Общее решение однородной системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений, методы решения, примеры

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными :

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным ) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие . Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение . Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

Таким образом, система нетривиальна, когда l=3 или l=2. При l=3 ранг основной матрицы системы равен 1. Тогда оставляя только одно уравнение и полагая, что y =a и z =b , получим x=b-a , т.е.

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z /4, y=z /2. Полагая z =4a , получим

Множество всех решений однородной системы обладает весьма важным линейным свойством : если столбцы X 1 и X 2 - решения однородной системы AX = 0 , то всякая их линейная комбинация aX 1 + bX 2 также будет решением этой системы . Действительно, поскольку AX 1 = 0 и AX 2 = 0 , то A (aX 1 + bX 2) = aAX 1 + bAX 2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E 1 , E 2 , E k , являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r , то k = n-r .

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение . Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n - r = 5 - 2 = 3. Выберем в качестве базисного минор

.

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь-ные, так называемые свободные, переменные переносим вправо), по-лучим упрощенную систему уравнений:

Полагая, x 3 = a , x 4 = b , x 5 = c , находим


, .

Полагая a = 1, b = c = 0, получим первое базисное решение; полагая b = 1, a = c = 0, получим второе базисное решение; полагая c = 1, a = b = 0, получим третье базисное решение. В результате, нормальная фундаментальная система решений примет вид

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE 1 + bE 2 + cE 3 . à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы . Действительно, пусть Y 0 произвольное частное решение неоднородной системы, т.е. AY 0 = B , и Y - общее решение неоднородной системы, т.е. AY = B . Вычитая одно равенство из другого, получим
A (Y-Y 0) = 0, т.е. Y - Y 0 есть общее решение соответствующей однородной системы AX =0. Следовательно, Y - Y 0 = X , или Y = Y 0 + X . Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B 1 + B 2 . Тогда общее решение такой системы можно записать в виде X = X 1 + X 2 , где AX 1 = B 1 и AX 2 = B 2 . Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции , в электро- и радиотехнике - принципом наложения . Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Пусть М 0 – множество решений однородной системы (4) линейных уравнений.

Определение 6.12. Векторы с 1 , с 2 , …, с p , являющиеся решениями однородной системы линейных уравнений называются фундаментальным набором решений (сокращенно ФНР), если

1) векторы с 1 , с 2 , …, с p линейно независимы (т. е. ни один из них нельзя выразить через другие);

2) любое другое решение однородной системы линейных уравнений можно выразить через решения с 1 , с 2 , …, с p .

Заметим, что если с 1 , с 2 , …, с p – какой-либо ф.н.р., то выражением k 1 ×с 1 + k 2 ×с 2 + … + k p ×с p можно описать все множество М 0 решений системы (4), поэтому его называют общим видом решения системы (4).

Теорема 6.6. Любая неопределенная однородная система линейных уравнений обладает фундаментальным набором решений.

Способ нахождения фундаментального набора решений состоит в следующем:

Найти общее решение однородной системы линейных уравнений;

Построить (n r ) частных решений этой системы, при этом значения свободных неизвестных должны образовывать единичную матрицу;

Выписать общий вид решения, входящего в М 0 .

Пример 6.5. Найти фундаментальный набор решений следующей системы:

Решение . Найдем общее решение этой системы.

~ ~ ~ ~ Þ Þ Þ В этой системе пять неизвестных (n = 5), из них главных неизвестных два (r = 2), свободных неизвестных три (n r ), то есть в фундаментальном наборе решений содержится три вектора решения. Построим их. Имеем x 1 и x 3 – главные неизвестные, x 2 , x 4 , x 5 – свободные неизвестные

Значения свободных неизвестных x 2 , x 4 , x 5 образуют единичную матрицу E третьего порядка. Получили, что векторы с 1 , с 2 , с 3 образуют ф.н.р. данной системы. Тогда множество решений данной однородной системы будет М 0 = {k 1 ×с 1 + k 2 ×с 2 + k 3 ×с 3 , k 1 , k 2 , k 3 Î R}.

Выясним теперь условия существования ненулевых решений однородной системы линейных уравнений, другими словами условия существования фундаментального набора решений.

Однородная система линейных уравнений имеет ненулевые решения, то есть является неопределенной, если

1) ранг основной матрицы системы меньше числа неизвестных;

2) в однородной системе линейных уравнений число уравнений меньше числа неизвестных;

3) если в однородной системе линейных уравнений число уравнений равно числу неизвестных, и определитель основной матрицы равен нулю (т. е. |A | = 0).

Пример 6.6 . При каком значении параметра a однородная система линейных уравнений имеет ненулевые решения?

Решение . Составим основную матрицу этой системы и найдем ее определитель: = = 1×(–1) 1+1 × = –а – 4. Определитель этой матрицы равен нулю при a = –4.

Ответ : –4.

7. Арифметическое n -мерное векторное пространство

Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n -мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (a 1 , a 2 , …, a n ), где a i Î R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа a i называются его координатами .

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n -мерных векторов принято обозначать как R n .

Определение 7.2. Два вектора а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. a 1 = b 1 , a 2 = b 2 , …, a n = b n .

Определение 7.3. Суммой двух n -мерных векторов а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) называется вектор a + b = (a 1 + b 1 , a 2 + b 2 , …, a n + b n ).

Определение 7.4. Произведением действительного числа k на вектор а = (a 1 , a 2 , …, a n ) называется вектор k ×а = (k ×a 1 , k ×a 2 , …, k ×a n )

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором ).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами: " a , b , c Î R n , " k , l Î R:

1) a + b = b + a ;

2) a + (b + c ) = (a + b ) + c ;

3) a + о = a ;

4) a + (–a ) = о ;

5) 1×a = a , 1 Î R;

6) k ×(l ×a ) = l ×(k ×a ) = (l ×k a ;

7) (k + l a = k ×a + l ×a ;

8) k ×(a + b ) = k ×a + k ×b .

Определение 7.6. Множество R n с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством .

Линейное уравнение называется однородным , если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема . Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных .

Доказательство : Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1 : Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство : Если у системы уравнений , то ранг системы не превышает числа уравнений , т.е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2 : Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство : Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т.е. .

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

Однородная система линейных алгебраических уравнений .

Система m линейных ур-ий с n переменными называется системой линейных однородных уравнений, если все свободные члены равны 0. Система линейных однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое решение тогда и только тогда, когда ранг её матрицы коэффициентов при переменных меньше числа переменных, т.е. при rang A (n. Всякая лин. комбинация

решений системы лин. однородн. ур-ий также является решением этой системы.

Система лин.независимых решений е1, е2,…,еk называется фундаментальной, если каждое решение системы является линейной комбинацией решений. Теорема: если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений меньше числа переменных n, то всякая фундаментальная система решений системы состоит из n-r решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид: с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы m линейных ур-ий с n переменными равно сумме

общего решения соответствующей ей системы однородн. линейных ур-ий и произвольного частного решения этой системы.

7.Линейные пространства. Подпространства. Базис, размерность. Линейная оболочка. Линейное пространство называется n-мерным , если в нем существует система из линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число называется размерностью (числом измерений) линейного пространства и обозначается . Другими словами, размерность пространства - это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве найдется система, состоящая из линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов (базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если - базис n-мерного линейного пространства , то любой вектор может быть представлен в виде линейной комбинации базисных векторов:

V=v1*e1+v2*e2+…+vn+en
и притом единственным образом, т.е. коэффициенты определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства равна . Система векторов линейно независима (это базис). После присоединения к базису любого вектора , получаем линейно зависимую систему (так как это система состоит из векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Однородная система всегда совместна и имеет тривиальное решение
. Для существования нетривиального решения необходимо, чтобы ранг матрицыбыл меньше числа неизвестных:

.

Фундаментальной системой решений однородной системы
называют систему решений в виде векторов-столбцов
, которые соответствуют каноническому базису, т.е. базису, в котором произвольные постоянные
поочередно полагаются равными единице, тогда как остальные приравниваются нулю.

Тогда общее решение однородной системы имеет вид:

где
- произвольные постоянные. Другими словами, общее решение есть линейная комбинация фундаментальной системы решений.

Таким образом, базисные решения могут быть получены из общего решения, если свободным неизвестным поочередно придавать значение единицы, полагая все остальные равные нулю.

Пример . Найдем решение системы

Примем , тогда получим решение в виде:

Построим теперь фундаментальную систему решений:

.

Общее решение запишется в виде:

Решения системы однородных линейных уравнений имеют свойства:

Другими словами, любая линейная комбинация решений однородной системы есть опять решение.

Решение систем линейных уравнений методом Гаусса

Решение систем линейных уравнений интересует математиков несколько столетий. Первые результаты были получены в XVIII веке. В 1750 г. Г.Крамер (1704 –1752) опубликовал свои труды по детерминантам квадратных матриц и предложил алгоритм нахождения обратной матрицы. В 1809 г. Гаусс изложил новый метод решения, известный как метод исключения.

Метод Гаусса, или метод последовательного исключения неизвестных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида. Такие системы позволяют последовательно находить все неизвестные в определенном порядке.

Предположим, что в системе (1)
(что всегда возможно).

(1)

Умножая поочередно первое уравнение на так называемые подходящие числа

и складывая результат умножения с соответствующими уравнениями системы, мы получим эквивалентную систему, в которой во всех уравнениях, кроме первого, будет отсутствовать неизвестная х 1

(2)

Умножим теперь второе уравнение системы (2) на подходящие числа, полагая, что

,

и складывая его с нижестоящими, исключим переменную из всех уравнений, начиная с третьего.

Продолжая этот процесс, после
шага мы получим:

(3)

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство противоречиво и система (1) несовместна. Обратно, для любой совместной системы числа
равны нулю. Число- это ни что иное, как ранг матрицы системы (1).

Переход от системы (1) к (3) называется прямым ходом метода Гаусса, а нахождение неизвестных из (3) – обратным ходом .

Замечание : Преобразования удобнее производить не с самими уравнениями, а с расширенной матрицей системы (1).

Пример . Найдем решение системы

.

Запишем расширенную матрицу системы:

.

Прибавим к строкам 2,3,4 первую, умноженную на (-2), (-3), (-2) соответственно:

.

Поменяем строки 2 и 3 местами, затем в получившейся матрице добавим к строке 4 строку 2, умноженную на :

.

Прибавим к строке 4 строку 3, умноженную на
:

.

Очевидно, что
, следовательно, система совместна. Из полученной системы уравнений

находим решение обратной подстановкой:

,
,
,
.

Пример 2. Найти решение системы:

.

Очевидно, что система несовместна, т.к.
, а
.

Достоинства метода Гаусса :

    Менее трудоемкий, чем метод Крамера.

    Однозначно устанавливает совместность системы и позволяет найти решение.

    Дает возможность определить ранг любых матриц.

Система m линейных уравнений c n неизвестными называется системой линейных однородных уравнений, если все свободные члены равны нулю. Такая система имеет вид:

где а ij (i = 1, 2, …, m ; j = 1, 2, …, n ) - заданные числа; х i – неизвестные.

Система линейных однородных уравнений всегда совместна, так как r (А) = r (). Она всегда имеет, по крайней мере, нулевое (тривиальное ) решение (0; 0; …; 0).

Рассмотрим при каких условиях однородные системы имеют ненулевые решения.

Теорема 1. Система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг её основной матрицы r меньше числа неизвестных n , т.е. r < n .

1). Пусть система линейных однородных уравнений имеет ненулевое решение. Так как ранг не может превосходить размера матрицы, то, очевидно, r n . Пусть r = n . Тогда один из миноров размера n n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: , , . Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r < n .

2). Пусть r < n . Тогда однородная система, будучи совместной, является неопределённой. Значит, она имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Рассмотрим однородную систему n линейных уравнений c n неизвестными:

(2)

Теорема 2. Однородная система n линейных уравнений c n неизвестными (2) имеет ненулевые решения тогда и только тогда, когда её определитель равен нулю: = 0.

Если система (2) имеет ненулевое решение, то = 0. Ибо при система имеет только единственное нулевое решение. Если же = 0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r < n . И, значит, система имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Обозначим решение системы (1) х 1 = k 1 , х 2 = k 2 , …, х n = k n в виде строки .

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка - решение системы (1), то и строка - решение системы (1).

2. Если строки и - решения системы (1), то при любых значениях с 1 и с 2 их линейная комбинация - тоже решение системы (1).

Проверить справедливость указанных свойств можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы.

Система линейно независимых решений е 1 , е 2 , …, е р называется фундаментальной , если каждое решение системы (1) является линейной комбинацией этих решений е 1 , е 2 , …, е р .

Теорема 3. Если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений (1) меньше числа переменных n , то всякая фундаментальная система решений системы (1) состоит из n – r решений.

Поэтому общее решение системы линейных однородных уравнений (1) имеет вид:

где е 1 , е 2 , …, е р – любая фундаментальная система решений системы (9), с 1 , с 2 , …, с р – произвольные числа, р = n – r .

Теорема 4. Общее решение системы m линейных уравнений c n неизвестными равно сумме общего решения соответствующей ей системы линейных однородных уравнений (1) и произвольного частного решения этой системы (1).

Пример. Решите систему

Решение. Для данной системы m = n = 3. Определитель

по теореме 2 система имеет только тривиальное решение: x = y = z = 0.

Пример. 1) Найдите общее и частные решения системы

2) Найдите фундаментальную систему решений.

Решение. 1) Для данной системы m = n = 3. Определитель

по теореме 2 система имеет ненулевые решения.

Так как в системе только одно независимое уравнение

x + y – 4z = 0,

то из него выразим x =4z - y . Откуда получим бесконечное множество решений: (4z - y , y , z ) – это и есть общее решение системы.

При z = 1, y = -1, получим одно частное решение: (5, -1, 1). Положив z = 3, y = 2, получим второе частное решение: (10, 2, 3) и т.д.

2) В общем решении (4z - y , y , z ) переменные y и z являются свободными, а переменная х – зависимая от них. Для того, чтобы найти фундаментальную систему решений, придадим свободным переменным значения: сначала y = 1, z = 0, затем y = 0, z = 1. Получим частные решения (-1, 1, 0), (4, 0, 1), которые и образуют фундаментальную систему решений.

Иллюстрации :

Рис. 1 Классификация систем линейных уравнений

Рис. 2 Исследование систем линейных уравнений

Презентации:

· Решение СЛАУ_матричный метод

· Решение СЛАУ_метод Крамера

· Решение СЛАУ_метод Гаусса

· Пакеты решения математических задач Mathematica, MathCad : поиск аналитического и числового решения систем линейных уравнений

Контрольные вопросы :

1. Дайте определение линейного уравнения

2. Какой вид имеет система m линейных уравнений с n неизвестными?

3. Что называется решением систем линейных уравнений?

4. Какие системы называются равносильными?

5. Какая система называется несовместной?

6. Какая система называется совместной?

7. Какая система называется определенной?

8. Какая система называется неопределенной

9. Перечислите элементарные преобразования систем линейных уравнений

10. Перечислите элементарные преобразования матриц

11. Сформулируйте теорему о применении элементарных преобразований к системе линейных уравнений

12. Какие системы можно решать матричным методом?

13. Какие системы можно решать методом Крамера?

14. Какие системы можно решать методом Гаусса?

15. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Гаусса

16. Опишите матричный метод решения систем линейных уравнений

17. Опишите метод Крамера решения систем линейных уравнений

18. Опишите метод Гаусса решения систем линейных уравнений

19. Какие системы можно решать с применением обратной матрицы?

20. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Крамера

Литература :

1. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н.Фридман. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2005. – 471 с.

2. Общий курс высшей математики для экономистов: Учебник. / Под ред. В.И. Ермакова. –М.: ИНФРА-М, 2006. – 655 с.

3. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред.В.И. Ермакова. М.: ИНФРА-М, 2006. – 574 с.

4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и магматической статистике. - М.: Высшая школа, 2005. – 400 с.

5. Гмурман. В.Е Теория вероятностей и математическая статистика. - М.: Высшая школа, 2005.

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. – М.: Оникс 21 век: Мир и образование, 2005. – 304 с. Ч. 1; – 416 с. Ч. 2.

7. Математика в экономике: Учебник: В 2-х ч. / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандара. – М.: Финансы и статистика, 2006.

8. Шипачев В.С. Высшая математика: Учебник для студ. вузов – М.: Высшая школа, 2007. – 479 с.


Похожая информация.