Метод толстого мазка под целлофаном. Диагностика протозойных инфекций

Для проведения данных исследований необходимо следующее оснащение рабочего места:

  1. Предметные стекла.
  2. Покровные стекла.
  3. Стеклянные палочки длиной 15-20 см с оплавленными концами.
  4. Чашки Петри.
  5. Йодистый калий.
  6. Нейтральрот.
  7. Бриллиантгрюн.
  8. Судан III.
  9. Этиловый спирт 96°.
  10. Дистиллированная вода.
  11. Дезинфицирующие растворы.

Приготовление нативных препаратов для микроскопического исследования

Препараты для микроскопии готовят из растертого с водой кала и из видимых примесей (если они имеются) . Стеклянную палочку с оплавленным концом вносят в растертый кал. Взятую каплю материала помещают на предметное стекло, накрывают покровным стеклом и слегка придавливают его сверху.

Из видимых примесей готовят второй препарат с помощью шпателя и иглы. Слизь, кровь, остатки пищи и другие образования помещают на предметное стекло рядом с первым препаратом, приготовленным из растертого кала, и накрывают покровным стеклом (слизистые клочки предварительно промывают водопроводной водой).

Для лучшего распознавания и выявления микроскопических элементов кала окрашивают три препарата: первый — реактивом Люголя, второй — смесью нейтральрот + бриллиантгрюн, третий — Суданом III.

Реактивы для окраски препаратов готовят следующим образом:

  1. Реактив Люголя: к 2 г йодистого калия, помещенного в колбочку емкостью 50 мл, приливают около 1 мл дистиллированной воды, прибавляют 1 г кристаллического йода и дистиллированной воды до метки 50 мл.
  2. Раствор краски судан III: растворяют 2 г краски судан III в 10 мл 96° спирта и приливают 90 мл 80° спирта или ледяной уксусной кислоты до получения ярко-красного окрашивания.
  3. 1% водный раствор нейтральрота: в колбочку на 100 мл помещают 1 г краски нейтральрот и доливают дистиллированной водой до метки 100 мл.
  4. 2% водный раствор бриллиантгрюна: 2 г краски бриллиантгрюн помещают в колбочку на 100 мл и доливают дистиллированной водой до метки 100 мл.

Техника окраски препаратов . К препарату прибавляют 1-2 капли соответствующего реактива, затем вновь накрывают его покровным стеклом и изучают под микроскопом. Техника изучения препаратов кала под микроскопом такая же, как и .

Микроскопическое изучение элементов кала

Элементы, обнаруживаемые при микроскопическом исследовании препаратов кала, подразделяют на три группы: а) элементы пищи (животного и растительного происхождения), б) элементы кишечной стенки и в) кристаллические образования.

К первой группе относятся:
а) Мышечные волокна (рис. 19). Имеют (в нормальном кале) вид неправильных четырехугольников или округлых образований желтой окраски (цвет охры), в центре окрашены более интенсивно, чем по краям, при окраске раствором Люголя принимают цвет красного дерева. Непереваренные или недостаточно переваренные мышечные волокна имеют ясно выраженные углы, а также поперечную и продольную исчерченность, подобпые волокна можно видеть изолированно и в виде групп, соединенных между собой.

б) Соединительная ткань (рис. 20). Имеет вид перекрещивающихся тонких волоконец, встречающихся изолированно или в сочетании с группами мышечных волокон.

Рис. 20. Соединительная ткань в виде густых скоплений эластических волокон.

в) Жир нейтральный (рис. 21, 1) имеет вид бесцветных или слегка желтоватых капель разной величины или крупных лужиц. Будучи окрашены Суданом III, становятся красными, оранжевыми или желтыми.

Рис. 21. Жиры (1), жирные кислоты (2), мыла (3, 4) в испражнениях.

г) Жирные кислоты (рис. 21, 2). Представляют собой кристаллы, имеющие вид иголок, лежащих поодиночке или собранных в пучки. При окраске Суданом III не окрашиваются (капли и глыбки окрашиваются так же, как и жиры), смесью 1% раствора нейтральрота и 2% раствора бриллиантгрюна окрашиваются в красный цвет.

д) Мыла (рис. 21, 3-4) — кальциевые и магниевые соли жирных кислот. Встречаются в виде глыбок или игольчатых кристаллов, более коротких, чем жирные кислоты, и чаще сгруппированных в пучки. Мыла Суданом III не окрашиваются, а смесыо 1% раствора нейтральрота и 2% раствора бриллиантгрюна окрашиваются в зеленый цвет.

е) Крахмал (рис. 22, 3). Крахмальные зерна округлой или овальной формы, лежат изолированно, каждое зерно сильно преломляет свет. В зависимости от степени переваривания зерен концентрическая исчерченность может быть выражена по-разному. Встречают крахмальные зерна и внутри крахмалистой клетки (картофель, бобы). Раствором Люголя неизмененные крахмалыные зерна окрашиваются в синий цвет, а измененные — в лилово-красноватый.

ж) Дрожжевые грибки . Это образования овальной формы, снабженные почковидными отростками. Раствором Люголя окрашиваются в желтовато-красный цвет.

з) Растительная клетчатка (рис. 22). Перевариваемая клетчатка — крупные прозрачные, как правило, неокрашенные образования неправильной формы, имеющие ячеистое строение (картофель, фасоль, каштан и др.). Неперевариваемая клетчатка (оболочка хлебных зерен, растительные сосуды, волоски, пласты эпидермы и пр.) имеет широкие, утолщенные межклеточные пространства, двуконтурные клетки, непрозрачна, окрашена в коричневый или желтый цвет.

Вторую группу составляют:
а) Слизь — прозрачная гомогенная масса. Как правило, встречается с лейкоцитами, эритроцитами и эпителием. Слизь из верхних отделов кишечника смешана с каловыми массами.

б) Лейкоциты . Могут быть неизмененными, но чаще подвергаются распаду и изменяются. Лучше различать их в окрашенных (раствором Люголя, Суданом III и пр.) препаратах. Эозинофилы содержат однородную, сильно преломляющую свет зернистость. Среди эозинофилов иногда обнаруживают кристаллы Шарко-Лейдена.

в) Эритроциты . Могут быть неизмененными и выщелоченными. Кровь может выделяться с калом и в виде аморфного распада, окрашенного в буроватый цвет.

г) Эпителий . Клетки различной формы и величины: 1) плоский эпителий (выстилающий заднепроходное отверстие) — полигональной формы, с маленьким ядром; 2) эпителий, выстилающий слизистую оболочку кишечника, — цилиндрической формы с четко контурированным ядром. Иногда они могут быть измененной формы и различной величины с жировым перерождением и вакуолизацией. При злокачественном перерождении имеют вид полиморфных клеток с большим пузырьковидным ядром и с грубозернистой, вакуолизированной протоплазмой, располагающихся отдельно и группами.

В третью группу входят кристаллические образования:
а) Кристаллы трипельфосфата .
б) Кристаллы оксалатов .
в) Билирубин .
г) Гематоидин .

Подробное описание указанных элементов дано в теме « ».

д) Кристаллы закиси висмута (рис. 23, 2) — темно-бурые, прямоугольные или ромбические образования. Обнаруживаются после приема солей висмута.

е) Соли бария (рис. 23, 1) — однородные мелкие бесцветные глыбки. Встречаются в течение нескольких дней после проведения рентгенологического исследования желудка.

ж) Частицы угля (рис. 23, 3). Окрашены в черный цвет, по форме напоминают кристаллы висмута.

Pиc. 23. Соли бария (1), висмута (2), уголь (3).

Исследование фекалий

Микроскопирование вначале проводят при слабом увеличении (Х80). Простейших можно заменить по более сильной преломляемости света, а некоторые виды - по их движению или изменению формы. Объект, замеченный при малом увеличении, рассматривают при увеличении 400 или 600. При отсутствии опыта просмотр мазков следует производить сразу при большом увеличении, что, однако, значительно увеличивает время на изучение препарата. Просмотр мазков при большом увеличении следует производить при более сильном освещении, регулируя его с помощью конденсора.

Дифференциальными признаками отдельных видов амеб в нативном мазке являются форма и размер тела, видимость ядра, характер образования псевдоподий, движение, деление цитоплазмы на экто- и эндоплазму, характер включений (фагоцитированные эритроциты и др.). При дифференцировке видов жгутиконосцев - размер и форма тела, количество жгутиков, характер передвижения, наличие или отсутствие ундулирующей мембраны. Специфическими признаками балантидиев являются размер, форма тела, движение, реснички, цитостом и др.

Основным отличительным признаком вегетативных форм простейших в живом состоянии служит движение. В мазках встречаются различного рода неподвижные образования - растительная клетчатка, мышечные волокна, споры, грибки и т.д. Они не должны приниматься во внимание при протозоологической диагностике.

Метод нативного мазка прост и доступен для любой лаборатории. Он позволяет при нахождении тканевых форм дизентерийных амеб с фагоцитированными эритроцитами поставить совершенно точный диагноз амебной дизентерии, а при обнаружении балантидиев и лямблий - диагноз балантидиаза и лямблиоза.

Окраска мазков раствором Люголя . Эта окраска применяется для диагностики простейших по цистам. Ею пользуются при исследовании оформленного, полуоформленного и кашицеобразного кала.

Для приготовления мазка конец деревянной палочки пачкается в фекалиях и обмывается в капле йодного раствора (J - 1,0 г, KJ - 2 г, дистиллированная вода - 100 мл), нанесенного на предметное стекло, до получения равномерной эмульсии. Препарат накрывают покровным стеклом и через 3 – 5 мин. микроскопируют. Мазок должен быть достаточно прозрачным для изучения его в проходящем свете.

Среди остатков непереваренной пищи, спор, грибков, йодофильных бактерий цисты простейших, окрашенные в коричневый или зеленовато-желтый цвет, выделяются строго определенной, характерной для каждого вида формой, размером, отчетливыми очертаниями краев, наличием гладкой, прозрачной, двухконтурной оболочки, содержимым цитоплазмы, а также наличием ядер с нечетко выраженной структурой. В цистах амеб заметны окрашенные в коричневый (темно-бурый) цвет гликогеновые вакуоли. Степень окраски этих вакуолей и очертания их границ варьируют в цистах простейших одного и того же вида в зависимости от их зрелости.

Простые методы

Макроскопический метод. При осмотре фекалий можно обнаружить гельминтов, их головки, членики, обрывки стробилы, выделяющиеся самостоятельно или после дегельминтизации. Этот метод особенно рекомендуется для выявления энтеробиоза, тениоза и тениаринхоза.

Небольшие порции кала перемешивают с водой в плоской ванночке или в чашке Петри и, просматривая при хорошем освещении на темном фоне, при необходимости пользуясь лупой, извлекают гельминтов и все подозрительные образования белого цвета пинцетом или пипеткой. Собранное переносят в другую чашку с водой или на предметное стекло в каплю разведенного глицерина или изотонического раствора хлорида натрия для дальнейшего изучения.

При методе отстаивания всю исследуемую порцию фекалий следует размешать с водой в стеклянном цилиндре, затем осторожно слить верхний слой воды. Так повторяют несколько раз. Когда жидкость станет прозрачной, ее сливают, а осадок просматривают небольшими порциями в стеклянной ванночке или чашке Петри, как было указано выше.

Микроскопические методы - основной способ исследования фекалий для обнаружения яиц или личинок гельминтов. Различные методы исследования описаны ниже. С целью повышения достоверности обследования анализы могут быть повторены несколько раз ежедневно или с промежутком в 1-3 дня.

Метод нативного мазка. Нативный мазок - наиболее распространенный и технически доступный метод исследования фекалий. В нативном мазке можно обнаружить яйца и личинки гельминтов всех видов. Однако при небольшом числе яиц в испражнениях их не всегда удается найти. Поэтому исследование кала только при помощи нативного мазка не является полноценным и должно дополняться методами обогащения. Эффективность исследования нативного мазка заметно повышается при просмотре четырех препаратов, приготовленных из пробы кала на двух предметных стеклах без покрытия покровными стеклами, что позволяет исследовать в общей сложности примерно такое же количество кала, как и по методу Като (см. ниже).

Небольшое количество (величиной со спичечную головку) размешанного кала тонко размазывают деревянной палочкой на поверхности предметного стекла в капле 50%-го раствора глицерина. Обычно на одном стекле готовят два мазка. Мазок просматривают под малым увеличением микроскопа (об. 8, ок. 7). В сомнительных случаях его накрывают покровным стеклом и исследуют под большим увеличением (об. 40).

Для приготовления большого нативного мазка 200-300 мг кала (размером с крупную горошину) растирают на стекле размером 6х9 см в 15-20 каплях 50%-го водного раствора глицерина. Просматривают под бинокулярным стереоскопическим микроскопом (об. 4, ок. 12,5 или об. 2, ок. 17) в проходящем свете без покровных стекол. В сомнительных случаях можно переводить объектив на большее увеличение. В таких мазках хорошо видны окрашенные крупные яйца гельминтов, несколько хуже - прозрачные яйца карликового цепня. Для обнаружения мелких яиц этот метод непригоден. Вместе с тем большой объем исследуемого материала и большое поле зрения при высокой глубине резкости обеспечивают значительную эффективность указанной модификации по сравнению с обычным нативным мазком.

Толстый мазок с целлофаном (метод Като) более эффективен, чем изучение нативного мазка, но также требует сочетания с методами обогащения. Выявляются яйца всех видов гельминтов, однако с целью обнаружения яиц карликового цепня (яйца прозрачные) или описторха (мелкие яйца) лаборант должен быть особо внимательным, чтобы их не пропустить (рис.21).

Метод основан на обнаружении яиц гельминтов в толстом мазке кала, просветленном глицерином и подкрашенном малахитовым зеленым. Предварительно гидрофильный целлофан нарезают пластинками размером 20 х 40 мм и погружают в смесь Като (6 мл 3%-го водного раствора малахитового зеленого, 500 мл глицерина, 500 мл 6%-го раствора фенола). 3-5 мл смеси хватает на 100 пластинок, которые готовы к использованию через сутки и могут храниться в этой же смеси в хорошо закрытой посуде при комнатной температуре в течение 6 мес. При отсутствии малахитового зеленого (рекомендуется для уменьшения утомляемости глаз лаборанта) и фенола (дезинфицирующее средство) можно пользоваться только 50%-м водным раствором глицерина, эффективность исследования не снижается.

Рис. 20. Методика приготовления толстого мазка кала с целлофаном по Като

100 мг испражнений наносят на предметное стекло, покрывают обработанной, как указано выше, пластинкой целлофана и придавливают резиновой пробкой так, чтобы испражнения не растекались из-под целлофана. Микроскопирование при малом или большом увеличении микроскопа проводят не позже, чем через 1 час (в жаркую погоду - 30-40 мин) после приготовления мазка. Причиной непрозрачности препарата могут быть толстый слой фекалий, плохая обработка пластинки в смеси Като, недостаточный срок выдержки препарата под целлофаном. Длительное просветление глицерином и чрезмерное высыхание препарата также затрудняют обнаружение яиц.

Метод закручивания по С.С. Шульману. Метод предложен для обнаружения в кале личинок гельминтов, в первую очередь стронгилоида. Исследуют только свежевыделенные фекалии, 2-3 г которых переносят в стеклянную банку, размешивают стеклянной палочкой круговыми движениями с 3-5-кратным количеством физиологического раствора, не касаясь стенок сосуда. Яйца и личинки гельминтов скапливаются в центре. После окончания перемешивания каплю на конце палочки быстро переносят на предметное стекло, закрывают ее покровным стеклом и исследуют под микроскопом.

Методы обогащения. Методы обогащения основаны на разности удельного веса яиц и применяемого солевого раствора, что позволяет обнаружить их небольшое количество. Если удельный вес яиц больше удельного веса жидкости, то яйца концентрируются в осадке, который исследуют под микроскопом. Этот метод седиментации (осаждения) применяют для яиц трематод. При большем удельном весе раствора яйца всплывают на поверхность жидкости, и тогда исследуют пленку. Это методы флотации (всплывания), они наиболее эффективны для обнаружения яиц анкилостомид, власоглава и карликового цепня.

Методы флотации. Метод Фюллеборна основан на всплывании яиц гельминтов в насыщенном растворе хлорида натрия, имеющем высокую относительную плотность (1,2), что дает возможность выявления яиц при небольшом их количестве. Метод более эффективен, чем изучение нативного мазка, хотя и сложнее. Достоинствами метода являются дешевизна и доступность. Рекомендуется сочетать изучение нативного мазка и метода Фюллеборна.

Насыщенный раствор готовят, растворяя 400 г хлорида натрия в 1 л воды при кипячении. Относительная плотность раствора 1,18-1,22. Раствор хранят в закрытой бутыли. Для проведения анализа в банку объемом 30-50 мл помещают 2-3 г испражнений и при помешивании палочкой доливают почти доверху насыщенный раствор хлорида натрия. Полоской бумаги быстро удаляют всплывшие крупные частицы. Через 45-60 мин. отстаивания проволочной петлей снимают поверхностную пленку и переносят ее на предметное стекло в каплю 50% водного раствора глицерина. Вместо снятия пленки петлей можно долить раствор в банке доверху, накрыть предметным стеклом, к поверхности которого пристают всплывшие яйца. Готовят несколько препаратов. Дополнительно просматривают 2-4 препарата из осадка, набирая его глазной пипеткой на 2 предметных стекла. Помимо поверхностной пленки, необходимо обязательно исследовать также и осадок, поскольку яйца трематод, тениид, неоплодотворенные яйца аскарид не всплывают в данном растворе. Яйца ряда гельминтов всплывают в соленом растворе не сразу. Так, если максимальное число яиц карликового цепня всплывает через 15-20 мин, то аскарид - через 1,5-2 ч, власоглава - через 2-3 ч.

Таким образом, к достоинствам этого метода относится его дешевизна и доступность, к недостаткам - необходимость просмотра препаратов на поверхностной пленки и осадка, а также длительность отстаивания.

Метод Е. В. Калантарян также является методом обогащения, но более эффективен и проще, чем метод Фюллеборна. Применяется насыщенный раствор нитрата натрия с относительной плотностью 1,38. Поэтому яйца большинства гельминтов всплывают и обнаруживаются в поверхностной пленке, исследование осадка не требуется.

Для приготовления насыщенного раствора нитрата натрия 1 кг соли нитрата натрия (натриевой селитры) растворяют в 1 л воды и кипятят до полного растворения и образования на поверхности пленки. Без фильтрования переливают в сухую бутыль. При отсутствии нитрата натрия его можно заменить нитратом аммония (аммиачная селитра), растворяя 1,7 кг на 1 л воды. Относительная плотность полученного раствора 1,3, что несколько снижает эффективность по сравнению с раствором нитрата натрия.

Достоинства метода: быстро всплывают и обнаруживаются в поверхностной пленке яйца большинства гельминтов, что исключает необходимость исследования осадка. Недостатками метода являются дефицит нитрата натрия, а также то, что яйца трематод, онкосферы тениид не всплывают и остаются в осадке. Необходимо учитывать, что при длительном (более 1 -2 ч) выдерживании фекалий в растворе яйца некоторых гельминтов начинают набухать и оседают, исчезая из поверхностной пленки.

Методы седиментации

Метод П. П. Горячева основан на принципе осаждения яиц. Мазок в этом случае получается светлый, без грубой примеси, что облегчает обнаружение мелких яиц трематод (описторха и др.). Удельный вес яиц описторха высок, поэтому они не всплывают в солевых растворах.

В цилиндр диаметром 2-3 см наливают 70-100 мл насыщенного раствора хлорида натрия. Отдельно тщательно размешивают 0,5 г испражнений в 20-25 мл воды и осторожно фильтруют через воронку с двумя слоями марли в цилиндр на солевой раствор, избегая перемешивания (так, чтобы образовалось два четко разграниченных слоя). Через 2-3 часа верхний слой с калом отсасывают пипеткой, а оставшийся солевой раствор оставляют стоять на 12-20 часов или центрифугируют. Осадок пипеткой переносят на предметное стекло, покрывают покровным стеклом и микроскопируют.

Метод Горячева был предложен для обнаружения яиц описторха и оказался эффективнее, чем исследование нативного мазка и метод Фюллеборна. В настоящее время для диагностики описторхоза (клонорхоза) рекомендуют методы Като и Калантарян, как достаточно эффективные и технически более простые.

Метод Красильникова. Под действием поверхностно-активных веществ, входящих в состав моющих средств (детергентов), яйца гельминтов освобождаются от испражнений и концентрируются в осадке.

Предварительно готовят 1%-й раствор стирального порошка «Лотос». Для этого 10 г порошка растворяют в 1 л водопроводной воды. При отсутствии «Лотоса» можно использовать и другие стиральные порошки, но каждого из них нужно брать столько, сколько растворится без образования осадка в 1 л водопроводной воды. В стеклянный сосуд емкостью 30-50 мл наливают 20-30 мл раствора детергента, туда же помещают небольшую порцию испражнений и хорошо перемешивают. Соотношение испражнений и раствора должно быть примерно 1:20. Испражнения должны находиться в растворе не менее суток. За это время на дне образуется осадок из 2-3-х слоев. Нижний слой состоит из грубых тяжелых частиц, в среднем слое собираются яйца гельминтов, верхний слой представляет собой беловато-серые хлопья. Затем пипеткой набирают 2-3 капли жидкости из среднего слоя и переносят на предметное стекло. На одном стекле готовят 2 препарата, накрывают покровным стеклом и микроскопируют.

Метод Красильникова позволяет обнаружить яйца всех видов гельминтов, выделяемые с испражнениями.

Эфир-формалиновый метод седиментации и химикоседиментационный метод при высокой эффективности весьма трудоемки, особенно при массовых обследованиях, в связи с этим целесообразнее использовать эфир-уксусный метод. Он позволяет после дополнительной обработки осадка химреактивами получить в нем практически только яйца гельминтов, что облегчает выявление мелких яиц трематод. Этот метод оказался универсальным, выявляющим яйца всех кишечных гельминтов, цисты кишечных простейших, он также может использоваться для количественной оценки интенсивности инвазии.

В центрифужные градуированные пробирки наливают 7 мл 10%-го раствора уксусной кислоты и добавляют 1 г фекалий до отметки 8 мл. Фекалий и тщательно перемешивают палочкой до образования однородной смеси, а затем процеживают через два слоя марли в другую центрифужную пробирку (чтобы в новой пробирке процеженного раствора снова было 8 мл, если меньше, то дополнительно можно ополоснуть 10% раствором уксусной кислоты воронку с бинтом, через которые процеживали раствор фекалий). В эту пробирку добавляют 2 мл эфира (до метки 10 мл), закрывают пробкой и энергично встряхивают в течение 30 сек. Смесь центрифугируют при 3000 об/мин в течение 1 минуты (или 2 минуты при 1500 об/мин). Слой коагулянта (в виде пробки в верхней части пробирки) палочкой отделяют от стенок пробирки и вместе с надосадочной жидкостью осторожно сливают. Осадок (как правило, небольшой, бесцветный) наносят на предметные стекла пипеткой, накрывают покровным стеклом и микроскопируют.

Методы гельминтологических исследований делятся на прямые и косвенные. Прямые методы: выявление самих гельминтов, их фрагментов, яиц, личинок в фекалиях, моче, дуоденальном секрете, мокроте, носовой и влагалищной слизи, содержимом подногтевых пространств, биопсированных кусочках ткани. Косвенные методы: выявление вторичных изменений, возникающих в организме человека в результате жизнедеятельности паразита, серологическими реакциями, общим исследованием крови, мочи. Наиболее распространенными методами исследования фекалий являются гельминтоовоскопические и протозооскопические. При диагностике нельзя каким-либо одним методом выявить яйца или личинки всех видов гельминтов, обитающих в пищеварительной системе человека. Так, при использовании метода флотации в поверхностную пленку не всплывают (из-за высокого удельного веса) яйца трематод, в некоторых случаях неоплодотворенные яйца аскарид. В кале очень редко можно обнаружить яйца остриц, онкосферы тениид, которые выявляются специальными методами исследований: соскоб с перианальных складок для остриц и тениид, методы осаждения для трематод (яйца описторха и др.). Поэтому для целенаправленного обследования больного на гельминтозы врач в направлении должен указать, на какие гельминты следует обратить основное внимание (диагноз), что позволит лаборанту выбрать соответствующую методику для выявления данного вида гельминта. Фекалии, взятые из разных мест испражнений в количестве не менее 50 граммов (чайная ложка) в чистую стеклянную посуду, должны быть отправлены в лабораторию не позднее чем через сутки после дефекации и исследованы в день поступления. В случае необходимости сохранения кала до следующего дня его помещают в холодное место (0-4°С) или заливают одним из консервантов. Перед исследованием кал перемешивают палочкой, чтобы яйца гельминтов оказались равномерно распределенными в общей массе. При обнаружении в препарате яиц какого-либо гельминта просмотр не прекращают, т.к. может быть двойная или тройная инвазия. Контроль за эффективностью лечения гельминтозов осуществляется путем исследования фекалий на яйца гельминтов через 2-3 недели или через 2-3 месяца после лечения в зависимости от обнаруженного гельминта. Макроскопические методы служат для обнаружения в кале целых половозрелых гельминтов или их фрагментов невооруженным глазом или с помощью ручной лупы. Часто на поверхности кала после дефекации можно видеть активно ползающих остриц; выделяются с калом аскариды; иногда люди сами замечают отхождение гельминтов. У больных дифиллоботриозом могут выделяться обрывки стробилы лентеца (в виде "лапши"), а у инвазированных тениидами (свиной или бычий цепень) с калом часто отходят членики гельминтов (в виде "белых обсечек") или они активно выползают из анального отверстия. Макроскопический метод является основным для дифференциальной диагностики тениидоза и тениаринхоза (в сочетании с опросом). Из специальных макроскопических методов применяется метод последовательного промывания фекалий. Фекалии размешиваются в воде для получения равномерной суспензии, после чего при хорошем освещении их тщательно просматривают отдельными небольшими порциями в черных фотографических кюветах или на темном фоне в чашках Петри. Пинцетом или препаровальной иглой извлекают все подозрительные белые частицы, крупные образования, подозрительные на фрагменты гельминтов, и рассматривают их под лупой между двумя предметными стеклами. Мелких гельминтов или головки цестод рассматривают под лупой в капле глицерина или под микроскопом. При использовании этого метода для диагностики члеников свиного, бычьего цепней, широкого лентеца отмытые членики помещают между двумя стеклами и, просматривая на свет под лупой или малым увеличением микроскопа, определяют видовую принадлежность по строению матки (у зрелого членика свиного цепня от центрального ствола отходят 8-12 боковых ответвлений, а у бычьего цепня 18-32, чаще 28-32, у широкого лентеца членики больше в ширину и матка в центре в виде "розетки"). Если матку плохо видно, то ее предварительно можно подержать некоторое время в 50% растворе глицерина, после чего даже запустевшие стволы матки просматриваются хорошо. При определении этих цестод по строению отошедших головок их с шейкой осторожно кладут в каплю глицерина между предметными стеклами (или покрывают покровным стеклом) и, не передавливая, рассматривают под микроскопом при малом увеличении.

Микроскопические методы подразделяются на простые, сложные и специальные.

К простым относятся методы нативного мазка, нативный мазок раствором Люголя, методы толстого мазка под целлофаном по Като, закручивания (по Шульману) и перианального соскоба.

Сложные методы являются более эффективными и основаны на концентрации яиц в препаратах. Они включают в себя предварительную обработку фекалий жидкими реактивами, в результате чего яйца гельминтов или выпадают в осадок, или всплывают на поверхность жидкости.

К сложным методам относятся методы обогащения:

а) флотационные (когда удельный вес яиц меньше удельного веса солевого раствора и яйца всплывают в поверхностную пленку);

б) седиментационные (когда удльный вес яиц больше удельного веса солевых растворов и яйца оседают в осадок).

Специальными методами обнаружения яиц и личинок гельминтов, цист и вегетативных форм простейших являются методы соскоба, флотации, седиментации, ларвоскопии, протозооскопии, исследование желчи и методы окраски мазков кала, мокроты и др.

Чаще всего заражение гельминтами происходит через зараженную пищу, воду, а также через немытые руки.

Прямые и косвенные методы диагностики гельминтозов

На сегодняшний день разработано множество методов диагностики гельминтозов, однако всех их можно разделить на две большие группы: прямые и косвенные. К прямым методам диагностики относятся те исследования, которые позволяют непосредственно выявить гельминты, их фрагменты, личинки или яйца. Косвенные методы диагностики гельминтозов основываются на выявлении вторичных изменений, характерных для той или иной разновидности гельминтоза.

Самыми популярными прямыми методами диагностики гельминтозов являются макро- и микрогельминтоскопические методы исследований.

Макрогельминтоскопические методы исследования

Вопросы читателей

18 October 2013, 17:25 Добрый день. Уже около почти год ощущаю зуд вокруг анального отверстия. Никаких болевых ощущений. Подскажите к кому обратится и что это может быть? Спасибо

Задать вопрос
Микрогельминтоскопические методы исследования
Иммунологические методы исследования

Диагностики гельминтозов основаны на обнаружении в сыворотке крови специфических антител к тем или иным гельминтам. Для иммунологического исследования применяется метод непрямой гемагглютинации, иммуноферментного анализа, иммуноэлектрофореза, иммуноабсорбции и другие серологические методы исследований крови.

Иммунологические методы исследования применяются для диагностики альвеококкоза, эхинококкоза, цистицеркоза, аскаридоза, шистосомоза и других гельминтозов.

Анализ желчи и дуоденального содержимого
Биопсия
Электропунктурная диагностика

Электропунктурная диагностика основана на анализе сопротивления кожи при раздражении ее слабым электрическим током. Электропунктурная диагностика при подозрении на гельминтоз может проводиться двумя способами: по методу Фолля или с помощью резонансного тестирования.

Инструментальные методы исследования

При гельминтозах также проводится ультразвуковое исследование, ФЭДГС, и компьютерная диагностика. Эти методы позволяют определить степень вреда, нанесенного гельминтами, а также определить состояние отдельных органов.