител заданной специфичности (рис. 5-14).

B1-лимфоциты

Последующая информация будет касаться В1-лимфоцитов мышей. Совершенно очевидно, что у человека присутствуют клетки с функциональными характеристиками В1-лимфоцитов, но четкое разграничение этой популяции на основании поверхностных маркёров пока не сделано.

B1-лимфоциты подразделяют на 2 субпопуляции: B1a (CD5+) и B1b (CD5-).

Предшественники B1a-лимфоцитов ещё в эмбриональном периоде мигрируют из эмбриональных кроветворных тканей (фетальной печени, оментума) в брюшную и плевральную полости, где существуют как самоподдерживающаяся популяция, хотя небольшое восполнение из костного мозга всё же присутствует. В1b-лимфоциты тоже происходят из фетальных предшественников, однако их пул у взрослых может существенно пополняться за счёт костного мозга. Помимо полостей, В1-лимфоциты также присутствуют в небольших количествах в селезёнке и лимфатических узлах.

Предназначение B1-лимфоцитов - быстрый ответ на проникающие в организм широко распространённые патогены (преимуще-

Рис. 5-14. B-лимфоцит и плазматическая клетка.Активированные B-лимфоциты, т.е. распознавшие антигенную детерминанту и получившие активационный сигнал, пролиферируют и заканчивают дифференцировку. Совокупность окончательно дифференцированных потомков B-лимфоцита составляет клон плазматических клеток, синтезирующих антитела (иммуноглобулины) именно к этой и только к этой антигенной детерминанте. Обратите внимание, что в цитоплазме плазматической клетки представлен сильно развитый белоксинтезирующий аппарат - гранулярная эндоплазматическая сеть. На мембране плазматических клеток уже нет ни иммуноглобулинов, ни MHC-II. В этих клетках прекращается переключение классов иммуноглобулинов и гипермутагенез, а дальнейший синтез антител уже не зависит от контакта с антигеном и взаимодействий с T-лимфоцитами

ственно бактерии). Почти все антитела В1-клеток принадлежат к IgM-изотипу и распознают наиболее распространённые соединения клеточных стенок бактерий. Преобладающая часть нормального IgM сыворотки крови здорового человека синтезируется именно B1-лимфоцитами. . Предполагают, что основная функция B1a-клеток - секреция естественных антител. Ещё до встречи с каким бы то ни было внешним антигеном в крови и биологических жидкостях организма уже присутствуют так называемые естественные (конститутивные) иммуноглобулины. У взрослых большинство из них относится к IgM, но есть также IgA и IgG. Эти антитела полиспецифичны и способны перекрестно связывать множество антигенов, включая аутоантиге-

ны. У мышей секреция естественных антител в основном происходит в селезёнке.

Естественные антитела (их чаще называют «нормальные иммуноглобулины») выполняют ряд весьма важных для здоровья организма функций: «первая линия обороны» против патогенов; удаление из организма погибших клеток и продуктов катаболизма; презентация антигенов T-лимфоцитам; поддержание гомеостаза аутоиммунной реактивности (участвуют в поддержании толерантности к аутоантигенам, например, гистонам); противовоспалительное действие (нейтрализация суперантигенов, индукция синтеза противовоспалительных цитокинов, аттенуация комплементзависимого повреждения тканей и др.).

Считается, что B1b-лимфоциты участвуют в продукции антител к Т-независимым антигенам, а также обеспечивают длительную иммунную память к некоторым микроорганизмам.

В-клетки маргинальной зоны

В-клетки маргинальной зоны (MZB) развиваются из костномозговых предшественников и находятся в маргинальных синусах селезёнки. Их основной задачей является ответ на Т-независимые антигены, находящиеся в крови. Поскольку для ответа на такие антигены не требуется сложной кооперации нескольких типов клеток, он развивается в кратчайшие сроки. MZB-клетки отличаются от В1а-лифоцитов по «происхождению», но функционально очень похожи. Обе эти популяции преимущественно экспрессируют антитела класса IgM, специфичные к полисахаридам и фосфолипидам (например, фосфорилхолину), расположенным на поверхности бактерий. Они также способны очень быстро дифференцироваться в плазматические клетки. Еще одной сходной чертой является почти полное отсутствие гипермутагенеза в генах, кодирующих экспрессируемые этими клетками иммуноглобулины.

Тимуснезависимые антигены

Некоторые антигены способны вызывать иммунный ответ с участием В-лимфоцитов, но без помощи T-лимфоцитов. Этот тип иммунного ответа характеризуется рядом особенностей: вырабатываются антитела только IgM-изотипа (обычно переключения изотипов нет, однако у мышей выявляют IgG3, специфичные к таким антигенам). При ответе на Т-независимые антигены иммунная память обычно не развивается, кроме того, не происходит «созревания» аффинности. Однако у подобного

ответа есть и преимущество: он развивается уже в первые двое суток после проникновения антигена и начинает защищать организм на ранних сроках инфекции, пока тимусзависимый ответ ещё не сформировался.

Антигены такого типа называют тимуснезависимыми и подразделяют на два класса.

. Тимуснезависимые антигены 1-го типа (ТН-1) в достаточно высоких концентрациях способны индуцировать поликлональную активацию B-лимфоцитов (зрелых и незрелых) и продукцию поликлональных иммуноглобулинов класса IgM. Эти вещества ещё называют B-клеточными митогенами. Бактериальный ЛПС - классический пример ТН-1-антигена. ЛПС связывается с BCR и в то же время активирует TLR4, запуская одновременно 2 сигнала, которые достаточны для поликлональной активации В-лимфоцитов.

. Тимуснезависимые антигены 2-го типа (ТН-2) представлены достаточно длинными молекулами с повторяющимися структурами (полисахариды бактериальных стенок, фиколл). Эти антигены мультивалентны и могут вызывать перекрёстную сшивку иммуноглобулиновых рецепторов. ТН-2, в отличие от ТН-1, способны активировать только зрелые B-лимфоциты - преимущественно B1. В незрелых B-клетках повторяющиеся антигенные эпитопы индуцируют анергию или апоптоз.

Взаимодействие Т-независимых антигенов с В-лимфоцитами проиллюстрировано на рис. 5-15.

Рис. 5-15. Разновидности Т-независимых антигенов