Обозначение момента. Крутящий момент - что это такое

Электромагнитный момент.

Электромагнитный момент М эм возникает под влиянием сил, действующих на проводники ротора, которые находятся во вращающемся магнитном поле. Обозначим мгновенное значение тока ротора через i 2 s (рис. 3.16), магнитную индукцию в этой же точке через В и длину проводника через l (длина пакета ротора). Тогда сила, действующая на проводник, f = В l i 2 s

Индукция В и ток ротора i 2 s в каждый данный момент времени распределены вдоль окружности ротора примерно по синусоидальному закону, т. е.

Координата, определяющая положение проводника на роторе (рис. 3.16), а ψ 2 - угол сдвига фаз между ЭДС e 2 s (согласно п. 3.4.1 ЭДС e 2 s совпадает по фазе с индукцией В ) и током ротора i 2 s . Таким образом,

Средняя сила, действующая на проводник, определяется как интеграл вдоль окружности ротора от силы f , действующей на один проводник:

Заменяя произведение синусов на разность косинусов, получаем:

Интеграл от второго слагаемого, как интеграл за два периода косинусоидальной функции, равен нулю. Тогда

Обозначим число проводников ротора через N 2 . Сила, действующая на все проводники, будет F = N 2 f ср . Вращающий момент есть произведение силы F на радиус ротора, т. е. M = FD /2 . Зная, что полюсное деление и для синусоиды , находим момент:

Обозначим постоянную

Тогда

(3.20) В этом выражении, где R 2 - активное сопротивление, а X 2 s - индуктивное сопротивление фазы вращающегося ротора. Формула (3.20) показывает, что вращающий момент двигателя создается за счет взаимодействия магнитного потока и тока в обмотке ротора.

Влияние скольжения s и напряжения на фазе статора на вращающий момент двигателя. В (3.20) значение тока определяется из выражения где E 2 s и I 2 s - ЭДС и ток фазы вращающегося ротора;

Подставляя значения I 2s и cos Ψ 2 в (3.20), получаем:

Если учесть, что

то (3.21) можно переписать:


Постоянная

где w 2 - число витков ротора; на одну фазу статора (число фаз равно трем).

Подставляя значения в (3.22), находим:

Используя приведенные значения активного и индуктивного сопротивлений фазы ротора, получаем:

Если пренебречь падением напряжения в обмотке статора, формула принимает вид

Погрешность в определении момента при применении формулы (3.22а) не превышает 5 %,что вполне допустимо для инженерных задач. Из (3.22а) видно, что вращающий момент пропорционален квадрату напряжения фазы статора. Изменение U 1 существенно сказывается на моменте. Так, если U 1 падает на 10 %, то момент падает на 19 %.

Формула (3.22а) может быть выведена также из формулы механической мощности двигателя:

где m - число фаз двигателя. Так как , где - угловая скорость вращающегося поля, то

где ω 1 - угловая частота тока в сети.

Учитывая формулу (3.19) и обозначая X 1 + X ` 2 , получаем:

3.11.3. Характеристика момент-скольжение .

Характеристика момент-скольжение M ( s ) , построенная по (3.23) изображена на рис. 3.17. Точка s = 0, М = 0 соответствует идеальному холостому ходу двигателя, а точка М ном , s ном - номинальному режиму. Участок ОН графика - рабочий участок. На этом участке зависимость M ( s ) практически линейная. Действительно скольжение на этом участке s = 0 + 0,08, поэтому и в формуле (3.23) значением к ) 2 можно пренебречь. Тогда (3.23) принимает вид где - величина для данного двигателя постоянная.

Участок НК , графика соответствует механической перегрузке двигателя. В точке К вращающий момент достигает максимального значения и называется критическим моментом. Скольжение s к , соответствующее критическому моменту, называется критическим скольжением.

Участок ОК характеристики - участок статически устойчивой работы двигателя (под устойчивой работой понимается свойство двигателя автоматически компенсировать малые отклонения в режиме работы за счет собственных характеристик). Пусть, например, в установившемся режиме вр =М) по какой-либо причине момент сопротивления увеличится и станет равным М’>М . Тогда последует переходный процесс: частота вращения ротора п уменьшится, скольжение s увеличится, М вр согласно характеристике M ( s ) возрастет и двигатель выйдет на новый установившийся режим, характеризующийся пониженной частотой вращения n и равенством моментов М’ вр = М’ .

Статически устойчивый участок характеризуется положительной производной dM / ds >0 . Значение критического момента М к может быть найдено из условия dM / ds

. (3.24)

Приравнивая (3.24) нулю, получаем значение критического скольжения

Подставив s к в (3.23), получим

(3.26)

Отношение М к /М ном = k м называется кратностью максимального момента. У серийных двигателейk м =1,7/3,4 . .

Участок КП - участок неустойчивой работы. Если по какой-либо причине М с станет больше М вр , то анализ, аналогичный анализу для устойчивого участка, показывает, что М вр не увеличится, а, наоборот, уменьшится, что приведет к увеличению скольжения и еще большему уменьшению вращающего момента – практически ротор двигателя мгновенно остановится (рис. 3.17, точка П ). Участок неустойчивой работы характеризуется отрицательной производной: dM / ds <0.

В точке П скольжение s п =1 (n =0) .

На участке ПТ скольжение s > 1 . Это возможно, когда направление вращения ротора противоположно направлению вращения поля. Действительно, в этом случае s = n 1 — (- n )/ n 1 > 1 . Значение скольжения s > 1 характеризует тормозной режим двигателя, подробно рассмотренный в § 3.16.

Выражение момента в о. е.(формула Клосса) Для вывода формулы момента в относительных единицах воспользуемся выражением (3.25), т. е. в (3.23) вместо 3 P U 1 2 подставим его значение 2ω 1 X k M k и учтем, что R ‘ 2 = s k X k . В результате преобразования получим формулу Клосса:

. (3.27)

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

2.Чему равен момент силы? (формула в векторном и скалярном виде, рисунки).

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент ) - физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы – векторная величина (М̅)

(векторный вид) М̅= |r̅*F̅|,r– расстояние от оси вращения, до точки приложения силы.

(вроде как скалярный вид) |М|=|F|*d

Вектор момента силы – совпадает с осью О 1 О 2 , его направление определяется првилом правого винта.Момент силы измеряется в ньютон-метрах . 1 Н м - момент силы, который производит сила 1 Н на рычаг длиной 1 м.

3.Что называется вектором: поворота, угловой скорости, углового ускорения. Куда они направлены, как определить это направление на практике?

Векторы – это псевдовекторы или аксиальные векторы, не имеющие определённую точку приложения: они откладываются на оси вращения из любой её точки.

    Угловое перемещение - это псевдовектор, модуль которого равен углу поворота, а направление совпадает с осью, вокруг которой тело поворачивается, и определяется правилом правого винта: вектор направлен в ту сторону, откуда поворот тела виден против хода часовой стрелки(измеряется в радианах)

    Угловая скорость - величина, характеризующая быстроту вращения твёрдого тела, равная отношению элементарного угла поворота и прошедшего времени dt, за который прошёл этот поворот.

Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта, так же, как и вектор.

    Угловое ускорение - величина, характеризующая быстроту перемещения угловой скорости.

Вектор направлен вдоль оси вращения в сторону вектора при ускоренном вращении и противоположно вектору при замедленном вращении.

4.Чем полярный вектор отличается от аксиального?

Полярный вектор обладает полюсом, а аксиальный - нет.

5.Что называется моментом инерции материальной точки, твердого тела?

Момент инерции - величина, характеризующая меру инерции материальной точки при её вращательном движении вокруг оси. Численно она равна произведению массы на квадрат радиуса (расстояния до оси вращения). Для твердого тела момент инерции равен сумме моментов инерции её частей, и поэтому может быть выражена в интегральной форме:

6.От каких параметров зависит момент инерции твердого тела?

    От массы тела

    От геометрических размеров

    От выбора оси вращения

7.Теорема Штейнера (поясняющий рисунок).

Теорема: момент инерции тела относительно произвольной оси равен сумме момента инерции этого телаотносительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Искомый момент инерции относительно параллельной оси

Известный момент инерции относительно оси, проходящей через центр масс тела

Масса тела

Расстояние между указанными осями

8. Момент инерции шара, цилиндра, стержня, диска.

Моментом инерции м.т. относительно полюса называют скалярную величину, равную произведению массы этой. точки на квадрат расстояния до полюса..

Момент инерции м.т. можно найти по формуле

Ось проходит через центр шара

Ось цилиндра

Ось перпендикулярна к цилиндру и проходит через его центр масс

9.Как определить направление момента силы?

Момент силы относительно некоторой точки - это векторное произведение силы накратчайшее расстояние от этой точки до линии действия силы.

[M ] = Ньютон · метр

M - момент силы (Ньютон · метр),F - Приложенная сила (Ньютон),r - расстояние от центра вращения до места приложения силы (метр),l - длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),α - угол, между вектором силыF и вектором положенияr

M = F·l = F·r·sin (α )

(м,F,r-векторные величины)

Момент силы - аксиальный вектор . Он направлен вдоль оси вращения.

Направление вектора момента силы определяется правилом буравчика, а величина его равнаM .

10.Как складываются момент сил, угловые скорости, моменты импульса?

Момент сил

Если на тело, которое может вращаться вокруг какой-либо точки, действует одновременно несколько сил, то для сложения моментов этих сил следует использовать правило сложения моментов сил.

Правило сложения моментов сил гласит - Результирующий вектор момента силы равен геометрической сумме составляющих векторов моментов с

Для правила сложения моментов сил различают два случая

1. Моменты сил лежат в одной плоскости, оси вращения параллельны . Их сумма определяется путем алгебраического сложения. Правовинтовые моменты входят в сумму со знаком минус . Левовинтовые - со знаком плюс

2. Моменты сил лежат в разных плоскостях, оси вращения не параллельны . Сумма моментов определяется путем геометрического сложения векторов.

Угловые скорости

Углова́я ско́рость(рад/с) - физическая величина, являющаяся аксиальным вектором и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения в единицу времени

направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Угловые скорости откладываются на оси вращения и могут складываться в том сллучае если они направлены в одну сторону, в противоположную - вычитаются

Момент импульса

В Международной системе единиц (СИ) импульс измеряется в килограмм-метр в секунду (кг·м/с).

Моме́нт и́мпульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Если имеется материальная точка массой, двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором, то момент импульса вычисляется по формуле:

где - знак векторного произведения

11.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

потенциальная энергия максимальна в начальной точке движения маятника. Потенциальная энергия MgH переходит в кинетическую, которая максимальна в момент приземления маятника на землю.

Iо-момент инерции относительно оси для одного грузика (их у нас 4)

I= 4Iо=4ml^2 (Io=ml^2)

следовательно

12.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса.

В математическом представлении момент импульса L тела, вращающегося с угловой скоростьюω , равенL = Iω , где величинаI , называемаямоментом инерции

Момент импульса вращающегося тела

где – масса тела; – скорость; – радиус орбиты, по которой перемещается тело; – момент инерции; – угловая скорость вращающегося тела.

Закон сохранения момента импульса:

– для вращательного движения

13.Каким выражением определяется работа момента сил

= МОМЕНТ_СИЛЫ * УГОЛ

В системе СИ работа измеряется в Джоулях, момент силы в Ньютон* метр, а УГОЛ в радианах

Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА.

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

= МОМЕНТ_СИЛЫ * *

14.Получите формулу, определяющую мощность, развиваемую моментом сил.

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работ. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ_СИЛЫ * УГЛОВАЯ_СКОРОСТЬ

В системе CИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.


Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.




Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.


Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).




Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.





Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.


Приведем единицы измерения к общему виду.





Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.





Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.




Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.


Как образуется вращающий момент и частота вращения?


Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.


В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.




Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.


Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.





Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.




В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).


Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 0,746) = 14,92 кВт.


И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.


Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.





Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.


Графическое представление вращающего момента электродвигателя изображено на рисунке.




Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.


Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.


Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.


Блокировочный момент (Мблок): Максимальный вращающий момент - момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.


Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:


Постоянная мощность


Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.





Постоянный вращающий момент


Как видно из названия - «постоянный вращающий момент» - подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.





Переменный вращающий момент и мощность


«Переменный вращающий момент» - эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.


Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.


Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия , которые описывают соотношение между разностями давления и расходами.




Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.


Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.


В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.


Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.


Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.





На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения - мал, а потребный вращающий момент при высокой частоте вращения - велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность - кубу скорости вращения.





Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:


Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.





В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.


Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.


Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.





Если мы посмотрим на характеристику, то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.





Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.


Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.


Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.




Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.





Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:




tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке


n = частота вращения электродвигателя при полной нагрузке


Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.


Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.





Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.











Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.


Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.


При производстве насосов используются следующие обозначения этих трёх различных типов мощности.




P1 (кВт) Входная электрическая мощность насосов - это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.


P2 (кВт) Мощность на валу электродвигателя - это мощность, которую электродвигатель передает на вал насоса.


Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.


Р4 (кВт) Гидравлическая мощность насоса.

Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый Что он собой представляет, от чего зависит, рассматривается в статье.

Процесс вращения

Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.

С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:

  • углом поворота θ (измеряется в радианах);
  • угловой скоростью ω (измеряется в радианах в секунду);
  • ускорением угловым α (измеряется в радианах в секунду квадратную).

Эти величины связаны друг с другом следующими равенствами:

Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.

Определение момента силы

Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:

Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.

В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:

|M¯| = |r¯|*|F¯|*sin(β).

Где β является углом между векторами r¯ и F¯.

Что такое рычаг силы?

Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.

Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:

M = F*L*sin(180 o -φ).

Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:

Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:

Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.

Направление действия величины M¯

Выше было показано, что вращающий момент - это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх - вниз, влево - вправо) учитывается с помощью знаков "+" или "-". Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Физический смысл величины M¯

В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:

  • Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
  • Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
  • Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом - выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же - это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Пример решения задачи

Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?

Очевидно, что наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:

m 1 *g*d 1 = m 2 *g*d 2 =>

P 2 = m 2 *g = m 1 *g*d 1 /d 2 .

Вес P 2 получим, если подставим из условия задачи значения m 1 = 10 кг, d 1 = 0,5 м, d 2 = 1 м. Записанное равенство дает ответ: P 2 = 49,05 ньютона.

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.