Определяется магнитное поле. Основные свойства магнитного поля

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:

Перемещающиеся электрические заряды.
Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля

  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства

  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Правила

Рассмотрим основные правила изображения магнитного поля для различных проводников.

Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 90 0 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля

  • Сцепление потоков (Ψ ).
  • Вектор магнитной индукции (В ).
  • Магнитный поток (Ф ).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l) .

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 90 0 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).
Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 90 0 , а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер» , который равен протеканием индукции величиной 1 Тл по площади в 1 м 2 .

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф .

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями.

Их разделяют на группы:

Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).

Рассмотренные магнетики также классифицируются еще по двум категориям:

Магнитомягкие материалы . Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении ( , генератор, ).
Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, . У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B = Ф /S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

? = ? а /? о (42)

Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

H = B/? а = B/(?? о) (43)

Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

Хорошо известно широкое применение магнитного поля в быту, на производстве и в научных исследованиях. Достаточно назвать такие устройства, как генераторы переменного тока, электродвигатели, реле, ускорители элементарных частиц и различные датчики. Рассмотрим подробнее, что собой представляет магнитное поле и как оно образуется.

Что такое магнитное поле - определение

Магнитное поле - это силовое поле, действующее на движущиеся заряженные частицы. Размер магнитного поля завит от скорости его изменения. Согласно этому признаку выделяют два типа магнитного поля: динамическое и гравитационное.

Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей их строения. Источниками динамического магнитного поля являются движущиеся электрические заряды или заряженные тела, проводники с током, а также намагниченные вещества.

Свойства магнитного поля

Великому французскому ученому Андре Амперу удалось выяснить два основополагающих свойства магнитного поля:

  1. Основное отличие магнитного поля от электрического и его основное свойство состоит в том, что оно носит относительный характер. Если вы возьмете заряженное тело, оставите его неподвижным в какой-либо системе отсчета и поместите рядом магнитную стрелку, то она будет, как обычно, указывать на север. То есть она не обнаружит никакого поля, кроме земного. Если же вы начнете перемещать это заряженное тело относительно стрелки, то она начнет поворачиваться - это говорит о том, что при движении заряженного тела возникает еще и магнитное поле, кроме электрического. Таким образом, магнитное поле появляется тогда и только тогда, когда есть движущийся заряд.
  2. Магнитное поле действует на другой электрический ток. Так, обнаружить его можно, проследив движение заряженных частиц, - в магнитном поле они будут отклоняться, проводники с током будут двигаться, рамка с током поворачиваться, намагниченные вещества смещаться. Здесь следует вспомнить магнитную стрелку компаса, обычно окрашенную в синий цвет, - ведь это просто кусочек намагниченного железа. Он всегда ориентируется на север, потому что Земля обладает магнитным полем. Вся наша планета является огромным магнитом: на Северном полюсе находится южный магнитный пояс, а на Южном географическом полюсе находится северный магнитный полюс.

Кроме этого, к свойствам магнитного поля относят следующие характеристики:

  1. Сила магнитного поля описывается магнитной индукцией - это векторная величина, определяющая, с какой силой магнитное поле влияет на движущиеся заряды.
  2. Магнитное поле может быть постоянного и переменного типа. Первое порождается не изменяющимся во времени электрическим полем, индукция такого поля также неизменна. Второе чаще всего генерируется при помощи индукторов, питающихся переменным током.
  3. Магнитное поле не может быть воспринято органами чувств человека и фиксируется только специальными датчиками.

Введение

Что такое магнитное поле? Все о нем слышали, все видели, как намагниченная стрелка компаса всегда одним и тем же концом поворачивается в сторону северного магнитного полюса, а другим своим концом - всегда в сторону южного магнитного полюса. Человека от самого умного животного отличает то, что он любопытен, и хочет знать - а почему это так происходит, как это устроено, что так происходит. Именно для объяснения происходящего вокруг него древний человек придумал богов. Духи, боги в сознании людей были факторами, которыми обяснялось все, что человек видел, слышал, от чего зависела удача на охоте и на войне, кто передвигал Солнце по небу, кто устраивал грозу, проливал дождь и сыпал снег, в общем, все сущее, все происходящее. Представьте себе, к дедушке подходит маленький внук, показывает на молнию и спрашивает: что это такое, почему огонь из тучи летит в землю, и кто так громко стучит там в облаках? Если дед отвечал: не знаю, то внук смотрел на него с сожалением и начинал меньше уважать. Но когда дед говорил, что это бог Ярило ездит на колеснице по облакам и огненные стрелы в нехороших людей пускает, внук слушал и еще больше уважал своего деда. Он начинал меньше бояться грома и молнии, так как знал, что он же хороший, поэтому Ярило в него стрелять не станет.

В раннем детстве, когда я начинал шалить, бабушка Анна говорила: "Шурка, смотри, не шали, а то боженька камешком стукнет". И при этом показывала на икону в красном углу на полке-божнице. Я на некоторое время притихал, с опаской посматривал на сурового мужика, нарисованного на доске, но как-то раз усомнился в его способности кидаться камнями. Поставил на лавку табуретку, влез на нее и заглянул на полку за икону. Никаких камушков я там не увидел, и когда бабка стала в очередной раз стращать меня, рассмеялся и заявил: "Никаких камней у него нет, и вообще он нарисованный и кидаться не может. И нечего пугать меня боженькой, я уже не маленький". Вот так же и наш далекий предок когда-то засомневался, что это Ярило по небу катается и стрелы пускает. Вот тогда-то и зародилось рациональное знание, когда люди засомневались во всемогуществе богов. Но чем же они их заменили? А заменили они богов законами природы, и крепко стали верить этим законам. Но там, где законами природы человек объяснить происходящее не может, он оставил место для богов. Именно поэтому религия и наука сосуществуют в обществе до сих пор.

Помню, как старшие приятели показали нам, малышам, фокус. По столу сам по себе двигался положенный на стол железный гвоздь, а парень-фокусник под столом передвигал свою руку. Гвоздь следовал за рукой. Мы удивленно таращили на это глаза и не понимали, почему гвоздь движется. Когда я рассказал матери об этом фокусе, то она разъяснила, что в руке у парня был магнит, который притягивает к себе железо, что парень под столом двигал не просто рукой, а в руке у него был магнит. На тот момент это объяснение удовлетворило мое любопытство, но чуть позже я уже хотел понять, а почему магнит на расстоянии - через доску стола, через слой воздуха - притягивает к себе железо. На этот вопрос ни мама, ни отец мне ответить не смогли. Пришлось ждать до школы. Там на уроке физики учитель объяснил, что магнит действует на железо через магнитное поле, которое создает вокруг себя, что у магнита есть два полюса - северный и южный, что из северного выходят какие-то невидимые магнитные силовые линии, которые дугой изгибаются и входят в южный полюс.

Тогда я впервые задумался: значит, в мире, кроме видимого, слышимого и осязаемого, есть кое-что невидимое и неосязаемое. Тогда я подумал: а что, если бог невидим и неосязаем - как это магнитное поле. Его вроде бы и нет нигде, а он все же существует. А на иконах в виде мужика его так, по глупости, изображают. Не знал я тогда, что до этого еще раньше меня додумался и философ Спиноза, который стал рассматривать Природу и Бога как единое и неразделимое, видимое и невидимое. Природа и есть Бог!

Помню, я пытался представить это магнитное поле, состоящее из силовых линий, и ничего не понимал. Я этих линий не видел и не слышал. Они ничем не пахли, и поверить в то, что вокруг нас может быть что-то, что мы никак не ощущаем, мне тогда было не очень понятно. Железные гвозди и опилки чувствовали магнитное поле и ориентировались и двигались в нем, а я со своими тонкими органами чувств ничего не чувствовал. Эта ущербность меня откровенно угнетала. Но не одного меня. А. Эйнштейн писал о сильном удивлении от увиденных свойств магнита, который ему в детстве подарил на день рождения отец, от того, что он не мог понять, как и почему эти притягательные свойства магнита происходят.

Когда учительница обществоведения уже в 10-м классе познакомила нас с определением материи, данным В.И. Лениным: "материя это то, что существует вокруг нас и дано нам в ощущениях", я возмущенно ее спросил: "а вот магнитное поле мы не ощущаем, а оно существует, оно что - разве не материя?". Да, одних органов чувств недостаточно, чтобы воспринимать все формы материи, требуется еще разум, с помощью которого если мы что-то и не чувствуем - не ощущаем, то понимаем, что оно есть. Поняв это, я решил изучать науки и развивать свой ум, надеясь, что это позволит мне многое понять. Но по мере того как я расширял пространство понятного мне, непонятное не исчезало, а только отодвигалось, и линия горизонта непонятного становилась все длиннее, так как круг познанного увеличивался и длина его окружности, отделяющая понятое моим разумом от непознанного и непонятного, тоже увеличивалась. В этом и состоит главный парадокс познания: чем больше мы узнаем и понимаем, тем больше мы еще не знаем. Об этом ученом незнании писал еще Николай Кузанский, которого почему-то считают философом схоластиком, хотя открытая им истина скорее говорит все же о том, что он был диалектиком.

Первые упоминания о породах, способных притягивать железо, относятся к античным временам. С магнитом связана старинная легенда о пастухе Магнусе, который однажды обнаружил, что его железный посох и сандалии, подбитые железными гвоздями, притягиваются к неведомому камню. С тех пор данный камень стали именовать «камнем Магнуса», или магнитом.

Происхождение и сущность магнитного поля Земли, как и магнитных полей вообще, и по сей день остается загадкой. Существует много гипотез - вариантов объяснения этого феномена, но истина по-прежнему "где-то там". Вот так определяют магнитное поле ученые физики: "Магнитное поле - это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения". И далее: "Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля". Я бы не сказал, что с логической точки зрения это блестящее определение. Сказать, что магнитное поле - это силовое поле, значит не сказать ничего, это - тавталогия. Ведь гравитационное поле - тоже силовое поле, и поле ядерных сил - силовое! Указание на воздействие магнитного поля на движущиеся электрические заряды кое о чем говорит, это описание одного из свойств магнитного поля. Но непонятно, действует ли магнитное поле непосредственно на частицы, имеющие электрические заряды, или оно действует на магнитные поля, образуемые этими частицами, а те (трансформированные поля частиц) уже в свою очередь действуют на частицы - передают им полученный импульс.

Впервые магнитные явления начал изучать английский врач и физик Уильям Гильберт, написавший работу «О магните, магнитных телах и о большом магните - Земле». Тогда считали, что электричество и магнетизм не имеют ничего общего. Но в начале XIX в. датский ученый Г.Х. Эрстед в 1820 г. экспериментальным путем доказал, что магнетизм является одной из скрытых форм электричества, и подтвердил это на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение. Вокруг проводников с электрическим током возникает поле, которое было названо магнитным . Пучок движущихся электронов оказывает действие на магнитную стрелку, аналогичное проводнику с током (опыт Иоффе). Конвекционные токи электрически заряженных частиц по своему действию на магнитную стрелку подобны токам проводимости (опыт Эйхенвальда).

Магнитное поле создается только движущимися электрическими зарядами или движущимися электрически заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создают как движущиеся, так и неподвижные электрические заряды.

Линии вектора магнитной индукции (В) всегда замкнуты и охватывают проводник с током, а линии напряженности электрического поля начинаются на положительных и кончаются на отрицательных зарядах, они разомкнуты. Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой - южный (S). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля (Е). Полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты - но каждый со своими северным и южным полюсами. Магнитные полюса разделить так, что северный полюс будет у одного куска, а южный у другого, невозможно, потому что свободных (дискретных) магнитных зарядов, в отличие от дискретных электрических зарядов, в природе не существует.

Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70-80 тысяч километров в направлении к Солнцу и на многие миллионы километров в обратном направлении. Происхождение магнитного поля Земли связывают с движениями жидкого вещества, проводящего электрически заряженные частицы в земном ядре. Мощными магнитными полями обладают Юпитер и Сатурн. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей. Магнитное поле широко применяется в различных отраслях промышленности: при погрузке железного лома, при очистке муки на хлебозаводах от металлических примесей, а также в медицине для лечения больных.

Что такое магнитное поле

Основной силовой характеристикой магнитного поля является вектор магнитной индукции . Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина). Вообще-то вектор - это величина, имеющая направление в пространстве, следовательно, можно говорить и о направлении магнитной индукции и о ее величине. Но сказать, что магнитное поле - это только направление магнитной индукции, значит, не очень-то и много разъяснить. Есть еще одна характеристика магнитного поля - векторный потенциал. В качестве основной характеристики магнитного поля в вакууме выбирают не вектор магнитной индукции, а вектор напряжённости магнитного поля . В вакууме эти два вектора совпадают, а в веществе нет, но с систематической точки зрения следует считать основной характеристикой магнитного поля именно векторный потенциал .

Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей. Магнитное и электрическое поля вместе образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны. С точки зрения квантовой теории поля, магнитное взаимодействие - как частный случай электромагнитного взаимодействия - переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) виртуальным. Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

По-моему, эти определения весьма туманны. Понятно, что магнитное поле - не пустота, а особый вид материи - часть реального мира. Понятно, что магнитное поле неразрывно связано с движением электрических зарядов - электрическим током. А вот как магнитное поле с электрическим полем образуют единое электромагнитное поле, непонятно. Скорее всего, существует некое единое поле, которое в зависимости от обстоятельств проявляет себя то как магнитное поле, то как электрическое. Прямо как гермафродит какой-то, который в определенных обстоятельствах может быть мальчиком, а в других обстоятельствах - девочкой.

Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца. Эта сила всегда направлена перпендикулярно к вектору скорости движения частицы - v и векторному потенциалу магнитного поля - B . Эта сила пропорциональна заряду частицы q , ее скорости v , перпендикулярна направлению вектора магнитного поля B и пропорциональна величине индукции магнитного поля B . Поясню тем, кто совсем позабыл школьную физику: сила - это причина, вызывающая ускорение движения тел. Здесь сила действует не на массу частицы, а на ее заряд. Этим сила Лоренца отличается от силы гравитации, которая действует на массу частиц (тел), поскольку масса тела - это его гравитационный заряд.

Магнитное поле действует и на проводник с током. Сила, действующая на проводник с током, называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника электрические заряды. Это и есть сила тока, измеряемая в амперах.

При взаимодействии двух магнитов их одинаковые полюсы отталкиваются, а противоположные притягиваются. Однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления. Непонятно, почему в рамках такой модели диполи никогда не могут быть разделены. Эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом одного знака. Всякое намагниченное тело имеет два полюса - северный и южный. На магнитный диполь, помещённый в неоднородное магнитное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен (совпадал по направлению) с магнитным полем, в которое этот магнитный диполь поместили.

В 1831 г. Майкл Фарадей обнаружил, что в замкнутом проводнике, если его поместить в изменяющемся магнитном поле, возникает электрический ток. Это явление получило название электромагнитная индукция.

М. Фарадей обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока, проходящего через часть электрического контура, находящуюся в это магнитное поле. Величина (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение части контура в магнитном поле. Электрический ток, вызванный ЭДС, называется индукционным током. Это открытие позволило создать генераторы электрического тока и создать, по-сути, нашу электрическую цивилизацию . Кто бы мог подумать в 30-е годы XIX в., что открытие М. Фарадея было эпохальным цивилизационным открытием, определившим будущее человечества?

В свою очередь, магнитное поле может создаваться и изменяться (ослабляться или усиливаться) переменным электрическим полем, создаваемым электрическими токами в виде потоков заряженных частиц. Микроскопическая структура вещества, помещенного в переменное магнитное поле, влияет на силу возникающего в нем тока. Одни структуры ослабляют возникающий электрический ток, а другие усиливают его в разной степени. Одно из первых исследований магнитных свойств вещества ваыполнил Пьер Кюри. В связи с этим вещества в отношении их магнитных свойств делятся на две основные группы:

1. Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов частиц вещества.

2. Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов частиц вещества - атомов или ионов: магнитные моменты частиц вещества направлены противоположно и равны по силе.

Различают также вещества диамагнетики и вещества парамагнетики.

Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Типы упорядочения магнитных моментов атомов в парамагнитных (а), ферромагнитных (б) и антиферромагнитных (в) веществах. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

К перечисленным выше группам веществ в основном относятся обычные твердые, жидкие и газообразные вещества. От них существенно отличаются своим взаимодействием с магнитным полем сверхпроводники и плазмы.

Магнитное поле ферромагнетиков (пример - железа) заметно на значительных расстояниях.

Магнитные свойства парамагнетиков аналогичны свойствам ферромагнетиков, но выражены гораздо слабее - на меньшем расстоянии.

Диамагнетики не притягиваются, а отталкиваются магнитом, сила, действующая на диамагнетики, направлена противоположно той, что действует на ферромагнетики и парамагнетики.

Согласно правилу Ленца, магнитное поле индуцируемого в магнитном поле электрического тока направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего этот ток. Хочу заметить, что взаимодействие переменного магнитного поля и индуцируемого им электрического тока и электрического поля соответствует принципу Ле-Шателье. Это не что иное, как автоторможение процесса, присущее всем процессам, происходящим в реальном мире.

Согласно принципу Ле-Шателье, всякий процесс, происходящий в мире, порождает процесс, имеющий противоположное направление и тормозящий процесс, его вызывающий. По-моему, это один из главных законов мироздания, которому почему-то не уделяют должного внимание ни физики, ни философы.

Все вещества в большей или меньшей степени обладают магнитными свойствами. Если два проводника с электрическими токами поместить в какую либо среду, то сила магнитного взаимодействия между токами изменяется. Индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме. Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью. Максимальной магнитной проницаемостью обладает вакуум.

Магнитные свойства веществ определяются магнитными свойствами атомов - электронов, протонов и нейтронов, входящих в состав атомов. Магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства вещества в основном определяются электронами, входящими в состав его атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и магнитного поля. Собственное магнитное поле электрона, возникающее якобы при вращении его вокруг своей оси, называют спиновым полем (spin - вращение). Но электрон создает магнитное поле также и за счет своего движения вокруг ядра атома, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Поведение парамагнетика (1) и диамагнетика (2) в неоднородном магнитном поле. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Вещества крайне разнообразны по своим магнитным свойствам. Например, платина, воздух, алюминий, хлористое железо - парамагнетики, а медь, висмут, вода - диамагнетики. Образцы из парамагнетика и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному - парамагнетики втягиваются в область сильного поля, а диамагнетики, наоборот, выталкиваются из него.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие - микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

Диамагнитными свойствами обладают атомы любых веществ, но во многих случаях их диамагнетизм маскируется сильным парамагнитным эффектом. Явление диамагнетизма было открыто М. Фарадеем в 1845 г.

Ферромагнетики могут сильно намагничиваться в магнитном поле, их магнитная проницаемость очень велика. К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Ферромагнетиками могут быть различные сплавы этих элементов, например, керамические ферромагнитные материалы - ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770°C, у кобальта 1130°C, у никеля 360°C.

Ферромагнитные материалы бывают магнито-мягкие и магнито-жесткие. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие материалы используются в основном для изготовления постоянных магнитов.

Характерной особенностью процесса намагничивания ферромагнетиков является гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса.

Зависимость магнитной проницаемости ферромагнетика от индукции внешнего магнитного поля. Намагничивается ферромагнетик вначале быстро, но достигнув максимума, намагничивается все медленнее. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Типичная петля гистерезися для магнитно-твердого ферромагнитного материала. В точке 2 достигается магнитное насыщение. Отрезок 1-3 определяет остаточную магнитную индукцию, а отрезок 1-4 - коэрцитивную силу, характеризующую способность образца противостоять размагничиванию. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Природа ферромагнетизма может быть понята на основе квантовых представлений. Ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области. Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

Иллюстрация процесса намагничивания ферромагнитного образца:

а - вещество в отсутствие внешнего магнитного поля: его отдельные атомы, являющиеся маленькими магнитами, расположены хаотически; б - намагниченное вещество: под действием внешнего поля атомы ориентируются относительно друг друга в определенном порядке в соответствии с направлением внешнего поля. Рис. с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Домены в теории магнетизма - это малые намагниченные области материала, в которых моменты магнтного поля атомов ориентированы параллельно друг другу. Домены отделены друг от друга переходными слоями, называемыми блоховскими стенками. На рисунке показаны два домена с противоположной магнитной ориентацией и блоховская стенка между ними с промежуточной ориентацией. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл оказывается ненамагниченным. При наложении же внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном магнитном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Следует однако помнить, что все эти рисунки и изображенные на них домены и атомы - всего лишь схемы или модели реальных явлений магнетизма, но не сами явления. Ими пользуются до тех пор, пока они не противоречат наблюдаемым фактам.

Простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. Показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.htmll

Возникновение магнитного поля в окрестностях проводника, по которому пропущен постоянный электрический ток, иллюстрирует электромагнит. Ток проходит по проводу, который намотан на стержень из ферромагнетика. Намагничивающая сила в этом случае равна произведению величины электрического тока в катушке на число витков в ней. Эта сила измеряется в амперах. Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н .

Индукция магнитного поля - это векторная величина, которая является силовой характеристикой магнитного поля. Направление магнитной индукции совпадает с направлением, который указывает магнитная стрелка в магнитном поле, а модуль данного вектора равен отношению модуля магнитной силы, которая действует на движущуюся перпендикулярно заряженную частицу, к модулю скорости и заряда этой частицы. Магнитная индукция согласно СИ измеряется в теслах (Тл). В системе СГС магнитная индукция измеряется в гауссах (Гс). При этом 1 Тл = 104 Гс.

Крупные электромагниты с железными сердечниками и очень большим числом витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию в промежутке между полюсами до 6 теслов (Тл). Величина индукции ограничивается механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника.

Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, и установок для создания импульсных магнитных полей был сконструирован П.Л. Капицей в Кембридже и в Институте физических проблем АН СССР, а также Ф. Биттером в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные магнитные поля получают при очень низких температурах.

Вектор магнитной индукции считается одной из физических величин, которая является фундаментальной в теории электромагнетизма, его можно встретить в огромном множестве уравнений, в каких-то случаях непосредственно, а иногда через напряженность магнитного поля, связанную с ним. Еединственной областью в классической теории электромагнетизма, в которой отсутствует вектор магнитной индукции, является, пожалуй, только чистая электростатика.

Ампер в 1825 г. предположил, что в магните в каждом его атоме циркулируют электрические микротоки. Но электрон был открыт лишь в 1897 г., а модель внутренней структуры атома - в 1913 г., почти 100 лет после гениальной догадки Ампера. В 1852 г. В. Вебер предположил, что каждый атом магнитного вещества представляет собой крошечный магнитный диполь. Предельная или полная намагниченность вещества достигается тогда, когда все отдельные атомные магнитики оказываются выстроенными в определенном порядке. Вебер полагал, что сохранять свое упорядочение этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория объясняла намагничивание тел при их соприкосновении с магнитом и их размагничивание при ударе или нагреве. Объяснялось и «размножение» магнитов при разрезании намагниченного куска или магнитного стержня на части, когда у каждой части всегда появлялось два полюса. Однако эта теория не объясняла ни происхождения самих элементарных магнитов, ни явление гистерезиса. В 1890 г. теория Вебера была усвершенствована Дж. Эвингом, заменившим гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые и составляют постоянный магнит.

В 1905 г. П. Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее магнитное поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Ланжевен ввел понятие магнитного момента атомного магнита, равное произведению «магнитного заряда» на расстояние между полюсами. Согласно этой теории, слабый магнетизм парамагнитных материалов объясняется слабым суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.

В 1907 г. П. Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Отдельный домен может иметь линейные размеры порядка 0,01 мм. Домены разделены между собой так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. Такие стенки представляют собой «переходные слои», или микроградиенты в магнитной наноструктуре вещества, в которых происходит изменение направления намагниченности доменов. Имеются два убедительных экспериментальных подтверждения существования доменов. В 1919 г. Г. Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. Для выявления доменной структуры магнита методом порошковых фигур, на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (окись железа). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Разработан метод изучения магнитного поля, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.

В свободном атоме железа две его оболочки (K и L ), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K -оболочке спин одного из электронов положителен, а другого - отрицателен. В L -оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент атома равен нулю. В M -оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направление

На просторах инетрнета есть масса тем, посвященных изучению магнитного поля. Необходимо отметить, что многие из них отличаются от того среднестатистического описания, которое существует в школьных учебниках. Моя задача состоит в том, чтобы собрать и систематизировать весь имеющийся в свободном доступе материал по магнитному полю для того, чтобы сфокусировать Новое Понимание магнитного поля. Изучение магнитного поля и его свойств можно с помощью разнообразных приемов. С помощью железных опилок, например грамотный анализ провел товарищ Фатьянов по адресуhttp://fatyf.narod.ru/Addition-list.htm

С помощью кинескопа. Я не знаю фамилии этого человека, но знаю его ник. Он называет себя "Ветерок". При подносе магнита к кинескопу на экране образуется "сотовая картина". Можно подумать, что "сетка" есть продолжение кинескопной сетки. Это метод визуализации магнитного поля.

Я стал изучать магнитное поле с помощью ферромагнитной жидкости. Именно магнитная жидкость максимально визуализирует все тонкости магнитного поля магнита.

Из статьи "что такое магнит" мы выяснили, что магнит это фрактализированная, т.е. уменьшенная в масштабе копия нашей планеты, магнитная геометрия которой максимально идентична простому магниту. Планета земля, в свою очередь, является копией того, из недр чего она была образована - солнца. Мы выснили, что магнит это своего рода индукционная линза, которая фокусирует на своем объеме все свойства глобального магнита планеты земля. Есть необходимость введения новых терминов, с помощью которых мы будем описывать свойства магнитного поля.

Индукционный поток - это поток, который берет свое начало на полюсах планеты и проходит через нас в геометрии воронки. Северный полюс планеты это вход в воронку, южный полюс планеты это выход воронки. Некоторые ученые называют этот поток эфирным ветром, говоря, что он "имеет галактическое происхождение". Но это не "эфирный ветер" и накакой не эфир, это "индукционная река", которая течет с полюса до полюса. Электричество в молнии имеет ту же самую природу, что и электричество появляемое при взаимодействии катушки и магнита.

Лучшее средство понять что есть магнитое поле - увидеть его. Размышлять и делать бесчисленные теории можно, но с позиции понимания физической сути явления - бесполезно. Думаю что все со мной согласятся, если я повторю слова не помню кого но суть такая что лучший критерий это опыт. Опыт и еще раз опыт.

Дома у себя я делал простые опыты, но много мне позволившие понять. Простой магнит цилиндрической формы... И так его и сяк крутил. Налил на него магнитной жидкости. Стоит зараза, не шевелится. Тут я вспомнил, что на каком то форуме вычитал, что два магнита сдавленные одноименными полюсами в герметичной области - повышают температуру области, а противоположными полюсами наооборот понижают. Если температура следствие взаимодействия полей, то почему бы ей не побыть и причиной? Я нагрел магнит используя "короткое замыкание" от 12 вт и резистор, просто прислонив нагретый резистор к магниту. Магнит нагрелся и магнитная жидкость начала сначало дергаться, а потом и вовсе стала подвижной. Магнитное поле возбуждается температурой. Но как же так, спросил я себя, ведь в букварях пишут о том, что температура ослабляет магнитные свойства магнита. И это правда, но это "ослабление" кагбы компенсируется возбуждением магнитного поля этого магнита. Иными словами магнитная сила не исчезает, но трансформируется в силу возбуждения этого поля. Отлично Все вращается и все кружится. Но почему вращающееся магнитное поле имеет именно такую геометрию вращения, а не какую то другую? На первый взгляд движение хаотично, но если посмотреть через микроскоп, то можно заметить, что в этом движении присутствует система. Система никак не принадлежащая магниту Но только локализующая его. Иными словами, магнит можно рассмотреть как энергетическую линзу, которая фокусирует в своем объеме возмущения.

Магнитное поле возбуждается не только от повышения температуры, но и от ее понижения. Думаю что правильней будет сказать, что магнитное поле возбуждается градиентом температур, чем одним каким то конкретным ее знаком. В том то и дело, что нет видимой "перестройки" структуры магнитного поля. Есть визуализация возмущения, которое проходит через область этого магнитного поля. Представьте себе возмущение, которое движется по спирали от северного полюса до южного через весь объем планеты. Так вот магнитное поле магнита = локальная часть этого глобального потока. Понимаете? Однако у меня нет уверенности в том, какого конкретно потока...Но факт в том, что потока. Причем потоков не один, а два. Первый внешний, а второй внутри него и вместе с первым движется, но в обратную сторону вращается. Магнитное поле возбуждается из-за градиента температуры. Но мы опять искажаем суть, когда говорим "магнитное поле возбуждается". Дело в том, что оно уже находится в возбужденном состоянии. Когда мы прикладываем градиент температур, мы искажаем это возбуждение до состояния повяления разбалансировки. Т.е. понимаем, что процесс возбуждения это постоянный процесс, в котором находится магнитное поле магнита. Градиент он искажает параметры этого процесса так, что мы оптически замечаем разницу между нормальным его возбуждением и тем возбуждением, которое вызвано градиентом.

Но почему в стационарном состоянии магнитное поле магнита неподвижно? НЕТ, оно также подвижно, но относительно движущихся систем отсчета, например нас, оно неподвижно. Мы движемся в пространстве с этим возмущением Ра и оно нам кажется наподвижным. Температура, которую мы прикладываем к магниту, создает кагбы местную разбалансировку этой фокусируемой системы. Появлется некая нестабильность в пространственной решетке, коя есть сотовая структура. Ведь пчелы строят свои дома не на пустом месте, но они кагбы облепляют структуру пространства своим строительным материалом. Таким образом, исходя из чисто опытных наблюдений, делаю вывод, что магнитное поле простого магнита это потенциальная система локальной разбалансировки решетки пространства, в котором как Вы уже догадались нет места атомам и малекулам, которых никто никогда не видел Температура она как "ключ зажигания" в этой локальной системе, включает разбалансировку. В данный момент я тщательно изучаю методы и средства управления этой разбалансировки.

Что есть магнитное поле и чем оно отличается от электромагнитного поля?

Что есть торсионное или энергоинформационное поле?

Это все есть одно и тоже, но локализующееся иными методамим.

Сила тока - есть плюс и сила отталкивания,

напряжение есть минус и сила притяжения,

короткое замыкание, или скажем локальная разбалансировка решетки - есть сопротивление этому взаимопроникновению. Или же взаимопроникновение отца, сына и святого духа. Помним, что метафора "адама и евы" есть старое понимание икс и ыгрик хромосом. Ибо понимание нового, это новое понимание старого. "Сила тока" - вихрь, исходящий от постоянно вращающегося Ра, оставляя позади себя информационное переплетение себя. Напряжение есть еще один вихрь, но внутри основного вихря Ра и движущийся вместе с ним. Визуально это можно представить в виде РАковины, рост которой происходит в направлении двух спиралей. Первая внешняя, вторая внутренняя. Или один внутрь себя и по часовой, а второй из себя и против часовой. Когда два вихря взамопроникают друг в друга, они образуют структуру, наподобии слоев Юпитера, которые движутся в разные стороны. Остается понять, механизм этого взаимопроникновения и система, которая образуется.

Примерные задачи на 2015 год

1. Найти методы и средства управления разбалансировкой.

2. Выявить материалы, наиболее влияющие на разбалансировку системы. Найти зависимость от состояния материала согласно таблицы 11 ребенка.

3. Если всякое живое существо, по своей сути, является такой же самой локализованной разбалансировкой, следовательно ее необходимо "увидеть". Иными словами необходимо найти метод фиксации человека в иных спектрах частот.

4. Главная задача в том, чтобы визуализировать не биологические спектры частот, в которых происходит непрерывный процесс творения человека. Например мы с помощью средства прогресса анализируем спектры частот, не входящие в биологический спектр чувств человека. Но мы их только регестрируем, но мы не можем их "осознать". Поэтому мы не видим дальше, чем могут осознать наши органы чувств. Вот моя главная задача на 2015 год. Найти методику технического осознания не биологического спектра частот с тем, чтобы увидеть информационную основу человека. Т.е. по сути его душу.

Особый вид изучения это магнитное поле в движении. Если мы нальем магнитную жидкость на магнит, она займет объем магнитного поля и будет стационарной. Однако нужно проверить опыт "Ветерка" где он подносил магнит к экрану монитора. Есть предположение что магнитное поле уже находится в возбужденном состоянии, однако объем жидкости его кагбы сдерживает в стационарном состоянии. Но я не прверял пока.

Магнитное поле может возбуждаться посредством приложения температуры к магниту, либо помещением магнита в индукционную катушку. Нужно заметить, что жидкость возбуждается только при определенном пространственном положении магнита внутри катушки, состовляя определенный угол к оси катушки, который можно найти опытным путем.

Я провел десятки опытов с движущейся магнитной жидкостью и поставил себе цели:

1. Выявить геометрию движения жидкости.

2. Выявить параметры, которые влияют на геометрию этого движения.

3. Какое место занимает движение жидкости в глобальном движении планеты Земля.

4. Зависит ли пространственное положение магнита и приобритаемой ей геометрии движения.

5. Почему "ленты" ?

6. Почему ленты скручиваются

7. От чего зависит вектор скручивания лент

8. Почему конусы смещаются только посредством узлов, которые есть вершины соты, причем скручиваются всегда только три близ лежащие ленты.

9. Почему смещение конусов происходит резко, по достижении определенной "накрученности" в узлах?

10. Почему размер конусов пропорционален объему и массе наливаемой на магнит жидкости

11. Почему конус разделен на два ярко выраженных сектора.

12. Какое место это "разделение" занимает в разрезе взаимодействия между полюсами планеты.

13. Как зависит геометрия движения жидкости от времени суток, времени года, солнечной активности, намерения эксперементатора, давления и дополнительных градиентов. Например резкое изменение "холодное горячее"

14. Почему геометрия конусов идентична с геометрией Варджи - специального вооружения возвращающихся богов?

15. Имеются ли данные в архивах специальных служб 5 автоматов какие либо сведения о назначении, наличии или хранении образцов данного вида вооружений.

16. Что говорят выпотрошенные кладовые знания различных тайных организаций об этих конусах и связана ли геометрия конусов со звездой Давида, суть которая есть идентичность геометрии конусов. (масоны, иузеиты, ватиканы, и прочие несогласованные образования).

17. Почему среди конусов всегда есть лидер. Т.е. конус с "коронкой" на вершине, который "организует" движения 5,6,7 конусов вокруг себя.

конуса в момент смещения. Рывок. "...только двигаясь буквой "Г" я к нему дойду"....