Определение и назначение математического моделирования. Понятие математической модели. Этапы математического моделирования

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическое моделирование - процесс построения и изучения математических моделей реальных процессов и явлений. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют реальный объект его моделью и затем изучают последнюю. Как и в случае любого моделирования, математическая модель не описывает полностью изучаемое явление, и вопросы о применимости полученных таким образом результатов являются весьма содержательными. Математическая модель - это упрощенное описание реальности с помощью математических понятий.



Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

При математическом моделировании исследование объекта осуществляется посредством модели, сформулированной на языке математики с использованием тех или иных математических методов.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи

Все модели можно разделить на два класса:

  1. вещественные,
  2. идеальные.

В свою очередь вещественные модели можно разделить на:

  1. натурные,
  2. физические,
  3. математические.

Идеальные модели можно разделить на:

  1. наглядные,
  2. знаковые,
  3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Элементы теории игры

В общем случае решение игры представляет довольно трудную задачу, причем сложность задачи и объем необходимых для решения вычислений резко возрастает с увеличением . Однако это трудности не носят принципиального характера и связаны только сочень большим объемом расчетов, который в ряде случаев может оказаться практически невыполнимым. Принципиальная сторона метода отыскания решения остается при любом одной и той же.

Проиллюстрируем это на примере игры . Дадим ей геометрическую интерпретацию - уже пространственную. Три наши стратегии , изобразим тремя точками на плоскости ; первая лежит в начале координат (рис.1). вторая и третья - на осях Ох и Оу на расстояниях 1 от начала.

Через точки проводятся оси I-I, II-II и III-III, перпендикулярные к плоскости . На оси I-I откладываются выигрыши при стратегии на осях II-II и III-III - выигрыши при стратегиях . Каждая стратегия противника изобразится плоскостью, отсекающей на осях I-I, II-II и III-III, отрезки, равные выигрышам

при соответствующих стратегия и стратегия . Построив, таким образом, все стратегии противника, мы по­лучим семейство плоскостей над треугольником (рис2) .

Для этого семейства также можно построить нижнюю границу выигрыша, как мы это делали в случае, и найти на этой границе точку N с максимальной высотой нал плоскостью . Эта высота и будет ценой игры .

Частоты стратегий в оптимальной стра­тегии будут определяться координатами (x, у) точки N, а именно:

Однако такое геометрическое построение даже для случая нелегко осуществимо и требует большой затраты времени и усилий воображения. В общем же случае игры оно переносится в - мерное пространство и теряет всякую наглядность, хотя употребление геометрической терминологии в ряде случаев может оказаться полезным. При решении игр на практике удобнее пользоваться не геометрическими аналогиями, а расчетными аналитическими методами, тем более, что для решения задачи на вычислительных машинах эти методы единственно пригодны.

Все эти методы по существу сводятся к решению задачи путем последовательных проб, но упорядочение последо­вательности проб позволяет построить алгоритм, приводящий к решению наиболее экономичным способом.

Здесь мы вкратце остановимся на одном расчетном методе решения игр - на так называемом методе «линейного программирования».

Для этого дадим сначала общую постановку задачи о нахождении решения игры . Пусть дана игра с т стратегиями игрока А и n стра­тегиями игрока В и задана платежная ма­трица

Требуется найти решение игры, т. е. две оптимальные смешанные стратегии игроков А и В

где (некоторые из чисел и могут быть равными нулю).

Наша оптимальная стратегия S* A должна обеспечивать нам выигрыш, не меньший , при любом поведении про­тивника, и выигрыш, равный , при его оптимальном пове­дении (стратегия S* B ).Аналогично стратегия S* B должна обе­спечивать противнику проигрыш, не больший , при любом нашем поведении и равный при нашем оптимальном пове­дении (стратегия S* A ).

Величина цены игры в данном случае нам неизвестна; будем считать, что она равна некоторому положительному числу. Полагая так, мы не нарушаем общности рассуждений; для того чтобы было > 0, очевидно, достаточно, чтобы все элементы матрицы были неотрицательными. Этого всегда можно добиться, прибавляя к элементам доста­точно большую положительную величину L;при этом цена игры увеличится на L, а решение не изменится.

Пусть мы выбрали свою оптимальную стратегию S* A . Тогда наш средний выигрыш при стратегии противника будет равен:

Наша оптимальная стратегия S* A обладает тем свойством, что при любом поведении противника обеспечивает выигрыш не меньший, чем ; следовательно, любое из чисел не может быть меньше . Получаем ряд условий:

(1)

Разделим неравенства (1) на положительную величину и обозначим:

Тогда условие (1) запишется виде

(2)

где - неотрицательные числа. Так как величины удовле­творяют условию

Мы хотим сделать свой гарантированный выигрыш максимально возможным; очевидно, при этом правая часть равенства (3) принимает минимальное значение.

Таким образом, задача нахождения решения игры сво­дится к следующей математической задаче: определить не­отрицательные величины , удовлетворяющие условиям (2), так, чтобы их сумма

была минимальной.

Обычно при решении задач, связанных с нахождением экстремальных значений (максимумов и минимумов), функцию дифференцируют и приравнивают производные нулю. Но такой прием в данном случае бесполезен, так как функ­ция Ф, которую нужно обратить в минимум, линейна, и ее производные по всем аргументам равны единице, т. е. нигде не обращаются в нуль. Следовательно, максимум функции достигается где-то на границе области изменения аргумен­тов, которая определяется требованием неотрицательности аргументов и условиями (2). Прием нахождения экстре­мальных значений при помощи дифференцирования непри­годен и в тех случаях, когда для решения игры опреде­ляется максимум нижней (или минимум верхней) границы выигрыша, как мы. например, делали при решении игр .Действительно, нижняя граница составлена из участков прямых линий, и максимум достигается не в точке, где производная равна нулю (такой точки вообще нет), а на границе интер­вала или в точке пересечения прямолинейных участков.

Для решения подобных задач, довольно часто встречаю­щихся на практике, в математике разработан специальный аппарат линейного программирования.

Задача линейного программирования ставится следующим образом.

Дана система линейных уравнений:

(4)

Требуется найти неотрицательные значения величин удовлетворяющие условиям (4) и вместе с тем обращающие в минимум заданную однородную линейную функцию величин (линейную форму):

Легко убедиться, что поставленная выше задача теории игр является частным случаем задачи линейного программирование при

С первого взгляда может показаться, что условия (2) не эквивалентны условиям (4), так как вместо знаков равенства они содержат знаки неравенства. Однако от знаков неравенства легко избавиться, вводя новые фиктивные неотрицательные переменные и записывая условия (2) в виде:

(5)

Форма Ф, которую нужно обратить в минимум, равна

Аппарат линейного программирования позволяет путем сравнительно небольшого числа последовательных проб подобрать величины , удовлетворяющие поставленным требованиям. Для большей ясности мы здесь продемонстрируем применение этого аппарата прямо на материале решения конкретных игр.

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Модель (от лат. modulus - мера) и моделирование являются общенаучными понятиями. Моделирование с общенаучной точки зрения выступает как способ познания с помощью построения особых объектов, систем – моделей исследуемых объектов, явлений или процессов. При этом тот или иной объект называют моделью тогда, когда он используется для получения информации относительно другого объекта – прототипа модели.

Метод моделирования используется фактически во всех без исключения науках и на всех этапах научного исследования. Эвристическая сила этого метода определяется тем, что с помощью метода моделирования удается свести изучение сложного к простому, невидимого и неощутимого и видимому и ощутимому и т.д.

При исследовании какого-то объекта (процесса или явления) с помощью метода моделирования, в качестве модели можно выбрать те свойства, которые нас в данный момент интересуют. Научное исследование любого объекта всегда относительно. В конкретном исследовании нельзя рассмотреть объект во всем его многообразии. Следовательно, один и тот же объект может иметь много различных моделей и ни про одну из них нельзя сказать, что она единственная, настоящая модель данного объекта.

Принято различать четыре основных свойства моделей:

· упрощенность по сравнению с изучаемым объектом;

· способность отражать или воспроизводить объект исследования;

· возможность замещать объект исследования на определенных этапах его познания;

· возможность получать новую информацию об изучаемом объекте.

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

Прежде чем создать математическую модель объекта (процесса или явления) его длительно изучают различными методами: наблюдением, специально организованными экспериментами, теоретическим анализом и т.д., то есть достаточно хорошо изучают качественную сторону явления, выявляют отношения, в которых находятся элементы объекта. Затем объект упрощается, из всего многообразия присущих ему свойств выделяются наиболее существенные. При необходимости делаются предположения об имеющихся связях с окружающим миром.

Как указывалось ранее, любая модель не тождественна самому явлению, она только дает некоторое приближение к действительности. Но в модели перечислены все предположения, которые положены в ее основу. Эти предположения могут быть грубыми и тем не менее давать вполне удовлетворительное приближение к реальности. Для одного и того же явления может быть построено несколько моделей, в том числе и математических. Например, описать движение планет Солнечной системы можно с помощью:

8 модели Кеплера, которая состоит из трех законов, включая математические формулы (уравнение эллипса);

8 модели Ньютона, которая состоит из одной формулы, но тем не менее она более общая и точная.

В оптике рассматривалось несколько моделей света: корпускулярная, волновая и электромагнитная. Для них были выведены многочисленные закономерности количественного характера. Каждая из этих моделей требовала своего математического подхода и соответствующих математических средств. Корпускулярная оптика пользовалась средствами евклидовой геометрии и пришла к выводу законов отражения и преломления света. Волновая модель теории света потребовала новых математических идей и чисто вычислительным путем были открыты новые факты, относящиеся к явлениям дифракции и интерференции света, которые ранее не наблюдались. Геометрическая оптика, связанная с корпускулярной моделью, здесь оказалась бессильной.

Построенная модель должна быть такой, чтобы она могла замещать в исследованиях объект (процесс или явление), должна иметь с ним сходные черты. Сходство достигается либо за счет подобия структуры (изоморфизм), либо аналогии в поведении или функционировании (изофункциональность). Опираясь на сходство структуры или функции модели и оригинала в современной технике проверяют, рассчитывают и проектируют сложнейшие системы, машины и сооружения.

Как указывалось выше, для одного и того же объекта, процесса или явления может быть построено много различных моделей. Некоторые из них (не обязательно все) могут оказаться изоморфными. Например, в аналитической геометрии кривая на плоскости используется в качестве модели соответствующего уравнения с двумя переменными. В этом случае модель (кривая) и прототип (уравнение) являются изоморфнымти системами (точек, лежащих на кривой, и соответствующих пар чисел, удовлетворяющих уравнению),

В книге «Математика ставит эксперимент» академик Н.Н.Моисеев пишет, что любая математическая модель может возникнуть тремя путями:

· В результате прямого изучения и осмысления объекта (процесса или явления) (феноменологическая) (пример – уравнения, описывающие динамику атмосферы, океана),

· В результате некоторого процесса дедукции, когда новая модель получается как частный случай более общей модели (асимптоматическая) (пример – уравнения гидро-термодинамики атмосферы),

· В результате некоторого процесса индукции, когда новая модель является естественным обобщением «элементарных» моделей (модель ансамблей или обобщенная модель).

Процесс разработки математических моделей состоит из следующих этапов :

· формулирование проблемы;

· определение цели моделирования;

· организация и проведение исследования предметной области (исследование свойств объекта моделирования);

· разработка модели;

· проверка ее точности и соответствия реальности;

· практическое использование, т.е. перенос полученных с помощью модели знаний на исследуемый объект или процесс.

Особое значение моделирование как способ познания законов и явлений природы приобретает в изучении объектов, недоступных в полной мере прямому наблюдению или экспериментированию. К ним относятся и социальные системы, единственно возможным способом изучения которых, зачастую служит моделирование.

Общих способов построения математических моделей не существует. В каждом конкретном случае нужно исходить из имеющихся данных, целевой направленности, учитывать задачи исследования, а также соразмерять точность и подробность модели. Она должна отражать важнейшие черты явления, существенные факторы, от которых в основном зависит успех моделирования.

При разработке моделей необходимо придерживаться следующих основных методологических принципов моделирования социальных явлений:

· принципа проблемности, предполагающего движение не от готовых "универсальных" математических моделей к проблемам, а от реальных, актуальных проблем - к поиску, разработке специальных моделей;

· принципа системности, рассматривающего все взаимосвязи моделируемого явления в терминах элементов системы и ее среды;

· принципа вариативности при формализации процессов управления, связанного со специфическими различиями законов развития природы и общества. Для его объяснения необходимо раскрыть коренное отличие моделей общественных процессов от моделей, описывающих явления природы.

Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели:

инвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

аналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;

алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма.

схемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

физическая

аналоговая

Наиболее универсальным является математическое описание процессов - математическое моделирование.

В понятие математического моделирования включают и процесс решения задачи на ЭВМ.

Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами.

Элементами обобщенной математической модели являются (рис. 1): множество входных данных (переменные) X,Y;

X - совокупность варьируемых переменных; Y - независимые переменные (константы);

математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry.

Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект

Это могут быть:

  • - технические параметры объекта, не подлежащие изменению в процессе проектирования;
  • - физические возмущения среды, с которой взаимодействует объект проектирования;
  • - тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей RG.

Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.


Требования к математической модели

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.

Универсальность - определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.

Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.

Методы получения моделей

Получение моделей в общем случае - процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В тоже время такие операции, как расчет численных значений параметров модели, определение областей адекватности и другие, алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов проектируемой системы обычно выполняется специалистами конкретных технических областей с помощью традиционных экспериментальных исследований.

Методы получения функциональных моделей элементов делят на теоретические и экспериментальные.

Теоретические методы основаны на изучении физических закономерностей протекающих в объекте процессов, определении соответствующего этим закономерностям математического описания, обосновании и принятии упрощающих предположений, выполнении необходимых выкладок и приведении результата к принятой форме представления модели.

Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.

Несмотря на эвристический характер многих операций моделирование имеет ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют

методика макро моделирования,

математические методы планирования экспериментов,

алгоритмы формализуемых операций расчета численных значений параметров и определения областей адекватности.

Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

изучить свойства исследуемого объекта;

умение отделить главные свойства объекта от второстепенных;

оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи на ЭВМ связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы, как отмечено выше, представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики.

Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы:

  • * экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем;
  • * математическая статистика: экономические приложения данной дисциплины -- выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.;
  • * математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.;
  • * методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений, теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование;
  • * методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым -- методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели индикативного планирования, модели теории фирмы и т. д.

Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики;

* методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов.

Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. Различные типы прикладных экономико-математических моделей как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др.

По типу информации, используемой в модели, экономике-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели,

Основные понятия математического моделирования модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни.

Рассмотрим в качестве примера экономико-математическую модель межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше классификационных рубрик это прикладная, макроэкономическая, аналитическая, дескриптивная, детерминированная, балансовая, матричная модель; при этом существуют как статические методы так и динамические

Линейное программирование -- это частный раздел оптимального программирования. В свою очередь оптимальное (математическое) программирование -- раздел прикладной математики, изучающий задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении.

Необходимым условием использования оптимального подхода к планированию и управлению (принципа оптимальности) является гибкость, альтернативность производственно- хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило, и составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей и т.д.).

Суть принципа оптимальности состоит в стремлении выбрать такое планово-управленческое решение X = (xi, Х2 хп), где Ху, (у = 1. я) -- его компоненты, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта.

Слова «наилучшим образом» здесь означают выбор некоторого критерия оптимальности, т.е. некоторого экономического показателя, позволяющего сравнивать эффективность тех или иных планово-управленческих решений. Традиционные критерии оптимальности: «максимум прибыли», «минимум затрат», «максимум рентабельности» и др. Слова «учитывало бы внутренние возможности и внешние условия производственной деятельности» означают, что на выбор планово-управленческого решения (поведения) накладывается ряд условий, т.е. выбор X осуществляется из некоторой области возможных (допустимых) решений D; эту область называют также областью определения задачи. общая задача оптимального (математического) программирования, иначе -- математическая модель задачи оптимального программирования, в основе построения (разработки) которой лежат принципы оптимальности и системности.

Вектор X (набор управляющих переменных Xj, j = 1, п) называется допустимым решением, или планом задачи оптимального программирования, если он удовлетворяет системе ограничений. А тот план X (допустимое решение), который доставляет максимум или минимум целевой функции f(xi, *2, ..., хп), называется оптимальным планом (оптимальным поведением, или просто решением) задачи оптимального программирования.

Таким образом, выбор оптимального управленческого поведения в конкретной производственной ситуации связан с проведением с позиций системности и оптимальности экономико- математического моделирования и решением задачи оптимального программирования. Задачи оптимального программирования в наиболее общем виде классифицируют по следующим признакам.

  • 1. По характеру взаимосвязи между переменными --
  • а) линейные,
  • б) нелинейные.

В случае а) все функциональные связи в системе ограничений и функция цели -- линейные функции; наличие нелинейности хотя бы в одном из упомянутых элементов приводит к случаю б).

  • 2. По характеру изменения переменных --
  • а) непрерывные,
  • б) дискретные.

В случае а) значения каждой из управляющих переменных могут заполнять сплошь некоторую область действительных чисел; в случае б) все или хотя бы одна переменная могут принимать только целочисленные значения.

  • 3. По учету фактора времени --
  • а) статические,
  • б) динамические.

В задачах а) моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течение периода времени, на который принимается планово-управленческое решение. В случае б) такое предположение достаточно аргументированно принято не может быть и необходимо учитывать фактор времени.

  • 4. По наличию информации о переменных --
  • а) задачи в условиях полной определенности (детерминированные),
  • б) задачи в условиях неполной информации,
  • в) задачи в условиях неопределенности.

В задачах б) отдельные элементы являются вероятностными величинами, однако известны или дополнительными статистическими исследованиями могут быть установлены их законы распределения. В случае в) можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятностях исходов.

  • 5. По числу критериев оценки альтернатив --
  • а) простые, однокритериальные задачи,
  • б) сложные, многокритериальные задачи.

В задачах а) экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами (например, «взвешиванием приоритетов»)