Методы распознавания образов. Распознавание образов

  • Tutorial

Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ - много времени, которого часто нет, становится всё ещё печальнее.

Эта статья задумана для того, чтобы человек, который никогда не занимался методами распознавания изображений, смог в течении 10-15 минут создать у себя в голове некую базовую картину мира, соответствующую тематике, и понять в какую сторону ему копать. Многие методы, которые тут описаны, применимы к радиолокации и аудио-обработке.
Начну с пары принципов, которые мы всегда начинаем рассказывать потенциальному заказчику, или человеку, который хочет начать заниматься Optical Recognition:

  • При решении задачи всегда идти от простейшего. Гораздо проще повесить на персону метку оранжевого цвета, чем следить за человеком, выделяя его каскадами. Гораздо проще взять камеру с большим разрешением, чем разрабатывать сверхразрешающий алгоритм.
  • Строгая постановка задачи в методах оптического распознавания на порядки важнее, чем в задачах системного программирования: одно лишнее слово в ТЗ может добавить 50% работы.
  • В задачах распознавания нет универсальных решений. Нельзя сделать алгоритм, который будет просто «распознавать любую надпись». Табличка на улице и лист текста - это принципиально разные объекты. Наверное, можно сделать общий алгоритм( хороший пример от гугла), но это будет требовать огромного труда большой команды и состоять из десятков различных подпрограмм.
  • OpenCV - это библия, в которой есть множество методов, и с помощью которой можно решить 50% от объёма почти любой задачи, но OpenCV - это лишь малая часть того, что в реальности можно сделать. В одном исследовании в выводах было написано: «Задача не решается методами OpenCV, следовательно, она неразрешима». Старайтесь избегать такого, не лениться и трезво оценивать текущую задачу каждый раз с нуля, не используя OpenCV-шаблоны.
Очень сложно давать какой-то универсальный совет, или рассказать как создать какую-то структуру, вокруг которой можно строить решение произвольных задач компьютерного зрения. Цель этой статьи в структуризации того, что можно использовать. Я попробую разбить существующие методы на три группы. Первая группа это предварительная фильтрация и подготовка изображения. Вторая группа это логическая обработка результатов фильтрации. Третья группа это алгоритмы принятия решений на основе логической обработки. Границы между группами очень условные. Для решения задачи далеко не всегда нужно применять методы из всех групп, бывает достаточно двух, а иногда даже одного.

Список приведённых тут методов не полон. Предлагаю в комментариях добавлять критические методы, которые я не написал и приписывать каждому по 2-3 сопроводительных слова.

Часть 1. Фильтрация

В эту группу я поместил методы, которые позволяют выделить на изображениях интересующие области, без их анализа. Большая часть этих методов применяет какое-то единое преобразование ко всем точкам изображения. На уровне фильтрации анализ изображения не производится, но точки, которые проходят фильтрацию, можно рассматривать как области с особыми характеристиками.
Бинаризация по порогу, выбор области гистограммы
Самое просто преобразование - это бинаризация изображения по порогу. Для RGB изображения и изображения в градациях серого порогом является значение цвета. Встречаются идеальные задачи, в которых такого преобразования достаточно. Предположим, нужно автоматически выделить предметы на белом листе бумаги:




Выбор порога, по которому происходит бинаризация, во многом определяет процесс самой бинаризации. В данном случае, изображение было бинаризовано по среднему цвету. Обычно бинаризация осуществляется с помощью алгоритма, который адаптивно выбирает порог. Таким алгоритмом может быть выбор матожидания или моды . А можно выбрать наибольший пик гистограммы.

Бинаризация может дать очень интересные результаты при работе с гистограммами, в том числе в ситуации, если мы рассматриваем изображение не в RGB, а в HSV . Например, сегментировать интересующие цвета. На этом принципе можно построить как детектор метки так и детектор кожи человека.
Классическая фильтрация: Фурье, ФНЧ, ФВЧ
Классические методы фильтрации из радиолокации и обработки сигналов можно с успехом применять во множестве задач Pattern Recognition. Традиционным методом в радиолокации, который почти не используется в изображениях в чистом виде, является преобразование Фурье (конкретнее - БПФ). Одно из немногих исключение, при которых используется одномерное преобразование Фурье, - компрессия изображений . Для анализа изображений одномерного преобразования обычно не хватает, нужно использовать куда более ресурсоёмкое двумерное преобразование .

Мало кто его в действительности рассчитывает, обычно, куда быстрее и проще использовать свёртку интересующей области с уже готовым фильтром, заточенным на высокие (ФВЧ) или низкие(ФНЧ) частоты. Такой метод, конечно, не позволяет сделать анализ спектра, но в конкретной задаче видеообработки обычно нужен не анализ, а результат.


Самые простые примеры фильтров, реализующих подчёркивание низких частот (фильтр Гаусса) и высоких частот (Фильтр Габора).
Для каждой точки изображения выбирается окно и перемножается с фильтром того же размера. Результатом такой свёртки является новое значение точки. При реализации ФНЧ и ФВЧ получаются изображения такого типа:



Вейвлеты
Но что если использовать для свёртки с сигналом некую произвольную характеристическую функцию? Тогда это будет называться "Вейвлет-преобразование ". Это определение вейвлетов не является корректным, но традиционно сложилось, что во многих командах вейвлет-анализом называется поиск произвольного паттерна на изображении при помощи свёртки с моделью этого паттерна. Существует набор классических функций, используемых в вейвлет-анализе. К ним относятся вейвлет Хаара , вейвлет Морле , вейвлет мексиканская шляпа , и.т.д. Примитивы Хаара, про которые было несколько моих прошлых статей ( , ), относятся к таким функциям для двумерного пространства.


Выше приведено 4 примера классических вейвлетов. 3х-мерный вейвлет Хаара, 2х-мерные вейвлет Мейера, вейвлет Мексиканская Шляпа, вейвлет Добеши. Хорошим примером использования расширеной трактовки вейвлетов является задачка поиска блика в глазу, для которой вейвлетом является сам блик:

Классические вейвлеты обычно используются для , или для их классификации (будет описано ниже).
Корреляция
После такой вольной трактовки вейвлетов с моей стороны стоит упомянуть собственно корреляцию, лежащую в их основе. При фильтрации изображений это незаменимый инструмент. Классическое применение - корреляция видеопотока для нахождения сдвигов или оптических потоков. Простейший детектор сдвига - тоже в каком-то смысле разностный коррелятор. Там где изображения не коррелируют - было движение.

Фильтрации функций
Интересным классом фильтров является фильтрация функций. Это чисто математические фильтры, которые позволяют обнаружить простую математическую функцию на изображении (прямую, параболу, круг). Строится аккумулирующее изображение, в котором для каждой точки исходного изображения отрисовывается множество функций, её порождающих. Наиболее классическим преобразованием является преобразование Хафа для прямых. В этом преобразовании для каждой точки (x;y) отрисовывается множество точек (a;b) прямой y=ax+b, для которых верно равенство. Получаются красивые картинки:


(первый плюсег тому, кто первый найдёт подвох в картинке и таком определении и объяснит его, второй плюсег тому, кто первый скажет что тут изображено)
Преобразование Хафа позволяет находить любые параметризуемые функции. Например окружности . Есть модифицированное преобразование, которое позволяет искать любые . Это преобразование ужасно любят математики. Но вот при обработке изображений, оно, к сожалению, работает далеко не всегда. Очень медленная скорость работы, очень высокая чувствительность к качеству бинаризации. Даже в идеальных ситуациях я предпочитал обходиться другими методами.
Аналогом преобразования Хафа для прямых является преобразование Радона . Оно вычисляется через БПФ, что даёт выигрыш производительности в ситуации, когда точек очень много. К тому же его возможно применять к не бинаризованному изображению.
Фильтрации контуров
Отдельный класс фильтров - фильтрация границ и контуров . Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).



Прочие фильтры
Сверху приведены фильтры, модификации которых помогают решить 80-90% задач. Но кроме них есть более редкие фильтры, используемые в локальных задачах. Таких фильтров десятки, я не буду приводить их все. Интересными являются итерационные фильтры (например ), а так же риджлет и курвлет преобразования, являющиеся сплавом классической вейвлет фильтрации и анализом в поле радон-преобразования. Бимлет-преобразование красиво работает на границе вейвлет преобразования и логического анализа, позволяя выделить контуры:

Но эти преобразования весьма специфичны и заточены под редкие задачи.

Часть 2. Логическая обработка результатов фильтрации

Фильтрация даёт набор пригодных для обработки данных. Но зачастую нельзя просто взять и использовать эти данные без их обработки. В этом разделе будет несколько классических методов, позволяющих перейти от изображения к свойствам объектов, или к самим объектам.
Морфология
Переходом от фильтрации к логике, на мой взгляд, являются методы математической морфологии ( , ). По сути, это простейшие операции наращивания и эрозии бинарных изображений. Эти методы позволяют убрать шумы из бинарного изображения, увеличив или уменьшив имеющиеся элементы. На базе математической морфологии существуют алгоритмы оконтуривания, но обычно пользуются какими-то гибридными алгоритмами или алгоритмами в связке.
Контурный анализ
В разделе по фильтрации уже упоминались алгоритмы получения границ. Полученные границы достаточно просто преобразуются в контуры. Для алгоритма Кэнни это происходит автоматически, для остальных алгоритмов требуется дополнительная бинаризация. Получить контур для бинарного алгоритма можно например алгоритмом жука .
Контур является уникальной характеристикой объекта. Часто это позволяет идентифицировать объект по контуру. Существует мощный математический аппарат, позволяющий это сделать. Аппарат называется контурным анализом ( , ).

Если честно, то у меня ни разу ни получилось применить контурный анализ в реальных задачах. Уж слишком идеальные условия требуются. То граница не найдётся, то шумов слишком много. Но, если нужно что-то распознавать в идеальных условиях - то контурный анализ замечательный вариант. Очень быстро работает, красивая математика и понятная логика.
Особые точки
Особые точки это уникальные характеристики объекта, которые позволяют сопоставлять объект сам с собой или с похожими классами объектов. Существует несколько десятков способов позволяющих выделить такие точки. Некоторые способы выделяют особые точки в соседних кадрах, некоторые через большой промежуток времени и при смене освещения, некоторые позволяют найти особые точки, которые остаются таковыми даже при поворотах объекта. Начнём с методов, позволяющих найти особые точки, которые не такие стабильные, зато быстро рассчитываются, а потом пойдём по возрастанию сложности:
Первый класс. Особые точки, являющиеся стабильными на протяжении секунд. Такие точки служат для того, чтобы вести объект между соседними кадрами видео, или для сведения изображения с соседних камер. К таким точкам можно отнести локальные максимумы изображения, углы на изображении (лучший из детекторов, пожалуй, детектор Хариса), точки в которых достигается максимумы дисперсии, определённые градиенты и.т.д.
Второй класс. Особые точки, являющиеся стабильными при смене освещения и небольших движениях объекта. Такие точки служат в первую очередь для обучения и последующей классификации типов объектов. Например, классификатор пешехода или классификатор лица - это продукт системы, построенной именно на таких точках. Некоторые из ранее упомянутых вейвлетов могут являются базой для таких точек. Например, примитивы Хаара, поиск бликов, поиск прочих специфических функций. К таким точкам относятся точки, найденные методом гистограмм направленных градиентов (HOG).
Третий класс. Стабильные точки. Мне известно лишь про два метода, которые дают полную стабильность и про их модификации. Это и . Они позволяют находить особые точки даже при повороте изображения. Расчёт таких точек осуществляется дольше по сравнению с остальными методами, но достаточно ограниченное время. К сожалению эти методы запатентованы. Хотя, в России патентовать алгоритмы низя, так что для внутреннего рынка пользуйтесь.

Часть 3. Обучение

ретья часть рассказа будет посвящена методам, которые не работают непосредственно с изображением, но которые позволяют принимать решения. В основном это различные методы машинного обучения и принятия решений. Недавно Яндыкс выложил на Хабр по этой тематике, там очень хорошая подборка. Вот оно есть в текстовой версии. Для серьёзного занятия тематикой настоятельно рекомендую посмотреть именно их. Тут я попробую обозначить несколько основных методов используемых именно в распознавании образов.
В 80% ситуаций суть обучения в задаче распознавания в следующем:
Имеется тестовая выборка, на которой есть несколько классов объектов. Пусть это будет наличие/отсутствие человека на фотографии. Для каждого изображения есть набор признаков, которые были выделены каким-нибудь признаком, будь то Хаар, HOG, SURF или какой-нибудь вейвлет. Алгоритм обучения должен построить такую модель, по которой он сумеет проанализировать новое изображение и принять решение, какой из объектов имеется на изображении.
Как это делается? Каждое из тестовых изображений - это точка в пространстве признаков. Её координаты это вес каждого из признаков на изображении. Пусть нашими признаками будут: «Наличие глаз», «Наличие носа», «Наличие двух рук», «Наличие ушей», и.т.д… Все эти признаки мы выделим существующими у нас детекторами, которые обучены на части тела, похожие на людские. Для человека в таком пространстве будет корректной точка . Для обезьяны точка для лошади . Классификатор обучается по выборке примеров. Но не на всех фотографиях выделились руки, на других нет глаз, а на третьей у обезьяны из-за ошибки классификатора появился человеческий нос. Обучаемый классификатор человека автоматически разбивает пространство признаков таким образом, чтобы сказать: если первый признак лежит в диапазоне 0.5 По существу цель классификатора - отрисовать в пространстве признаков области, характеристические для объектов классификации. Вот так будет выглядеть последовательное приближение к ответу для одного из классификаторов (AdaBoost) в двумерном пространстве:


Существует очень много классификаторов. Каждый из них лучше работает в какой-то своей задачке. Задача подбора классификатора к конкретной задаче это во многом искусство. Вот немножко красивых картинок на тему.
Простой случай, одномерное разделение
Разберём на примере самый простой случай классификации, когда пространство признака одномерное, а нам нужно разделить 2 класса. Ситуация встречается чаще, чем может представиться: например, когда нужно отличить два сигнала, или сравнить паттерн с образцом. Пусть у нас есть обучающая выборка. При этом получается изображение, где по оси X будет мера похожести, а по оси Y -количество событий с такой мерой. Когда искомый объект похож на себя - получается левая гауссиана. Когда не похож - правая. Значение X=0.4 разделяет выборки так, что ошибочное решение минимизирует вероятность принятия любого неправильного решения. Именно поиском такого разделителя и является задача классификации.


Маленькая ремарка. Далеко не всегда оптимальным будет тот критерий, который минимизирует ошибку. Следующий график - это график реальной системы распознавания по радужной оболочке. Для такой системы критерий выбирается такой, чтобы минимизировать вероятность ложного пропуска постороннего человека на объект. Такая вероятность называется «ошибка первого рода», «вероятность ложной тревоги», «ложное срабатывание». В англоязычной литературе «False Access Rate ».
) АдаБуста - один из самых распространённых классификаторов. Например каскад Хаара построен именно на нём. Обычно используют когда нужна бинарная классификация, но ничего не мешает обучить на большее количество классов.
SVM ( , , , ) Один из самых мощных классификаторов, имеющий множество реализаций. В принципе, на задачах обучения, с которыми я сталкивался, он работал аналогично адабусте. Считается достаточно быстрым, но его обучение сложнее, чем у Адабусты и требуется выбор правильного ядра.

Ещё есть нейронные сети и регрессия. Но чтобы кратко их классифицировать и показать, чем они отличаются, нужна статья куда больше, чем эта.
________________________________________________
Надеюсь, у меня получилось сделать беглый обзор используемых методов без погружения в математику и описание. Может, кому-то это поможет. Хотя, конечно, статья неполна и нет ни слова ни о работе со стереоизображениями, ни о МНК с фильтром Калмана, ни об адаптивном байесовом подходе.
Если статья понравится, то попробую сделать вторую часть с подборкой примеров того, как решаются существующие задачки ImageRecognition.

И напоследок

Что почитать?
1) Когда-то мне очень понравилась книга «Цифровая обработка изображений» Б. Яне, которая написана просто и понятно, но в то же время приведена почти вся математика. Хороша для того, чтобы ознакомиться с существующими методами.
2) Классикой жанра является Р Гонсалес, Р. Вудс " Цифровая обработка изображений ". Почему-то она мне далась сложнее, чем первая. Сильно меньше математики, зато больше методов и картинок.
3) «Обработка и анализ изображений в задачах машинного зрения» - написана на базе курса, читаемого на одной из кафедр ФизТеха. Очень много методов и их подробного описания. Но на мой взгляд в книге есть два больших минуса: книга сильно ориентирована на пакет софта, который к ней прилагается, в книге слишком часто описание простого метода превращается в математические дебри, из которых сложно вынести структурную схему метода. Зато авторы сделали удобный сайт, где представлено почти всё содержание - wiki.technicalvision.ru Добавить метки

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания. Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом. Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей. Метод заключается в том, что при классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

Sun, Mar 29, 2015

В настоящее время существует множество задач, в которых требуется принять некоторое решение в зависимости от присутствия на изображении объекта или классифицировать его. Способность «распознавать» считается основным свойством биологических существ, в то время как компьютерные системы этим свойством в полной мере не обладают.

Рассмотрим общие элементы модели классификации.

Класс - множество объектом имеющие общие свойства. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания может быть определено произвольное количество классов, больше 1. Количество классов обозначается числом S. Каждый класс имеет свою идентифицирующую метку класса.

Классификация - процесс назначения меток класса объектам, согласно некоторому описанию свойств этих объектов. Классификатор - устройство, которое в качестве входных данных получает набор признаков объекта, а в качестве результата выдающий метку класса.

Верификация - процесс сопоставления экземпляра объекта с одной моделью объекта или описанием класса.

Под образом будем понимать наименование области в пространстве признаков, в которой отображается множество объектов или явлений материального мира. Признак - количественное описание того или иного свойства исследуемого предмета или явления.

Пространство признаков это N-мерное пространство, определенное для данной задачи распознавания, где N - фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков x, соответствующий объекту задачи распознавания это N-мерный вектор с компонентами (x_1,x_2,…,x_N), которые являются значениями признаков для данного объекта.

Другими словами, распознавание образов можно определить, как отнесение исходных данных к определенному классу с помощью выделение существенных признаков или свойств, характеризующих эти данные, из общей массы несущественных деталей.

Примерами задач классификации являются:

  • распознавание символов;
  • распознавание речи;
  • установление медицинского диагноза;
  • прогноз погоды;
  • распознавание лиц
  • классификация документов и др.

Чаще всего исходным материалом служит полученное с камеры изображение. Задачу можно сформулировать как получение векторов признаков для каждого класса на рассматриваемом изображении. Процесс можно рассматривать как процесс кодирования, заключающийся в присвоении значения каждому признаку из пространства признаков для каждого класса.

Если рассмотреть 2 класса объектов: взрослые и дети. В качестве признаков можно выбрать рост и вес. Как следует из рисунка эти два класса образуют два непересекающихся множества, что можно объяснить выбранными признаками. Однако не всегда удается выбрать правильные измеряемые параметры в качестве признаков классов. Например выбранные параметры не подойдут для создания непересекающихся классов футболистов и баскетболистов.

Второй задачей распознавания является выделение характерных признаков или свойств из исходных изображений. Эту задачу можно отнести к предварительной обработке. Если рассмотреть задачу распознавания речи, можно выделить такие признаки как гласные и согласные звуки. Признак должен представлять из себя характерное свойство конкретного класса, при этом общие для этого класса. Признаки, характеризующие отличия между - межклассовые признаки. Признаки общие для всех классов не несут полезной информации и не рассматриваются как признаки в задаче распознавания. Выбор признаков является одной из важных задач, связанных с построением системы распознавания.

После того, как определены признаки необходимо определить оптимальную решающую процедуру для классификации. Рассмотрим систему распознавания образов, предназначенную для распознавания различных M классов, обозначенных как m_1,m_2,…,m3. Тогда можно считать, что пространство образов состоит из M областей, каждая содержит точки, соответствующие образом из одного класса. Тогда задача распознавания может рассматриваться как построение границ, разделяющих M классов, исходя из принятых векторов измерений.

Решение задачи предварительной обработки изображения, выделение признаков и задачи получения оптимального решения и классификации обычно связано с необходимостью произвести оценку ряда параметров. Это приводит к задаче оценки параметров. Кроме того, очевидно, что выделение признаков может использовать дополнительную информацию исходя из природы классов.

Сравнение объектов можно производить на основе их представления в виде векторов измерений. Данные измерений удобно представлять в виде вещественных чисел. Тогда сходство векторов признаков двух объектов может быть описано с помощью евклидова расстояния.

где d - размерность вектора признака.

Разделяют 3 группы методов распознавания образов:

  • Сравнение с образцом . В эту группу входит классификация по ближайшему среднему, классификация по расстоянию до ближайшего соседа. Также в группу сравнения с образцом можно отнести структурные методы распознавания.
  • Статистические методы . Как видно из названия, статистические методы используют некоторую статистическую информацию при решении задачи распознавания. Метод определяет принадлежность объекта к конкретному классу на основе вероятности В ряде случаев это сводится к определению апостериорной вероятности принадлежности объекта к определенному классу, при условии, что признаки этого объекта приняли соответствующие значения. Примером служит метод на основе байесовского решающего правила.
  • Нейронные сети . Отдельный класс методов распознавания. Отличительной особенностью от других является способность обучаться.

Классификация по ближайшему среднему значению

В классическом подходе распознавания образов, в котором неизвестный объект для классификации представляется в виде вектора элементарных признаков. Система распознавания на основе признаков может быть разработана различными способами. Эти векторы могут быть известны системе заранее в результате обучения или предсказаны в режиме реального времени на основе каких-либо моделей.

Простой алгоритм классификации заключается в группировке эталонных данных класса с использованием вектора математического ожидания класса (среднего значения).

где x(i,j)- j-й эталонный признак класса i, n_j- количество эталонных векторов класса i.

Тогда неизвестный объект будет относиться к классу i, если он существенно ближе к вектору математического ожидания класса i, чем к векторам математических ожиданий других классов. Этот метод подходит для задач, в которых точки каждого класса располагаются компактно и далеко от точек других классов.

Трудности возникнут, если классы будут иметь несколько более сложную структуру, например, как на рисунке. В данном случае класс 2 разделен на два непересекающихся участка, которые плохо описываются одним средним значением. Также класс 3 слишком вытянут, образцы 3-го класса с большими значениями координат x_2 ближе к среднему значению 1-го класса, нежели 3-го.

Описанная проблема в некоторых случаях может быть решена изменением расчета расстояния.

Будем учитывать характеристику «разброса» значений класса - σ_i, вдоль каждого координатного направления i. Среднеквадратичное отклонение равно квадратному корню из дисперсии. Шкалированное евклидово расстояние между вектором x и вектором математического ожидания x_c равно

Эта формула расстояния уменьшит количество ошибок классификации, но на деле большинство задач не удается представить таким простым классом.

Классификация по расстоянию до ближайшего соседа

Другой подход при классификации заключается в отнесении неизвестного вектора признаков x к тому классу, к отдельному образцу которого этот вектор наиболее близок. Это правило называется правилом ближайшего соседа. Классификация по ближайшему соседу может быть более эффективна, даже если классы имеют сложную структуру или когда классы пересекаются.

При таком подходе не требуется предположений о моделях распределения векторов признаков в пространстве. Алгоритм использует только информацию об известных эталонных образцах. Метод решения основан на вычислении расстояния x до каждого образца в базе данных и нахождения минимального расстояния. Преимущества такого подхода очевидны:

  • в любой момент можно добавить новые образцы в базу данных;
  • древовидные и сеточные структуры данных позволяют сократить количество вычисляемых расстояний.

Кроме того, решение будет лучше, если искать в базе не одного ближайшего соседа, а k. Тогда при k > 1 обеспечивает наилучшую выборку распределения векторов в d-мерном пространстве. Однако эффективное использование значений k зависит от того, имеется ли достаточное количество в каждой области пространства. Если имеется больше двух классов то принять верное решение оказывается сложнее.

Литература

  • M. Castrillón, . O. Déniz, . D. Hernández и J. Lorenzo, «A comparison of face and facial feature detectors based on the Viola-Jones general object detection framework,» International Journal of Computer Vision, № 22, pp. 481-494, 2011.
  • Y.-Q. Wang, «An Analysis of Viola-Jones Face Detection Algorithm,» IPOL Journal, 2013.
  • Л. Шапиро и Д. Стокман, Компьютерное зрение, Бином. Лаборатория знаний, 2006.
  • З. Н. Г., Методы распознавания и их применение, Советское радио, 1972.
  • Дж. Ту, Р. Гонсалес, Математические принципы распознавания образов, Москва: “Мир” Москва, 1974.
  • Khan, H. Abdullah и M. Shamian Bin Zainal, «Efficient eyes and mouth detection algorithm using combination of viola jones and skin color pixel detection» International Journal of Engineering and Applied Sciences, № Vol. 3 № 4, 2013.
  • V. Gaede и O. Gunther, «Multidimensional Access Methods,» ACM Computing Surveys, pp. 170-231, 1998.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Новосибирский государственный университет экономики и управления «НИНХ»

Информационно-технический факультет

Кафедра прикладных информационных технологий

по дисциплине Нечеткая логика и нейронные сети

Распознавание образов

Направление: Бизнес-информатика (электронный бизнес)

Ф.И.О студента: Мазур Екатерина Витальевна

Проверил: Павлова Анна Илларионовна

Новосибирск 2016

  • Введение
  • 1. Понятие распознавания
    • 1.1 История развития
    • 1.2 Классификация методов распознавания образов
  • 2. Методы распознавания образов
  • 3. Общая характеристика задач распознавания образов и их типы
  • 4. Проблемы и перспективы развития распознавания образов
    • 4.1 Применение распознавания образов на практике
  • Заключение

Введение

Достаточно продолжительное время задача распознавания образов рассматривалась только с биологической точки зрения. При этом наблюдениям подвергались лишь качественные характеристики, которые не позволяли описать механизм функционирования.

Введённое Н.Винером в начале XX века понятие кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе), позволила в вопросах распознавания ввести количественные методы. То есть, представить данный процесс (по сути - природное явление) математическими методами.

Теория распознавания образов является одним из основных разделов кибернетики как в теоретическом, так и в прикладном плане. Так, автоматизация некоторых процессов предполагает создание устройств, способных реагировать на изменяющиеся характеристики внешней среды некоторым количеством положительных реакций.

Базой для решения задач такого уровня являются результаты классической теории статистических решений. В ее рамках строились алгоритмы определения класса, к которому может быть отнесен распознаваемый объект.

Цель данной работы - познакомиться с понятиями теории распознавания образов: раскрыть основные определения, изучить историю возникновения, выделить основные методы и принципы теории.

Актуальность темы заключается в том, что на данный момент распознавание образов - одно из ведущих направлений кибернетики. Так, в последние годы оно находит все большее применение: оно упрощает взаимодействие человека с компьютером и создает предпосылки для применения различных систем искусственного интеллекта.

распознавание образ применение

1. Понятие распознавания

Долгое время проблема распознавания привлекала внимание только ученых области прикладной математики. В результате, работы Р. Фишера, созданные в 20-х годах , привели к формированию дискриминантного анализа - одного из разделов теории и практики распознавания образов. В 40-х годах А. Н. Колмогоровым и А. Я. Хинчиным была поставлена цель о разделении смеси двух распределений. А в 50-60-е годы ХХ века на основе большого количества работ появилась теория статистических решений. В рамках кибернетики начало складываться новое направление, связанное с разработкой теоретических основ и практической реализацией механизмов, а также систем, предназначенных для распознавания объектов и процессов. Новая дисциплина получила название "Распознавание образов".

Распознавание образов (объектов) - это задача идентификации объекта по его изображению (оптическое распознавание), аудиозаписи (акустическое распознавание) или другим характеристикам. Образ - это классификационная группировка, которая позволяет объединить группу объектов по некоторым признакам. Образы обладают характерной чертой, проявляющейся в том, что ознакомление с конечным числом явлений из одного множества дает возможность узнать большое количество его представителей. В классической постановке задачи распознавания множество разбивается на части.

Одним из базовых определений также является и понятие множества. В компьютере множество - это набор неповторяющихся однотипных элементов. "Неповторяющихся" - значит, что элемент в множестве либо есть, либо нет. Универсальное множество включает все возможные элементы, пустое не содержит ни одного.

Методика отнесения элемента к какому-то образу называется решающим правилом. Еще одно важное понятие - метрика - определяет расстояние между элементами множества. Чем меньше это расстояние, тем больше схожи объекты (символы, звуки и др.), которые мы распознаем. Стандартно элементы задаются в виде набора чисел, а метрика - в виде какой-то функции. От выбора представления образов и реализации метрики зависит эффективность работы программы: одинаковый алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на факторы внешних похожих сигналов путем их многократного воздействия на систему. Самообучение отличается от обучения тем, что здесь дополнительная информация о реакции системе не сообщается.

Примерами задач распознавания образов являются:

Распознавание букв;

Распознавание штрих-кодов;

Распознавание автомобильных номеров;

Распознавание лиц и других биометрических данных;

Распознавание речи и др..

1.1 История развития

К середине 50-х годов Р. Пенроуз ставит под сомнение нейросетевую модель мозга, указывая на существенную роль в его функционировании квантово-механических эффектов. Отталкиваясь от этого, Ф.Розенблатт разработал модель обучения распознавания зрительных образов, названную персептроном.

Рисунок 1 - Схема Персептрона

Далее были придуманы различные обобщения персептрона, и функция нейронов была усложнена: нейроны смогли не только умножать входные числа и сравнивать результат с пороговыми значениями, но и применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений:

Рис. 2 Схема нейронной сети.

Кроме того, топология нейронной сети могла быть еще более усложненной. Например, такой:

Рисунок 3 - Схема нейронной сети Розенблатта.

Нейронные сети, будучи сложным объектом для математического анализа, при грамотном их использовании, позволяли находить весьма простые законы данных. Но это достоинство одновременно является и источником потенциальных ошибок. Трудность для анализа, в общем случае, объясняется только сложной структурой, но, как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей.

1.2 Классификация методов распознавания образов

Как мы уже отметили, распознаванием образов называются задачи установления отношений эквивалентности между определенными образами-моделями объектов реального или идеального мира.

Данные отношения определяют принадлежность распознаваемых объектов к каким-либо классам, которые рассматриваются как самостоятельные независимые единицы.

При построении алгоритмов распознавания эти классы могут задаваться исследователем, который пользуется собственными представлениями или использует дополнительную информацию о сходстве или различии объектов в контексте данной задачи. В данном случае говорят о "распознавании с учителем". В другом, т.е. когда автоматизированная система решает задачу классификации без привлечения дополнительной информации, говорят о "распознавании без учителя".

В работах В.А. Дюка дан академический обзор методов распознавания и используется два основных способа представления знаний:

Интенсиональное (в виде схемы связей между атрибутами);

Экстенсиональное с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над признаками объектов, приводящих к нужному результату. Интенсиональные представления реализуются через операции над значениями и не предполагают проведения операций над конкретными объектами.

В свою очередь экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как самостоятельные системы.

Таким образом, в основу классификации методов распознавания, предложенной В.А. Дюка, положены фундаментальные закономерности, которые лежат в основе человеческого способа познания в принципе. Это ставит данное деление на классы в особое положение по сравнению с другими менее известными классификациями, которые на этом фоне выглядят искусственными и неполными.

2. Методы распознавания образов

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций . В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания.Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом . Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей . Метод заключается в том, чтопри классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

3. Общая характеристика задач распознавания образов и их типы

Общая структура системы распознавания и ее этапы показаны на рисунке 4:

Рисунок 4 - Структура системы распознавания

Задачи распознавания имеют следующие характерные этапы:

Преобразование исходных данных к удобному виду для распознавания;

Распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие подобия объектов и формулировать набор правил, на основании которых объект зачисляется в один или разные классы.

Так же можно оперировать набором примеров, классификация которых известна и которые в виде заданных описаний могут быть объявлены алгоритму распознавания для настройки на задачу в процессе обучения.

Трудности решения задач распознавания связаны с невозможностью применять без исправлений классические математические методы (часто в доступе нет информация для точной математической модели)

Выделяют следующие типы задач распознавания:

Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем);

Задача автоматической классификации - разбиение множества систему непересекающихся классов (таксономия, кластерный анализ, самообучение);

Задача выбора информативного набора атрибутов при распознавании;

Задача приведения исходных данных к удобному виду;

Динамическое распознавание и классификация;

Задача прогнозирования - то есть, решение должно относиться к определенному моменту в будущем.

В существующих системах распознавания есть две наиболее сложные проблемы:

Проблема «1001 класса» - добавление 1 класса к 1000 существующим вызывает трудности с переобучением системы и проверке данных, полученных до этого;

Проблема «соотношения словаря и источников» - наиболее сильно проявляется в распознавании речи. Текущие системы могут распознавать либо большое количество слов от небольшой группы лиц, либо мало слов от большой группы лиц. Так же трудно распознавать большое количество лиц с гримом или гримасами.

Нейронные сети не решают эти задачи напрямую, однако в силу своей природы они гораздо легче адаптируются к изменениям входных последовательностей.

4. Проблемы и перспективы развития распознавания образов

4.1 Применение распознавания образов на практике

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений - самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас - в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Заключение

В результате работы был сделан краткий обзор основных определений понятий такого раздела кибернетики как распознавание образов, выделены методы распознавания, сформулированы задачи.

Безусловно, существует множество направлений по развитию данной науки. К тому же, как было сформулировано в одной из глав, распознавание - одно из ключевых направлений развития на данный момент. Так, программное обеспечение в ближайшие десятилетия может стать ещё более привлекательным для пользователя и конкурентоспособным на современном рынке, если приобретет коммерческий формат и начнет распространяться в рамках большого количества потребителей.

Дальнейшие исследования могут быть направлены на следующие аспекты: глубокий анализ основных методов обработки и разработка новых комбинированных или модифицированных методов для распознавания. На основании проведенных исследований можно будет разработать функциональную систему распознавания, с помощью которой возможно проверить выбранные методы распознавания на эффективность.

Список литературы

1. Дэвид Формайс, Жан Понс Компьютерное зрение. Современный подход, 2004

2. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин. - М.: Наука, 2004.

3. Журавлев Ю.И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. М.: Наука, 2005. - Вып. 33.

4. Мазуров В.Д. Комитеты систем неравенств и задача распознавания // Кибернетика, 2004, № 2.

5. Потапов А.С. Распознавание образов и машинное восприятие. - С-Пб.: Политехника, 2007.

6. Минский М., Пейперт С. Персептроны. - М.: Мир, 2007.

7. Растригин Л. А., Эренштейн Р. Х. Метод коллективного распознавания. М. Энергоиздат, 2006.

8. Рудаков К.В. Об алгебраической теории универсальных и локальных ограничений для задач классификации // Распознавание, классификация, прогноз. Математические методы и их применение. Вып. 1. - М.: Наука, 2007.

9. Фу К. Структурные методы в распознавании образов. - М.: Мир, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа , добавлен 15.01.2014

    Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация , добавлен 06.01.2014

    Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа , добавлен 13.10.2017

    Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа , добавлен 05.04.2015

    Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа , добавлен 15.08.2011

    Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа , добавлен 06.04.2014

    Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.

    реферат , добавлен 10.04.2010

    Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа , добавлен 21.06.2014

    Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа , добавлен 14.11.2013

    Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.

И т. п. объектов , которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.

Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки аналоговых сигналов.

Проблема распознавания образа приобрела выдающееся значение в условиях информационных перегрузок, когда человек не справляется с линейно-последовательным пониманием поступающих к нему сообщений, в результате чего его мозг переключается на режим одновременности восприятия и мышления, которому такое распознавание свойственно.

Неслучайно, таким образом, проблема распознавания образа оказалась в поле междисциплинарных исследований - в том числе в связи с работой по созданию искусственного интеллекта , а создание технических систем распознавания образа привлекает к себе всё большее внимание.

Энциклопедичный YouTube

    1 / 4

    Введение в распознавание образов

    Р.В. Шамин. Лекция № 6 Сети Хопфилда и Хемминга в задачах распознавания образов

    [ДДШ-2016]: Нейронные сети и современное компьютерное зрение

    Лекция 9. Экспоненциальное сглаживание. Распознавание образов: метод к-го ближайшего соседа

    Субтитры

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознаванию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных целях.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные, из общей массы несущественных данных.

При постановке задач распознавания стараются пользоваться математическим языком, стремясь - в отличие от теории искусственных нейронных сетей , где основой является получение результата путём эксперимента, - заменить эксперимент логическими рассуждениями и математическими доказательствами .

Классическая постановка задачи распознавания образов : Дано множество объектов. Относительно них необходимо провести классификацию. Множество представлено подмножествами, которые называются классами. Заданы: информация о классах, описание всего множества и описание информации об объекте, принадлежность которого к определенному классу неизвестна. Требуется по имеющейся информации о классах и описании объекта установить - к какому классу относится этот объект.

Наиболее часто в задачах распознавания образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T {\displaystyle T} , где функция выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций f (x , y) {\displaystyle f(x,y)} на плоскости T {\displaystyle T} - есть модель множества всех изображений X {\displaystyle X} . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распознавании в соответствии с тем или иным подходом.

Некоторые методы распознавания графических образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Ещё один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Персептрон как метод распознавания образов

Ф. Розенблатт, вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления, описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание штрих-кодов
  • Распознавание автомобильных номеров
  • Распознавание изображений
  • Распознавание локальных участков земной коры, в которых находятся месторождения