Относительная магнитная проницаемость парамагнетиков. Магнитные материалы

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B {\displaystyle {B}} и напряжённостью магнитного поля H {\displaystyle {H}} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой μ {\displaystyle \mu } . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

B → = μ H → , {\displaystyle {\vec {B}}=\mu {\vec {H}},}

и μ {\displaystyle \mu } в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

B i = μ i j H j {\displaystyle \ B_{i}=\mu _{ij}H_{j}}

Для изотропных веществ соотношение:

B → = μ H → {\displaystyle {\vec {B}}=\mu {\vec {H}}}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение μ {\displaystyle \mu } используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом μ {\displaystyle \mu } совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

μ r = 1 + χ , {\displaystyle \mu _{r}=1+\chi ,}

Энциклопедичный YouTube

  • 1 / 5

    Подавляющее большинство веществ относятся либо к классу диамагнетиков ( μ ⪅ 1 {\displaystyle \mu \lessapprox 1} ), либо к классу парамагнетиков ( μ ⪆ 1 {\displaystyle \mu \gtrapprox 1} ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

    У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

    Магнитные проницаемости некоторых веществ и материалов

    Магнитная восприимчивость некоторых веществ

    Магнитная восприимчивость и магнитная проницаемость некоторых материалов

    Medium Восприимчивость χ m
    (объемная, СИ)
    Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
    Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
    Наноперм (англ. Nanoperm ) 10 × 10 -2 80 000 при 0.5 Тл 10 kHz
    Мю-металл 2,5 × 10 -2 20 000 при 0.002 Тл
    Мю-металл 50 000
    Пермаллой 1,0 × 10 -2 70 000 при 0.002 Тл
    Электротехническая сталь 5,0 × 10 -3 4000 при 0.002 Тл
    Феррит (никель-цинк) 2,0 × 10 -5 - 8,0 × 10 -4 16-640 100 kHz ~ 1 MHz [ ]
    Феррит (марганец-цинк) >8,0 × 10 -4 640 (и более) 100 kHz ~ 1 MHz
    Сталь 8,75 × 10 -4 100 при 0.002 Тл
    Никель 1,25 × 10 -4 100 - 600 при 0.002 Тл
    Неодимовый магнит 1.05 до 1,2-1,4 Тл
    Платина 1,2569701 × 10 -6 1,000265
    Алюминий 2,22 × 10 -5 1,2566650 × 10 -6 1,000022
    Дерево 1,00000043
    Воздух 1,00000037
    Бетон 1
    Вакуум 0 1,2566371 × 10 -6 (μ 0) 1
    Водород -2,2 × 10 -9 1,2566371 × 10 -6 1,0000000
    Тефлон 1,2567 × 10 -6 1,0000
    Сапфир -2,1 × 10 -7 1,2566368 × 10 -6 0,99999976
    Медь -6,4 × 10 -6
    or -9,2 × 10 -6
    1,2566290 × 10 -6 0,999994

    Магнитное поле катушки определяется током и напряженность этого поля , а индукция поля . Т.е. индукция поля в вакууме пропорциональна величине тока. Если же магнитное поле создается в некой среде или веществе, то поле воздействует на вещество, а оно, в свою очередь, определенным образом изменяет магнитное поле.

    Вещество, находящееся во внешнем магнитном поле, намагничивается и в нем возникает добавочное внутреннее магнитное поле. Оно связано с движением электронов по внутриатомным орбитам, а также вокруг собственной оси. Движение электронов и ядер атомов можно рассматривать как элементарные круговые токи.

    Магнитные свойства элементарного кругового тока характеризуются магнитным моментом.

    При отсутствии внешнего магнитного поля элементарные токи внутри вещества ориентированы беспорядочно (хаотически) и, поэтому общий или суммарный магнитный момент равен нулю и в окружающем пространстве магнитное поле элементарных внутренних токов не обнаруживается.

    Влияние внешнего магнитного поля на элементарные токи в веществе состоит в том, что изменяется ориентация осей вращения заряженных частиц причем так, что их магнитные моменты оказываются направленными в одну сторону. (в сторону внешнего магнитного поля). Интенсивность и характер намагничивания у различных веществ в одинаковом внешнем магнитном поле значительно отличаются. Величину, характеризующую свойства среды и влияние среды на плотность магнитного поля, называют абсолютной магнитной проницаемостью или магнитной проницаемостью среды (μ с ) . Это есть отношение = . Измеряется [μ с ]=Гн/м.

    Абсолютная магнитная проницаемость вакуума называется магнитной постоянной μ о =4π 10 -7 Гн/м.

    Отношение абсолютной магнитной проницаемости к магнитной постоянной называют относительной магнитной проницаемостью μ c /μ 0 =μ. Т.е. относительная магнитная проницаемость – это величина, показывающая, во сколько раз абсолютная магнитная проницаемость среды больше или меньше абсолютной проницаемости вакуума. μ - величина безразмерная, изменяющаяся в широких пределах. Эта величина положена в основу деления всех материалов и сред на три группы.

    Диамагнетики . У этих веществ μ < 1. К ним относятся - медь, серебро, цинк, ртуть, свинец, сера, хлор, вода и др. Например, у меди μ Cu = 0,999995. Эти вещества слабо взаимодействуют с магнитом.

    Парамагнетики . У этих веществ μ > 1. К ним относятся – алюминий, магний, олово, платина, марганец, кислород, воздух и др. У воздуха = 1,0000031. . Эти вещества также, как и диамагнетики, слабо взаимодействуют с магнитом.

    Для технических расчетов μ диамагнитных и парамагнитных тел принимается равной единице.

    Ферромагнетики . Это особая группа веществ, играющих громадную роль в электротехнике. У этих веществ μ >> 1. К ним относятся железо, сталь, чугун, никель, кобальт, гадолиний и сплавы металлов. Эти вещества сильно притягиваются к магниту. У этих веществ μ = 600- 10 000. У некоторых сплавов μ достигает рекордных значений до 100 000. Следует отметить, что μ для ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля, вида материала и температуры.

    Большое значение µ в ферромагнетиках объясняется тем, что в них имеются области самопроизвольного намагничивания (домены), в пределах которых элементарные магнитные моменты направлены одинаково. Складываясь, они образуют общие магнитные моменты доменов.

    В отсутствие магнитного поля магнитные моменты доменов ориентированы хаотически и суммарный магнитный момент тела или вещества равен нулю. Под действием внешнего поля магнитные моменты доменов ориентируются в одну сторону и образуют общий магнитный момент тела, направленный в ту же сторону, что и внешнее магнитное поле.

    Эту важную особенность используют на практике, применяя ферромагнитные сердечники в катушках, что позволяет резко усилить магнитную индукцию и магнитный поток при тех же значениях токов и числа витков или, иначе говоря, сконцентрировать магнитное поле в относительно малом объеме.

    Магнитная проницаемость. Магнитные свойства веществ

    Магнитные свойства веществ

    Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

    Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

    Отношение называется магнитной проницаемостью среды.

    Итак, в однородной среде магнитная индукция равна:

    Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

    Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

    Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

    Ферромагнетики

    Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

    Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

    Рис. 12.2

    СТОП! Решите самостоятельно: А1–А3, В1, В3.

    Парамагнетики

    Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

    Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

    Диамагнетики

    Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.

    4. Магнитные материалы. Химия радиоматериалов

    4. Магнитные материалы

    Магнитные материалы в электро и радиосвязи играют столь же важную роль, как проводниковые и диэлектрические материалы. В электрических машинах, трансформаторах, дросселях, электрорадиоаппаратуре и измерительных приборах всегда в том или ином виде используют магнитные материалы: в качестве магнитопровода, в виде постоянных магнитов или для экранирования магнитных полей.

    Любое вещество, будучи помещенным в магнитное поле, приобретает некоторый магнитный момент М. Магнитный момент единицы объема называют намагниченностью J м:

    J м =M/V. (4.1)

    Намагниченность связана с напряженностью магнитного поля:

    J м =k м H, (4.2)

    где k м – безразмерная величина, характеризующая способность данного вещества намагничиваться в магнитном поле и называемая магнитной восприимчивостью .

    Первопричиной магнитных свойств вещества являются внутренние скрытые формы движения электрических зарядов, представляющие собой элементарные круговые токи, обладающие магнитными моментами. Такими токами являются орбитальные спины и орбитальное вращение электронов в атоме. Магнитные моменты протонов и нейтронов примерно в 1000 раз меньше магнитного момента электрона, поэтому магнитные свойства атома целиком определяются электронами, магнитным моментом ядра можно пренебречь.

    4.1. Классификация веществ по магнитным свойствам

    По реакции на внешнее магнитное поле и по характеру внутреннего магнитного упорядочения все вещества в природе можно разделить на пять групп:

    • диамагнетики;
    • парамагнетики;
    • ферромагнетики;
    • антиферромагнетики;
    • ферримагнетики.

    Диамагнетики – магнитная проницаемость m меньше единицы и не зависит от напряженности внешнего магнитного поля.

    Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электрона при внесении атома в магнитное поле.

    Диамагнитный эффект является универсальным, присущим всем веществам. Однако в большинстве случаев он маскируется более сильными магнитными эффектами.

    К диамагнетикам относят инертные газы, водород, азот, многие жидкости (вода, нефть), ряд металлов (медь, серебро, золото, цинк, ртуть и др.), большинство полупроводников и органических соединений. Диамагнетики – все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

    Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.

    Парамагнетики – вещества с m больше единицы, не зависящей от напряженности внешнего магнитного поля.

    Внешнее магнитное поле вызывает преимущественную ориентацию магнитных моментов атомов в одном направлении.

    Парамагнетики, помещенные в магнитное поле, втягиваются в него.

    К числу парамагнетиков относятся: кислород, окись азота, щелочные и щелочно-земельные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

    Парамагнитный эффект по физической природе во многом сходен с дипольно-релаксационной поляризацией диэлектриков.

    К ферромагнетикам относят вещества с большой магнитной проницаемостью (до10 6), сильно зависящей от напряженности внешнего магнитного поля и температуры.

    Ферромагнетикам присуща внутренняя магнитная упорядоченность, выражающаяся в существовании макроскопических областей с параллельно ориентированными магнитными моментами атомов. Важнейшая особенность ферромагнетиков заключается в их способности намагничиваться до насыщения в слабых магнитных полях.

    Антиферромагнетиками являются вещества, в которых ниже некоторой температуры Т° спонтанно возникает антипараллельная ориентация магнитных моментов одинаковых атомов или ионов кристаллической решетки

    При нагревании антиферромагнетик переходит в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.)

    К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Магнитная проницаемость у них высока и сильно зависит от напряженности магнитного поля и температуры.

    Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом – различные оксидные соединения, а главный интерес представляют ферриты.

    Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, тогда как ферро- и ферримагнетики представляют собой сильномагнитные материалы и представляют наибольший интерес.

    4.2. Магнитные характеристики материалов

    Поведение ферромагнитного материала в магнитном поле характеризуется начальной кривой намагничивания:

    Рис. 4.1. Начальная кривая намагничивания.

    Показывающей зависимость магнитной индукции В в материале от напряженности магнитного поля Н.

    Свойства магнитных материалов оценивают магнитными характеристиками. Рассмотрим основные из них.

    4.2.1. Абсолютная магнитная проницаемость

    Абсолютная магнитная проницаемость m а материала представляет собой отношение магнитной индукции В к напряженности магнитного поля Н в заданной точке кривой намагничивания для данного материала и выражается в Гн/м:

    m а =В/Н (4.3)

    Относительная магнитная проницаемость материала m есть отношение абсолютной магнитной проницаемости к магнитной постоянной:

    m =m а /m о (4.4)

    μ 0 – характеризует магнитное поле в вакууме (m 0 =1.256637·10 -6 Гн/м).

    Абсолютная магнитная проницаемость применяется только для расчетов. Для оценки же свойств магнитных материалов используют m, не зависящую от выбранной системы единиц. Ее называют магнитной проницаемостью. Магнитная проницаемость зависит от напряженности магнитного поля:


    Рис. 4.2. Зависимость магнитной проницаемости от напряженности магнитного поля.

    Различают начальную m н и максимальную магнитную проницаемость m м. Начальную измеряют при напряженностях магнитного поля, близких к нулю.

    Большие значения m н и m м показывают, что данный материал легко намагничивается в слабых и сильных магнитных полях.

    4.2.2. Температурный коэффициент магнитной проницаемости

    Температурный коэффициент магнитной проницаемости ТКm позволяет оценить характер изменения m в зависимости

    ТК μ = (μ 2 - μ 1)/ μ 1 (Т 2 – Т 1)

    Типичная зависимость μ от Т° приведена на рис.4.3.


    Рис.4.3. Типичная зависимость магнитной проницаемости ферромагнитных материалов от температуры

    Т°, при которой μ падает почти до нуля называется температурой Кюри Т к. При Т > Т к процесс намагничивания расстраивается из-за интенсивного теплового движения атомов и молекул материала, следовательно, материал перестает быть ферромагнитным.

    Так, для чистого железа Т к = 768°C
    для никеля Т к = 358°C
    для кобальта Т к = 1131°C

    4.2.3. Индукция насыщения

    Индукция В s , характерная для всех магнитных материалов, называется индукцией насыщения (см.рис.4.4). Чем больше В s при заданной Н, тем лучше магнитный материал.

    Если образец магнитного материала намагничивать, непрерывно повышая напряженность магнитного поля Н, магнитная индукция В тоже будет непрерывно возрастать по кривой начального намагничивания 1:


    Рис.4.4. Петля гистерезиса магнитного материала

    Эта кривая заканчивается в точке, соответствующей индукции насыщения В s . При уменьшении Н индукция тоже будет уменьшаться, но начиная с величины В m значения В не будут совпадать с начальной кривой намагничивания.

    4.2.4. Остаточная магнитная индукция

    Остаточная магнитная индукция В r наблюдается в ферромагнитном материале, когда Н=0. Для размагничивания образца надо, чтобы напряженность магнитного поля изменила свое направление на противоположное – Н. Напряженность поля, при которой индукция становится равной нулю, называется коэрцитивной силой Н с. Чем больше Н с, тем в меньшей степени материал способен размагничиваться.

    Если после размагничивания материала намагничивать его в противоположном направлении, образуется замкнутая петля, которую называют предельной петлей гистерезиса – петля, снятая при плавном изменении напряженности магнитного поля от +Н до –Н, когда магнитная индукция становится равной индукции насыщения В s .

    4.2.5. Удельные потери на гистерезис

    Это потери P г, затрачиваемые на перемагничивание единицы массы материала за один цикл [Вт/кг]. Их величина зависит от частоты перемагничивания и значения максимальной индукции. Они определяются (за один цикл) площадью петли гистерезиса.

    4.2.6. Динамическая петля гистерезиса

    Она образуется при перемагничивании материала переменным магнитным полем и имеет большую площадь, чем статическая, т.к. при действии переменного магнитного поля кроме потерь на гистерезис возникают потери на вихревые токи и магнитное последействие (отставание по времени параметров от Н), которое определяется магнитной вязкостью материала.

    4.2.7. Потери энергии на вихревые токи

    Потери энергии на вихревые токи Р в зависят от удельного электрического сопротивления материала ρ. Чем больше ρ, тем меньше потери. Р в также зависят от плотности материала и его толщины. Они пропорциональны квадрату амплитуды магнитной индукции В m и частоты f переменного поля.

    4.2.8. Коэффициент прямоугольности петли гистерезиса

    Для оценки формы гистерезисной петли пользуются коэффициентом прямоугольности петли гистерезиса:

    К п = В r /В m (4.6)

    Чем больше К п, тем прямоугольнее петля. Для магнитных материалов, применяемых в автоматике и ЗУ ЭВМ, К п = 0.7-0.9.

    4.2.9. Удельная объемная энергия

    Это характеристика, применяемая доля оценки свойств магнитно-твердых материалов, выражается формулой:

    W м = 1/2(B d ·H d), (4.7)

    где B d и H d соответственно индукция и напряженность магнитного поля, соответствующие максимальному значению удельной объемной энергии (рис.4.5).


    Рис.4.5. Кривые размагничивания и магнитной энергии

    Чем больше объемная энергия, тем лучше магнитный материал и постоянный магнит, из него изготовленный.

    4.3. Классификация магнитных материалов

    Согласно поведению в магнитном поле все магнитные материалы делятся на две основные группы – магнитно-мягкие (МММ) и магнитно-твердые (МТМ). МММ характеризуются большими значениями начальной и максимальной магнитной проницаемостью и малыми значениями коэрцитивной силы (меньше 4000 А/м). Они легко намагничиваются и размагничиваются, отличаются малыми потерями на гистерезис.

    Чем чище МММ, тем лучше его магнитные характеристики.

    МТМ обладают большой коэрцитивной силой (больше 4000А/м) и остаточной индукцией (больше 0.1 Тл). Они с большим трудом намагничиваются, но зато могут долго сохранять магнитную энергию, т.е. служить источниками постоянного магнитного поля.

    По составу все магнитные материалы делятся на

    1. металлические
    2. неметаллические
    3. магнитодиэлектрики.

    Металлические магнитные материалы это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.

    Неметаллические магнитные материалы – ферриты, получаемые из порошкообразной смеси окислов железа и окислов других металлов. Опрессованные ферритовые изделия подвергаются отжигу, в результате чего они превращаются в твердые монолитные детали.

    Магнитодиэлектрики представляют собой композиционные материалы, состоящие из 60-80% порошкообразного магнитного материала и 40-20% диэлектрика.

    Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими ρ(10 2 -10 8 Ом·м), от чего потери на вихревые токи малы. Это позволяет использовать их в высокочастотной технике. Кроме того, ферриты обладают большой стабильностью магнитных параметров в широком диапазоне частот (включая СВЧ).

    4.4. Металлические магнитно-мягкие материалы

    Основными магнитно-мягкими материалами, применяемыми в радиоэлектронной аппаратуре, являются карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.

    4.4.1. Карбонильное железо

    Представляет собой тонкодисперсный порошок, состоящий из частиц сферической формы диаметром 1–8 мкм.

    μ н = 2500 – 3000
    μ м = 20000 – 21000
    Н с = 4.5 – 6.2 А/м

    Его применяют при изготовлении высокочастотных магнитодиэлектрических сердечников.

    4.4.2. Пермаллои

    Пластичные железоникелевые сплавы с содержанием никеля 45–80%, легко прокатываются в тонкие листы и ленты, толщиной до 1 мкм. При содержании никеля 45–50% называются низконикелевыми, 60–80% - высоконикелевыми.

    μ н = 2000 – 14000
    μ м = 50000 – 270000
    Н с = 2 – 10 А/м
    ρ = 0.25 – 0.45 мкОм·м

    Для улучшения магнитных характеристик в пермаллои вводят молибден, хром, кремний или медь, отжигают в водороде или вакууме, при помощи турбомолекулярных насосов.

    Легированные пермаллои применяют для деталей аппаратуры, работающих на частотах 1–5 МГц. В магнитных усилителях применяют пермаллои с прямоугольной петлей гистерезиса.

    4.4.3. Альсиферы

    Представляют собой нековкие, хрупкие сплавы, состоящие из 5.5–13% алюминия, 9–10% кремния, остальное – железо.

    μ н = 6000 – 7000
    μ м = 30000 – 35000
    Н с = 2.2 А/м
    ρ = 0.8 мкОм·м

    Из него изготовляют литые сердечники, работающие в диапазоне до 50 кГц.

    4.4.4. Низкоуглеродистые кремнистые стали

    Представляют собой сплавы железа с 0.8–4.8% кремния, содержание углерода не более 0.08%. Это сравнительно дешевый материал. Введение большого количества кремния улучшает магнитные свойства материала, но повышает его хрупкость (поэтому кремния не более 4.8%).

    Листы кремнистой стали изготавливают прокаткой заготовок в нагретом и ненагретом состояниях, поэтому различают горячекатанную и холоднокатанную сталь.

    Улучшенные магнитные характеристики холоднокатанных сталей наблюдаются только при совпадении направления магнитного потока с напрвлением пркатки. В противном случае свойства горячекатанных сталей выше.

    Таблица 4.1. Стали применяют в менее ответственных узлах РЭА.

    Горячекатанная

    холоднокатанная

    4.5. Металлические магнитно-твердые материалы

    По составу, состоянию и способу получения магнитно-твердые материалы подразделяются на:

    1. легированные стали, закаливаемые на мартенсит;
    2. литые магнитно-твердые сплавы;
    3. магниты из порошков;
    4. магнитно-твердые ферриты;
    5. пластически деформируемые сплавы и магнитные ленты.

    Характеристиками материалов для постоянных магнитов служат коэрцитивная сила, остаточная индукция и максимальная энергия, отдаваемая магнитом во внешнее пространство. Магнитная проницаемость материалов для постоянных магнитов ниже, чем МММ, причем чем выше коэрцитивная сила, тем меньше магнитная проницаемость.

    4.5.1. Легированные стали, закаливаемые на мартенсит

    Данные стали являются наиболее простым и доступным материалом для постоянных магнитов. Они легируются вольфрамом, хромом, молибденом и кобальтом. Величина W м для мартенситных сталей составляет 1–4 кДж/м 3 . В настоящее время мартенситные стали имеют ограниченное применение из-за невысоких магнитных свойств, но полностью от них не отказываются, т.к. они дешевы и допускают механическую обработку на металлорежущих станках.

    4.5.2. Литые магнитно-твердые сплавы

    Большую магнитную энергию имеют тройные сплавы Al-Ni-Fe, которые раньше называли сплавами альни . При добавлении кобальта или кремния в эти сплавы их магнитные свойства повышаются. Недостатком этих сплавов является трудность изготовления из них изделий точных размеров вследствие хрупкости и твердости их, допускающих обработку только путем шлифовки.

    4.5.3. Магниты из порошков

    Необходимость получения особенно мелких изделий со строго выдержанными размерами обусловила привлечение методов порошковой металлургии для получения постоянных магнитов. При этом различают металлокерамические магниты и магниты из зерен порошка, скрепленных тем или иным связующим (металлопластические магниты).

    4.5.4. Пластически деформируемые сплавы и магнитные ленты

    К таким сплавам относятся викаллой, кунифе, кунико и некоторые другие. Основные представления об этих сплавах приведены в табл.4.2.

    Таблица 4.2.

    Марка сплава

    Хим. Состав %, ост. Fe

    Н с,
    кА/м

    W м,
    КДж/м 3

    Викаллой I

    51-54 Со
    10-11.5 V

    Викаллой II

    51-54 Со
    11.5-13 V

    Кунифе II

    50Cu,20Ni 2.5Co

    50Cu,21Ni, 29Co

    Кунико II

    4.6. Ферриты

    Это соединения оксида железа Fe 2 O 3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной смеси оксидов этих металлов.

    Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:

    Если ZnO – феррит цинка

    NiO – феррит никеля.

    Ферриты имеют кубическую кристаллическую решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al 2 O 3 . Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe 2 O 3 , обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn ++ или Cd ++ , магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe +++ , материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:

    MeO x Fe 2 O 3 или MeFe 2 O 4

    Феррит цинка – ZnFe 2 O 4 , феррит никеля – NiFe 2 O 4 .

    Не все простые ферриты обладают магнитными свойствами. Так CdFe 2 O 4 является немагнитным веществом.

    Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:

    mNiO·Fe 2 O 3 + nZnO·Fe 2 O 3 + pFeO·Fe 2 O 3 , (4.8)

    где коэффициенты m, n и p определяют количественные соотношения между компонентами. Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала.

    Наиболее широко в РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.

    Достоинства ферритов – стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи, малый коэффициент затухания магнитной волны, а также простота изготовления ферритовых деталей.

    Недостатки всех ферритов – хрупкость и резко выраженная зависимость магнитных свойств от температуры и механических воздействий.

    4.7. Магнитодиэлектрики

    Это композиционные материалы, состоящие из мелкодисперсных частиц магнитно-мягкого материала, соединенных каким-либо органическим или неорганическим диэлектриком. В качестве мелкодисперсных МММ применяют карбонильное железо, альсиферы и некоторые сорта пермаллоев. В качестве диэлектрика – эпоксидные или бакелитовые смолы, полистирол, жидкое стекло и др.

    Назначение диэлектриков не только в том, чтобы соединять частицы магнитного материала, но и создать между ними электроизоляционные прослойки и тем самым повысить электрическое сопротивление магнитодиэлектрика. Это резко снижает потери на вихревые токи и дает возможность работать на частотах 10–100 МГц (в зависимости от состава).

    Магнитные характеристики магнитодиэлектриков несколько ниже исходных ферромагнитных наполнителей. Несмотря на это магнитодиэлектрики применяют для изготовления сердечников ВЧ узлов РЭА. Это обусловлено большой стабильностью магнитных характеристик и возможностью изготовления из них сердечников сложной формы. Кроме того, изделия из диэлектриков отличаются высокой чистотой поверхности и точностью размеров.

    Лучшие магнитодиэлектрики – с наполнителями: молибденовым пермаллоем или карбонильным железом.

    Магнитные материалы: свойства и характеристики. Особенности различных видов магнетизма. Процессы намагничивания. Особенности сильномагнитных материалов. Потери на перемагничивание.

    Магнитомягкие материалы: классификация, свойства, назначение.

    Магнитотвердые материалы: классификация, свойства, назначение. Магнитные материалы специального назначения: классификация, свойства, назначение.

    Литература

    Все вещества в природе взаимодействуют с внешниммагнитным полем, но каждое вещество по-разному.

    Магнитные свойства веществ зависят от магнитных свойств элементарных частиц, структуры атомов и молекул, а также их групп, но основное определяющее влияние оказывают электроны, их магнитные моменты.

    Все вещества, по отношению к магнитному полю, поведению в нем, разделяются на следующие группы:

    Диамагнетики – материалы, не имеющие постоянного магнитного дипольного момента, обладающие относительной магнитной проницаемостью (μ≤1) чуть меньше единицы. Относительная диэлектри-ческая проницаемость μ диамагнетиков почти не зависит от величины магнитного поля (Н) и не зависит от температуры. К ним относятся: инертные газы (Nе, Аr, Кr, Хе), водород (H 2); медь (Сu), цинк (Zn), серебро (Аg), золото (Au), сурьма (Sb) и др.

    Парамагнетики – материалы, имеющие постоянные дипольные моменты, но расположены они беспорядочно, поэтому взаимодействие между ними очень слабое. Относительная магнитная проницаемость парамагнетиков чуть больше единицы (μ≥1), слабо зависит от напряженности магнитного поля и от температуры.

    К парамагнетикам относятся следующие материалы: кислород (О 2), алюминий (Al), платина (Рt), щелочные металлы, соли железа, никеля, кобальта и др.

    Ферромагнетики – материалы, имеющие постоянные магнитные дипольные моменты, доменную структуру. В каждом домене они параллельны друг другу и одинаково направлены, поэтому взаимодействие между ними очень сильное. Относительная магнитная проницаемость ферромагнетиков велика (μ >> 1), у некоторых сплавов доходит до 1500000. зависит от напряженности магнитного поля и от температуры.

    К ним относятся: железо (Fe), никель (Ni), кобальт (Со), многие сплавы, редкоземельные элементы: самарий (Sm), гадолиний (Gd) и др.

    Антиферромагнетики – материалы, имеющие постоянные дипольные магнитные моменты, которые расположены антипараллельно друг другу. Относительная магнитная проницаемость их чуть больше единицы (μ ≥ 1), очень слабо зависит от напряженности магнитного поля и от температуры. К ним относятся: окиси кобальта (CoO), марганца (MnO), фтористый никель (NiF 2) и др.

    Ферримагнетики – материалы, обладающие антипараллельными постоянными дипольными магнитными моментами, которые не полностью компенсируют друг друга. Чем меньше такая компенсация, тем выше их ферромагнитные свойства. Относительная магнитная проницаемость ферримагнетиков может быть близка к единице (при почти полной компенсации моментов), а может доходить до десятков тысяч (при малой компенсации).

    К ферримагнетикам относятся ферриты, их можно назвать оксиферрами, так как они представляют собой, окислы двухвалентных металлов с Fe 2 O 3 . Общая формула феррита , где Ме – двухвалентный металл.

    Магнитная проницаемость ферритов зависит от температуры и напряженности магнитного поля, но в меньшей степени, чем у ферромагнетиков.

    Ферриты представляют собой керамические ферромагнитные материалы с малой электропроводностью, вследствие чего могут быть отнесены к электронным полупроводникам с высокой магнитной (μ ≈ 10 4) и высокой диэлектрической (ε ≈ 10 3) проницаемостями.

    Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, а ферро- и ферримагнетики – в группу сильномагнитных веществ.

    Для технического применения в области радиоэлектроники наибольший интерес представляют сильномагнитные вещества.(рис. 6.1)

    Рис. 6.1. Структурная схема магнитных материалов

    Магнитные свойства материалов определяются внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Круговой ток характеризуется магнитным моментом и может быть заменен эквивалентным магнитным диполем. Магнитные диполи образуются, в основном, спиновым вращением электронов, орбитальное же вращение электронов принимает в этом процессе слабое участие, так же как и ядерное вращение.

    У большинства материалов спиновые моменты электронов компенсируют друг друга. Поэтому ферромагнетизм наблюдается далеко не у всех веществ таблицы Менделеева.

    Условия, которые необходимы, чтобы материал был ферромагнитным :

    1. Существование элементарных круговых токов в атомах.

    2. Наличие нескомпенсированных спиновых моментов, электронов.

    3. Соотношение между диаметром электронной орбиты (D), имеющей нескомпенсированный спиновый момент, и постоянной кристаллической решетки вещества (а) должно быть

    . (6.1)

    4. Наличие доменной структуры, т.е. таких кристаллических областей, в которых дипольные магнитные моменты оказываются параллельно ориентированы.

    5. Температура материала (вещества) должна быть ниже точки Кюри, так как при более высокой температуре происходит исчезновение доменной структуры, материал переходит из ферромагнитного состояния в парамагнитное.

    Характерным свойством ферромагнитного состояния вещества является наличие спонтанной намагниченности без приложения внешнего магнитного поля. Однако магнитный поток такого тела будет равен нулю, так как направление магнитных моментов отдельных доменов различно (доменная структура с замкнутой магнитной цепью).

    Степень намагничивания вещества характеризуют величиной намагниченности, или интенсивности намагничивания (J), которая определяется как предел отношения результирующего магнитного момента Σm, отнесенного к объему вещества (V), когда, объем стремиться к нулю

    . (6.2)

    Если поместить вещество во внешнее магнитное поле с напряженностью Н, то соотношение между J и Н будет

    J = 4 πχH , (6.3)

    где χ (каппа) называется магнитной вязкостью.

    Относительная магнитная проницаемость μ зависит от χ:

    μ = 1 + 4 πχ . (6.4)

    Интенсивность, намагничивания можно определить, зная μ

    μ= 1+. (6.5)

    В общем, магнитное поле в ферромагнетике создается как сумма двух составляющих: внешней, создаваемой напряженностью внешнего магнитного поля Н, и внутренней, создаваемой намагниченностью (J).

    Суммарное магнитное поле характеризуется магнитной индукцией В:

    B = μ 0 (H + J ), (6.6)

    где μ 0 – магнитная постоянная (магнитная проницаемость вакуума)

    μ 0 = 4 π ∙10 -7 , Г/м. (6.7)

    Выражая значение J через χ, а затем и μ, получим:

    B = μ 0 H (1 + 4 πχ ) или B = μ 0 μH . (6.8)

    Абсолютная величина магнитной проницаемости

    μ абс = μ 0 μ . (6.9)

    Окончательная формула для магнитной индукции В

    B = μ абс H . (6.10)

    Процесс намагничивания ферромагнитного материала под влиянием внешнего магнитного поля заключается в следующем:

      рост доменов, магнитные моменты которых близки по направлению с внешним полем, и уменьшением других доменов;

      ориентация магнитных моментов всех доменов в направлении внешнего поля.

    Процесс намагничивания характеризуется для каждого ферромагнетика своей основной кривой намагничивания В = f(Н).

    Магнитная проницаемость μ в процессе намагничивания тоже изменяется.

    Это показано на рис. 6.2.

    Рис. 6.2. Кривые намагниченности (В = f(Н)) и магнитной проницаемости (μ = f(Н))

    Магнитная проницаемость μ при напряженности Н, близкой к нулю, называется начальной (участок 1), а при переходе материала к насыщению она будет принимать максимальное значение (2), с дальнейшим увеличением Н магнитная проницаемость μ – уменьшается (участки 3 и 4).

    При циклическом намагничивании ферромагнетика кривые намагничивания и размагничивания образуют петлю гистерезиса. Петлю гистерезиса, полученную при условии насыщения материала, называют предельной. По петле гистерезиса, полученной, например, на экране осциллографа можно получить довольно полную информацию об основных магнитных параметрах материала (рис. 6.3).

    Рис. 6.3. Петля гистерезиса

    Основными параметрами являются:

    1) остаточная индукция, после снятия напряженности поля – Вr;

    2) коэрцитивная сила Нс – напряженность, которую нужно приложить к образцу, чтобы снять остаточную индукцию;

    3) максимальная индукция B max , которая достигается при полном насыщении образца;

    4) удельные потери на гистерезис за один цикл перемагничивания, которые характеризуются площадью, охватываемой петлей гистерезиса.

    Остальные магнитные параметры материала, а также потери на перемагничивание (гистерезис), на вихревые токи, энергию в зазоре (для постоянного магнита) можно рассчитать по формулам, которые были приведены выше и будут приведены в дальнейшем.

    Потери в ферромагнитных материалах - это затраты энергии, которые идут на перемагничивание ферромагнетиков, на возникновение вихревых токов в переменном магнитном поле, на магнитную вязкость материала – создают так называемые потери, которые можно разделить на следующие виды:

    а) потери на гистерезис Рг, пропорциональны площади петли гистерезиса

    Рг = η∙ f
    V , Вт (6.11)

    где η – коэффициент гистерезиса для данного материала;

    f – частота поля, Гц;

    В max – максимальная индукция, Тл;

    V – объем образца, м 3 ;

    n ≈ 1,6...2 – значение показателя степени;

    б) потери на вихревые токи

    Рв.т. = ξ∙ f 2 ∙В max V , Вт (6.12)

    где ξ – коэффициент, зависящий от удельного электрического сопротивления материала и от формы образца;

    в) потери на последействие Рп.с., (потери на магнитную вязкость), которые не поддаются аналитическому расчету и определяются исходя из полных потерь Р, Рг и Рв.т. по формуле

    Рп.с. = Р – Рг – Рв.т. (6.13)

    Потери на вихревые токи можно уменьшить, увеличивая электрическое сопротивление ферромагнетика. Для этого магнитопровод, например для трансформаторов, набирают из отдельных тонких, изолированных друг от друга пластин ферромагнетика.

    На практике иногда применяют ферромагнетики с разомкнутой магнитной цепью , т.е. имеющие, например, воздушный зазор, обладающий большим магнитным сопротивлением. В теле, имеющем воздушный зазор, возникают свободные полюса, создающие размагничивающее поле, направленное навстречу внешнему намагничивающему полю. Происходит снижение индукции тем большее, чем шире воздушный зазор. Это проявляется в электромашинах, магнитных подъемных устройствах и др.

    Энергия в зазоре (W L), например, постоянного магнита, выражается формулой

    , Дж/м 3 , (6.14)

    где В L и Н L – собственно индукция и напряженность поля при данной длине воздушного зазора.

    Изменяя подаваемую напряженность на ферромагнетик, можно получить в данном зазоре максимальную энергию.

    Для нахождения W max пользуются диаграммой, на которой по кривой размагничивания для магнитного материала, расположенной во втором квадранте (участок петли гистерезиса), строят кривую энергии в зазоре, задаваясь различными значениями В (или Н). Зависимость W L от В L и Н L показана на рис. 6.4.

    Рис. 6.4. Энергия в воздушном зазоре ферромагнетика

    Чтобы определить напряженность поля Н, при которой будет максимальная энергия в зазоре магнита, нужно провести касательную к максимальной энергии (в точке А), а от нее провести горизонтальную линию до пересечения с петлей гистерезиса во втором квадранте. Затем опустить перпендикуляр до пересечения с координатой Н. Точка Н L 2 будет определять искомую напряженность магнитного поля.

    По основным магнитным параметрам ферромагнитные материалы можно классифицировать на следующие группы ;

      Магнитно-мягкие – материалы с малым значением коэрцитивной силы Нc (до 100 А/м), большой величиной магнитной проницаемости и малыми потерями на гистерезис. Они используются в качестве магнитопроводов постоянного тока (сердечники трансформаторов, измерительных приборов, катушек индуктивности и т.п.)

    К магнитно-мягким материалам относятся:

      технически чистое железо, карбонильное железо;

      электротехническая сталь;

      пермаллои;

      альсиферы;

      ферриты (медномарганцевые);

      термомагнитные сплавы (Ni-Сr-Fе) и др.

    2. Магнитно-твердые – материалы, имеющие большую коэрцитивную силу (Нс > 100 А/м) (см. рис. 4.5, г ).

    Магнитотвердые материалы применяют для изготовления постоянных магнитов, в которых используется магнитная энергия в воздушном зазоре между полюсами магнита.

    К магнитно-твердым материалам относятся:

    Литые сплавы альни (Аl-Ni-Fе);

    Альнико (Al-Ni-Со-Fе);

    Магнико;

    Легированные стали, закаливаемые на мартенсит и др.

    Особый интерес представляют сплавы на основе редкоземельных материалов (YCo, CeCo, SmCo и др.), обладающие высоким значением Н с и w max .

    3. Ферриты – материалы представляющие собой двойные окислы железа с окислами двухвалентных металлов (МеО∙Fe 2 O 3). Ферриты могут быть магнитно-мягкими и магнитно-твердым, в зависимости от их кристаллического строения, например, типа шпинели – (MgAl 3 O 4), гаусмагнита (Мn 3 O 4), граната Ga 3 Al 2 (SiO 4) 3 и др. Электрическое удельное сопротивление их велико (от 10 -1 до 10 10 Ом∙м), следовательно потери на вихревые токи, особенно при высоких частотах, малы.

    4. Магнитодиэлектрики – материалы, состоящие из ферромагнитного порошка с диэлектрической связкой. Порошок берется обычно на основе магнитно-мягкого материала – карбонильное железо, альсифер, а связующим диэлектриком служит материал с малыми диэлектрическими потерями – полистирол, бакелит и др.

    Вопросы для самопроверки:

      Классификация веществ по магнитным свойствам.

      Особенности сильномагнитных веществ (домены, анизотропия, кривая намагничивания, магнитострикция, магнитная проницаемость, гистерезис, и т.п.)

      Факторы, влияющие на магнитные свойства

      Потери в магнитных материалах

      Классификация сильномагнитных материалов

      Низкочастотные магнитомягкие материалы

      Высокочастотные магнитомягкие материалы

      Магнитотвердые материалы

      Магнитные материалы спецназначения

    Приложения

    Проводниковые материалы Таблица П.1

    проводника

    Ом∙мм 2 /м

    удельного

    сопротив-

    теплопро-

    водности

    Вт/м∙град

    тельно меди,

    Работа выхода электрона

    Темпе- ратура правле-ния,

    Чистые металлы

    Алюминий

    Молибден

    Вольфрам

    поли- кристалл

    Манганин

    (5…30)∙10 -6

    Константан

    (5…20)∙10 -6

    Нейзильбер

    Термопары

    Медь-константан

    Тизм до 350 °С

    Хромель-алюмель

    Тизм до 1000 °С

    Платина-платинородий

    Тизм до 1600 °С

    Полупроводниковые материалы Таблица П.2

    Наименование

    полупроводни-

    кового материала

    собствен.

    носителей

    Подвижность

    носителей

    U,

    Неорганические

    Кристалл. элементарные (атомарные)

    Германий

    Кристалл. соединения

    Карбид кремния

    возгонка

    Сурьмянистый индий

    Арсенид галлия

    Фосфид галлия

    Арсенид индия

    Теллурид висмута

    Сульфид свинца

    Стеклообразные

    Халькогениды

    As 2 Te 2 Se, As 2 Se 3 ∙Al 2 Se 3

    Органические

    Антрацен

    Нафталин

    Красители и пигменты

    Фталоцианин меди

    Молекулярные комплексы

    Иод-пирен

    Полимеры

    Полиакрилонитрил

    Диэлектрические материалы Таблица П.3

    Агре-гатное сос-тояние

    Наиме-нование матери-

    алов (диэлек-триков)

    Диэлект-рическая прони-цаемость, относи-тельная Е

    ное объем-

    ное сопро-тивление
    , Ом·м

    угла ди-электрических потерь

    Проч-ность (элект-ричес-кая) Е пр, МВ/м

    Удель-ная тепло-

    ность λ, Вт/м·ºК

    Элегаз (SF 6)

    Жид-кости

    Масло трансфор-маторное

    Твер-дые мате-риалы

    Органи-ческие

    а) Парафин

    Головакс

    б) Смола бакели-товая

    Канифоль

    Поливинил-

    Полистирол

    Полиэтелен

    Полиметил-метакрилат

    Смола эпоксидная

    Компаунд

    г) Фенол-пласт (ФАС)

    д) Лако-ткань

    Электро-картон (ЭВТ)

    ж) Каучук бутади-еновый

    Резина изоляц.

    з) Фторо-пласт-4

    фторо-пласт-3

    Неоргани-ческие

    а) Стекла электротех.

    б) Стеатит (керам.)

    фарфор электротех.

    в) Слюда мусковит

    Микалекс

    г) Сегнето-керамика ВК-1

    Пьезокварц

    д) Фторид-ная изоляция (AlF 3)

    е) Асбест

    Элементо-орган.

    а) Кремний орг. смола

    б) Кремний орган. каучук

    Магнитные материалы Таблица П.4

    Наиме- нование магнитного материала

    Хими-ческий состав или марка

    Относительная магнитная проницаемость, μ

    Магнитная индукция В, Т

    Коэр-цитив-

    ная сила Нс, А/м

    Удельн. эл. сопро-тивле- ние ρ, мкОм∙м

    Энергия в зазоре , Дж/м 3

    нача-льная, μ н

    макси-маль-ная, μ max

    оста-точ-ная, В

    макси-маль-ная, В max

    Магнитно-мягкие

    Электро- техн. сталь

    Пермаллой низко-никелевый

    Пермаллой высоко-никелевый

    Супермаллой

    Альсифер

    Ферриты

    Феррит никель-цинковый

    Феррит марганец-цинковый

    Магнитно-твердые

    бариевый

    бариевый

    Магнитодиэлектрики

    На основе карбонильного железа

    Библиографический список

    1. Пасынков, В.В. Материалы электронной техники: учеб.для вузов/ В.В.Пасынков, В.С.Сорокин -СПб.: Лань, 2003. – 367с.

    2. Радиоматериалы и радиокомпоненты: метод. указания/ сост. А.М. Хадыкин А.М.- Омск: Изд-во ОмГТУ, 2007. – 44 с.

    3. Радиоматериалы и радиокомпоненты: конспект лекций/ авт.-сост. А. М. Хадыкин. - Омск: Изд-во ОмГТУ, 2008. – 91 с.

    4. Материалы и элементы электронной техники: метод. указания / сост. А. М. Хадыкин. - Омск: Изд-во ОмГТУ, 2005.-34с.

    5. Кликушин Ю.Н. Материаловедение в приборостроении. Электротехнические материалы: Учеб. пособие для вузов / Ю. Н. Кликушин, А. И. Чередов, И. Л. Захаров; ОмГТУ. - Омск: Изд-во ОмГТУ, 2005. - 79 с.

    6. Сорокин В. С. Материалы и элементы электронной техники. В 2-х т.: учебник для студентов вузов, обучающихся по направлению подготовки бакалавров, магистров и специалистов 210100"Электроника и микроэлектроника" / В. С. Сорокин, Б. Л. Антипов, Н. П. Лазарева. Т.1: Проводники, полупроводники, диэлектрики. - М. : Издательский центр "Академия", 2006. - 448 с.

    7. Сорокин В. С. Материалы и элементы электронной техники. В 2 т.: учебник для студентов вузов, обучающихся по направлению подготовки и специальностям "Электроника и микроэлектроника" / В. С. Сорокин, Б. Л. Антипов, Н. П. Лазарева. Т.2. - М. : Издательский центр "Академия", 2006. - 384 с.

    8. Алиев И.И. Электротехничесике материалы и изделия. Справочник. – М.: ИП РадиоСофт, 2007. – 352 с.

    9. А.И. Сидоров, Н.В. Никоноров «Материалы и технологии интегральной

    оптики». Учебное пособие, курс лекций. СПб: СПбГУ ИТМО, 2009 г. - 107

    10. Бондаренко И.Б., Гатчин Ю.А., Иванова Н.Ю., Шилкин Д.А. Соединители и коммутационные устройства. Учебное пособие. СПб: СПбГУ ИТМО, 2007. 151 с.

    11. Рощин В.М. Технология материалов микро-, опто- и наноэлектроники: учебное пособие. Ч 2/ В.М. Рощин, М.В. Силибин. – М.: БИНОМ. Лаборатория знаний, 2010. – 180 с.

    12. Садченков Д.А. Маркировка радиодеталей отечественных и зарубежных. Справочное пособие. Том 1. – М.: СОЛОН-Р, 2002. – 208 с.

    13. Петров К.С. Радиоматериалы, радиокомпоненты и электроника. Учебное пособие для вузов. - Санкт- Петербург.: Питер, 2006 г. - 522 с.

    14. Ульянина И.Ю. Строение материалов: учеб. пособие / И. Ю. Ульянина, Т. Ю. Скакова. - М. : МГИУ, 2006. - 55 с.

    15. Ульянина И.Ю. Материаловедение в схемах-конспектах: учеб. пособие / И. Ю. Ульянина. - М. : Изд-во МГИУ, 2006. - 139 с.

    16. Мишин Д.Д. Магнитные материалы. – М.:Высш.шк., 1991. – 384 с.

    17. Харламова Т.Е. Электроматериаловедение. Электротехнические материалы: Учеб. Пособие. – СПб.: СЗПИ, 1998. – 82 с.

    18. Шкаруба М.В., Тихонов С.А. Материалы и элементы электронной техники: Учеб пособие. – Омск: Изд-во Омгту, 2006. – 120 с.

    19. Компоненты и технологии: Ежемес. всерос. журн.– М.:Ред.журн. «Издательство Файнстрит», – Выходит ежемесячно.

    20. Internet: www.wieland – electric.com

    21. Internet: www.platan.ru

    22. Internet: www.promelec.ru

    23. Internet: www.chipdip.ru