Первый закон фарадея можно записать как. Первый и второй закон фарадея

Электрический ток, проходящий через растворы электролитов, способствует разложению веществ и дает возможность получать химически чистые материалы. Данный процесс получил наименование электролиза, нашедшего широкое применение в промышленном производстве. Физические преобразования проводников, находящихся в жидкости, объясняет закон Фарадея для электролиза, на основании которого анод выполняет функцию положительного электрода, а катод - отрицательного.

С помощью этого явления осуществляется не только очистка металлов от примесей, но и выполняется нанесение тонких покрытий, защищающих и украшающих металлические поверхности.

Суть процесса электролиза

Электролизом называются процессы окислительно-восстановительных реакций, протекающие под принудительным воздействием электрического тока. Для его выполнения используется специальная емкость с электролитическим раствором, куда погружаются металлические штыри, соединенные с наружным источником питания.

Электрод, соединенный с полюсом отрицательного значения источника тока, считается катодом. Именно в данном месте частицы электролита восстанавливаются. Другой электрод подключается к плюсовому полюсу и носит название анода. На этом участке вещество электрода или частицы электролита окисляются. Химические реакции на этом участке происходят по-разному, в зависимости от материала анода и состава электролитического раствора. Поэтому, как утверждает химия, электроды по отношению к электролиту могут быть инертными или растворимыми.

К категории инертных относятся аноды, изготовленные из материала, не окисляющегося во время электролиза. В качестве примера можно привести графитовые или платиновые электроды. Растворимыми являются практически все остальные виды металлических анодов, подверженных окислению в ходе электролитической реакции.

Электролитами чаще всего служат различные виды растворов или расплавов, внутри которых происходит хаотичное движение заряженных частиц - ионов. Когда на них воздействует электрический ток, они начинают двигаться в определенном направлении: катионы - к катоду, анионы - к аноду. Попадая на электроды, они теряют свои заряды и оседают на них.

Таким образом, на катоде и аноде происходит накопление так называемых суммарных продуктов, состоящих из электрически нейтральных веществ. Весь процесс электролиза выполняется под напряжением, подаваемым на электроды. Данное напряжение U эл-за является типичным примером , требующейся для обеспечения нормального течения электролитических реакций. Чисто теоретически это напряжение принимает вид формулы: U эл-за = Е а - Е к, в которой Е а и Е к являются потенциалами химических реакций, происходящих на аноде и катоде.

Существует определенная связь между количеством электричества, протекавшего через раствор, и количеством вещества, выделенного в период электролитической реакции. Данное явление было описано английским физиком Фарадеем и оформлено в виде двух законов.

Первый закон Фарадея

Данный закон был выведен ученым экспериментальным путем. Он определяет пропорциональную зависимость между массой вещества, образующегося на электроде и зарядом, проходящим через электролитический раствор.

Эту пропорцию наглядно отображает формула m=k х Q=k х I х t, где k является коэффициентом пропорциональности или электрохимическим эквивалентом, Q - заряд, прошедший через электролит, t - время прохождения заряда, m - масса вещества, образовавшегося на электроде в результате реакции.

Первый закон Фарадея служит для определения количества первичных продуктов, образовавшихся в процессе электролиза на электродах. Масса этого вещества составляет суммарную массу всех ионов, попавших на электрод. Это подтверждается формулой m=m0 х N = m0 х Qq0 = m0q0 х I х t, в которой m0 и q0 соответственно являются массой и зарядом единичного иона. N=Qq0 - определяет количество ионов, попавших на электрод за время прохождения заряда Q через раствор электролита.

Следовательно, величина электрохимического эквивалента k представляет собой соотношение массы иона m0 используемого вещества и заряда q0 этого иона. Известно, что величина заряда иона составляет произведение валентности n этого вещества и элементарного заряда е, то есть, q0 = n х e. Исходя из этого, электрохимический эквивалент k будет выглядеть следующим образом: k = m0q0 = m0 х NAn х e х NA = 1F х μn. В этой формуле NA является постоянной Авогадро, μ - молярной массой данного вещества. F = e х NA является постоянной Фарадея и составляет 96485 Кл/моль.

Числовое значение данной величины равняется заряду, который должен быть пропущен через раствор электролита, для того чтобы на электроде выделился 1 моль вещества с одинаковой валентностью. Рассматриваемый закон Фарадея для электролиза примет вид еще одной формулы: m = 1F х μn х I х t.

Второй закон Фарадея

Следующий закон ученого Фарадея описывает, как электрохимический эквивалент будет зависеть от атомной массы вещества и его валентности. У этого коэффициента будет прямая пропорциональная зависимость с атомным весом и обратно пропорциональная - с валентностью вещества. С введением данной величины, второй закон Фарадея формулируется как пропорция электрохимических эквивалентов вещества и собственных химических эквивалентов этих веществ.

Если значения электрохимических эквивалентов взять за k1, k2, k3…kn, а химические эквиваленты принять за х1, х2, х3…xn, то k1/x1 = k2/x2 = k3/x3…kn/xn. Данное соотношение является постоянной величиной, одинаковой для любых используемых веществ: с = k/x и составляет 0,01036 мг-экв/к. Именно такое количество вещества в миллиграмм-эквивалентах выделяется на электродах за период прохождения в электролите электрического заряда, равного одному кулону.

Следовательно, второй закон Фарадея можно представить в виде формулы: k = cx. Если данной выражение использовать вместе с первым законом Фарадея, то в результате получится следующее выражение: m = kq = cxq = cxlt. Здесь категория с представляет собой универсальную постоянную, в размере 0,00001036 г-экв/к. Подобная формулировка дает возможность понять, что одни и те же токи, пропущенные через одинаковый промежуток времени в двух различных электролитах, выделят из них вещества с соблюдением рассмотренного химического эквивалента.

Поскольку x = A/n, то масса выделяемого вещества будет выглядеть как m = cA/nlt, с соблюдением прямой пропорции с атомным весом и обратной пропорции с валентностью.

Электролит всегда имеет определённое количество ионов со знаками "плюс" и "минус", получившихся в результате взаимодействия молекул растворённого вещества с растворителем. Когда в нем возникает электрическое поле, ионы начинают двигаться к электродам, положительные устремляются к катоду, отрицательные - к аноду. Дойдя до электродов, ионы отдают им свои заряды, превращаются в нейтральные атомы и отлагаются на электродах. Чем больше ионов подойдёт к электродам, тем больше будет отложено на них вещества.

К этому заключению мы можем прийти и опытным путём. Пропустим ток через водный раствор и будем наблюдать за выделением меди на угольном катоде. Мы обнаружим, что вначале он покроется едва заметным слоем меди, затем по мере пропускания тока он будет увеличиваться, а при долговременном пропускании тока можно получить на значительной толщины слой меди, к которому легко припаять, например, медный провод.

Явление выделения вещества на электродах во время прохождения тока сквозь электролит называется электролизом.

Пропуская через разные электролизы различные токи и тщательно измеряя массу вещества, выделяющегося на электродах из каждого электролита, английский в 1833 - 1834 гг. открыл два закона для электролиза.

Первый закон Фарадея устанавливает зависимость между массой выделившегося вещества при электролизе и величиной заряда, который прошел через электролит.

Закон этот формулируется следующим образом: масса вещества, которая выделилась при электролизе, на каждом электроде прямо пропорциональна величине заряда, который прошел сквозь электролит:

где m - масса вещества, которое выделилось, q - заряд.

Величина k - электрохимическимй эквивалент вещества. Она характерна для каждого вещества, выделяющегося при электролите.

Если в формуле принять q = 1 кулону, тогда k = m, т.е. электрохимический эквивалент вещества будет численно равняться массе вещества, выделенного из электролита при прохождении заряда в один кулон.

Выражая в формуле заряд через ток I и время t, получим:

Первый закон Фарадея проверяется на опыте следующим образом. Пропустим ток через электролиты А, В и С. Если все они одинаковые, то массы выделенного вещества в А, В и С будут относиться как токи I, I1, I2. При этом количество вещества, выделенного в А, будет равно сумме объемов, выделенных в В и С, так как ток I= I1+ I2.

Второй закон Фарадея устанавливает зависимость электрохимического эквивалента от атомного веса вещества и его валентности и формулируется следующим образом: электрохимический эквивалент вещества будет пропорционален их атомному весу, а также обратно пропорционален его валентности.

Отношение атомного веса вещества к его валентности называется химическим эквивалентом вещества. Введя эту величину, второй закон Фарадея сформулировать можно иначе: электрохимические эквиваленты вещества пропорциональны их собственным химическим эквивалентам.

Пусть электрохимические эквиваленты разных веществ соответственно равны k1 и k2, k3, …, kn, химические же эквиваленты тех же веществ x1 и x2, x23, …, xn, тогда k1 /k2 = x1 /x2, или k1/x1 = k2/x2 = k3/ x3 = … = kn/ xn.

Иначе говоря, отношение величины электрохимического эквивалента вещества к величине того же вещества есть величина постоянная, имеющая для всех веществ одно и то же значение:

Отсюда следует, что отношение k/x является постоянным для всех веществ:

k/x=c = 0, 01036 (мг-экв)/к.

Величина с показывает, сколько миллиграмм-эквивалентов вещества выделяется на электродах во время прохождения через электролит равно 1 кулону. Второй закон Фарадея представлен формулой:

Подставляя полученное выражение для k в первый закон Фарадея, оба можно объединить в одном выражении:

где с - универсальная постоянная, равная 0, 00001036 (г-экв)/к.

Эта формула показывает, что, пропуская одинаковые токи в течение одного и того же промежутка времени через два различных электролита, мы выделим из обоих электролитов количества веществ, относящихся как химические эквиваленты таковых.

Так как x=A/n, то можно написать:

т.е., масса вещества, выделенного на электродах при электролизе, будет прямо пропорциональна его току, времени и обратно пропорциональна валентности.

Второй закон Фарадея для электролиза, так же, как и первый, непосредственно вытекает из ионного характера тока в растворе.

Закон Фарадея, Ленца, а также многих других выдающихся физиков сыграл огромную роль в истории становления и развития физики.

Эти законы определяют соотношение между массой продукта, образующегося на электроде, и количеством электричества (электрическим зарядом), пропущенным через электролит.

Первый закон Фарадея гласит, что масса вещества, образующегося на электроде, пропорциональна количеству пропущенного электричества. Количественной мерой электрического заряда является единица фарадей. Фарадей - это заряд, который несет на себе один моль электронов или один моль однозарядных ионов.

Напомним, что число - это число Авогадро (см. разд. 4.2).

Разряд ионов серебра на катоде в процессе электролиза раствора нитрата серебра описывается уравнением полуреакции

Следовательно, электрический заряд в 1 фарадей (один моль электронов) разряжает 1 моль ионов серебра, в результате чего образуется 1 моль атомов серебра. Это означает, что пропускание заряда в 2 фарадея приведет к образованию 2 молей атомов серебра, пропускание 3 фарадеев заряда приведет к образованию 3 молей атомов серебра и т.д.

Второй закон Фарадея гласит, что для разряда одного моля какого-либо иона на электроде необходимо пропустить через электролит такое число фарадеев заряда, которое равно числу элементарных зарядов на этом ионе.

Моль 2 моля 1 моль Таким образом, для разряда одного моля ионов на катоде через него необходимо пропустить 2 фарадея заряда (2 моля электронов).

Моль 3 моля I моль

Для разряда одного моля ионов алюминия на катоде через него необходимо пропустить 3 фарадея заряда (3 моля электронов).

Моля 1 моль 2 моля

Для получения одного моля молекул брома в результате разряда двух молей ионов брома на аноде через него необходимо пропустить 2 фарадея заряда. Следовательно, для разряда одного моля ионов брома необходим один фарадей заряда.

Вычислим массу свинца, выделившегося на катоде в результате пропускания тока силой 2 А через расплавленный бромид в течение 30 мин

Выделение свинца на катоде происходит в результате следующей полуреакции:

Итак, 2 фарадея заряда (т. е. 2-96 500 Кл) позволяют получить 1 моль атомов РЬ (т. е. 207 г атомов РЬ). Отсюда

Учтем теперь, что ток силой 2 А, протекая в течение 30 мин, переносит заряд, равный 2-30-60 Кл. Следовательно,

Майкл Фарадей (1791-1867)

Английский химик и физик Майкл Фарадей был выдающимся экспериментатором и прославился как один из первых исследователей природы электричества и магнетизма.

Фарадей не смог получить в детстве систематического образования. В возрасте 14 лет он стал помощником переплетчика. Но вскоре он заинтересовался наукой и, прослушав лекцию знаменитого химика Гемфри Дэви, написал ему и отправил свои записи лекции. Дэви принял его ассистентом в свою лабораторию в Королевском институте в Лондоне. Фарадею было в то время 21 год.

Майкл Фарадей читает рождественскую лекцию в Королевском институте (Лондон, 1955 г.) в присутствии членов королевской семьи: лицом к нему в первом ряду - муж королевы, слева от него - принц Уэльский (впоследствии Эдуард VII), справа от него - герцог Эдинбургский.

В последующие годы Фарадей открыл два новых хлорида углерода. Ему удалось также перевести в жидкое состояние хлор и другие газы. В 1825 г. он сумел выделить бензол и в том же году был назначен заведующим лабораторией. В течение нескольких лет он занимался экспериментальным изучением электролиза и в конце концов сформулировал в 1834 г. свои знаменитые законы электролиза. К этому времени он уже открыл явление электромагнитной индукции.

Фарадей стал президентом Королевского общества и написал несколько книг, в том числе «Экспериментальные исследования по химии и физике» (1858). В 1855 г. из-за ухудшения памяти он вынужден был прекратить исследовательскую работу. В 1867 г. Фарадей умер.

Электролиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплавэлектролита .

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами - проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом - отрицательный . Положительные ионы - катионы - (ионы металлов, водородные ионы, ионы аммония и др.) - движутся к катоду, отрицательныеионы - анионы - (ионы кислотных остатков и гидроксильной группы) - движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [ источник не указан 1700 дней ] , диоксида марганца ,пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональностиназываетсяэлектрохимическим эквивалентом вещества . Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

Где z - валентность атома (иона) вещества, e - заряд электрона (5)

Подставляя (2)-(5) в (1), получим

где -постоянная Фарадея.

Второй закон Фарадея

Второй закон электролиза Фарадея: для данного количества электричества масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты .

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где -постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

где -молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося - оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; -сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; - время, в течение которого проводился электролиз,с; -постоянная Фарадея,Кл·моль −1 ; - число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея ») .

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий . Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл , который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла .

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС , генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС , генерируемую действием электрической силы вследствие изменения магнитного поля. Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений. Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Таким образом, «правило потока» о том, что ЭДС в цепи равна скорости изменения магнитного потока через контур, применяется независимо от причины изменения потока: то ли потому что поле изменяется, то ли потому что цепь движется (или и то, и другое).... В нашем объяснении правила мы использовали два совершенно различных закона для двух случаев  –    v × B {\displaystyle {\stackrel {\mathbf {v\times B} }{}}}   для «движущейся цепи» и   ∇ x E = − ∂ t B {\displaystyle {\stackrel {\mathbf {\nabla \ x\ E\ =\ -\partial _{\ t}B} }{}}}   для «меняющегося поля».

Мы не знаем никакого аналогичного положения в физике, когда такие простые и точные общие принципы требовали бы для своего реального понимания анализа с точки зрения двух различных явлений.

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности :

Известно, что электродинамика Максвелла - как её обычно понимают в настоящее время - при применении к движущимся телам приводит к асимметрии, которая, как кажется, не присуща этому явлению. Возьмем, к примеру, электродинамическое взаимодействие магнита и проводника. Наблюдаемое явление зависит только от относительного движения проводника и магнита, тогда как обычное мнение рисует резкое различие между этими двумя случаями, в которых либо одно, либо другое тело находится в движении. Ибо, если магнит находится в движении, а проводник покоится, в окрестности магнита возникает электрическое поле с определенной плотностью энергии, создавая ток там, где расположен проводник. Но если магнит покоится, а проводник движется, то в окрестности магнита никакое электрическое поле не возникает. В проводнике, однако, мы находим электродвижущую силу, для которой не существует соответствующей энергии самой по себе, но которая вызывает - предполагая равенство относительного движения в двух обсуждаемых случаях - электрические токи по тому же направлению и той же интенсивности, как в первом случае.

Примеры подобного рода вместе с неудачной попыткой обнаружить какое-либо движение Земли относительно «светоносной среды» предполагают, что явления электродинамики, а также механики не обладают свойствами, соответствующими идее абсолютного покоя.

- Альберт Эйнштейн , К электродинамике движущихся тел

Поток через поверхность и ЭДС в контуре

Закон электромагнитной индукции Фарадея использует понятие магнитного потока Φ B через замкнутую поверхность Σ, который определён через поверхностный интеграл :

Φ = ∬ S B n ⋅ d S , {\displaystyle \Phi =\iint \limits _{S}\mathbf {B_{n}} \cdot d\mathbf {S} ,}

где dS - площадь элемента поверхности Σ(t ), B - магнитное поле, а B ·d S - скалярное произведение B и d S . Предполагается, что поверхность имеет «устье», очерченное замкнутой кривой, обозначенной ∂Σ(t ). Закон индукции Фарадея утверждает, что когда поток изменяется, то при перемещении единичного положительного пробного заряда по замкнутой кривой ∂Σ совершается работа E {\displaystyle {\mathcal {E}}} , величина которой определяется по формуле:

| E | = | d Φ d t | , {\displaystyle |{\mathcal {E}}|=\left|{{d\Phi } \over dt}\right|\ ,}

где | E | {\displaystyle |{\mathcal {E}}|} - величина электродвижущей силы (ЭДС) в вольтах , а Φ B - магнитный поток в веберах . Направление электродвижущей силы определяется законом Ленца .

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. т.е. мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера а на единичный заряд в проводнике Сила Лоренца - поток вектора магнитной индукции B , ток в проводниках, соединяющие проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила действующая на заряд в проводнике будет равна

F = q B v . {\displaystyle F=qBv\,.}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F = I B ℓ , {\displaystyle {\mathcal {F}}=IB\ell ,}

где l длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции и это значение можно вычислить используя Закон Био - Савара - Лапласа . Данный эффект используется и в другом устройстве называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле Φ B = B w ℓ, где w - ширина движущейся петли.

Ошибочность такого подхода в том что это не рамка в обычном понимании этого слова. прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке ток по обоим проводника течет в одном направлении, т.е. здесь отсутствует понятие "замкнутый контур"

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера . Т.е. вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси соединяющие обода. Диаметр проводника должен быть конечным и отличатся от нуля чтобы момент силы Ампера был не нулевой.

Уравнение Фарадея - Максвелла

Переменное магнитное поле создаёт электрическое поле, описываемое уравнением Фарадея - Максвелла:

∇ × E = − ∂ B ∂ t {\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}

∇ × {\displaystyle \nabla \times } обозначает ротор E - электрическое поле B - плотность магнитного потока .

Это уравнение присутствует в современной системе уравнений Максвелла , часто его называют законом Фарадея. Однако, поскольку оно содержит только частные производные по времени, его применение ограничено ситуациями, когда заряд покоится в переменном по времени магнитном поле. Оно не учитывает [ ] электромагнитную индукцию в случаях, когда заряженная частица движется в магнитном поле.

В другом виде закон Фарадея может быть записан через интегральную форму теоремы Кельвина-Стокса :

∮ ∂ Σ ⁡ E ⋅ d ℓ = − ∫ Σ ∂ ∂ t B ⋅ d A {\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot d{\boldsymbol {\ell }}=-\int _{\Sigma }{\partial \over {\partial t}}\mathbf {B} \cdot d\mathbf {A} }

Для выполнения интегрирования требуется независимая от времени поверхность Σ (рассматриваемая в данном контексте как часть интерпретации частных производных). Как показано на рис. 6:

Σ - поверхность, ограниченная замкнутым контуром ∂Σ , причём, как Σ , так и ∂Σ являются фиксированными, не зависящими от времени, E - электрическое поле, d - бесконечно малый элемент контура ∂Σ , B - магнитное поле , dA - бесконечно малый элемент вектора поверхности Σ .

Элементы d и dA имеют неопределённые знаки. Чтобы установить правильные знаки, используется правило правой руки , как описано в статье о теореме Кельвина-Стокса . Для плоской поверхности Σ положительное направление элемента пути d кривой ∂Σ определяется правилом правой руки, по которому на это направление указывают четыре пальца правой руки, когда большой палец указывает в направлении нормали n к поверхности Σ.

Интеграл по ∂Σ называется интеграл по пути или криволинейным интегралом . Поверхностный интеграл в правой части уравнения Фарадея-Максвелла является явным выражением для магнитного потока Φ B через Σ . Обратите внимание, что ненулевой интеграл по пути для E отличается от поведения электрического поля, создаваемого зарядами. Генерируемое зарядом E -поле может быть выражено как градиент скалярного поля , которое является решением уравнения Пуассона и имеет нулевой интеграл по пути.

Интегральное уравнение справедливо для любого пути ∂Σ в пространстве и любой поверхности Σ , для которой этот путь является границей.

D d t ∫ A B d A = ∫ A (∂ B ∂ t + v div B + rot (B × v)) d A {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\int \limits _{A}{\mathbf {B} }{\text{ d}}\mathbf {A} =\int \limits _{A}{\left({\frac {\partial \mathbf {B} }{\partial t}}+\mathbf {v} \ {\text{div}}\ \mathbf {B} +{\text{rot}}\;(\mathbf {B} \times \mathbf {v})\right)\;{\text{d}}}\mathbf {A} }

и принимая во внимание div B = 0 {\displaystyle {\text{div}}\mathbf {B} =0} (Ряд Гаусса), B × v = − v × B {\displaystyle \mathbf {B} \times \mathbf {v} =-\mathbf {v} \times \mathbf {B} } (Векторное произведение) и ∫ A rot X d A = ∮ ∂ A ⁡ X d ℓ {\displaystyle \int _{A}{\text{rot}}\;\mathbf {X} \;\mathrm {d} \mathbf {A} =\oint _{\partial A}\mathbf {X} \;{\text{d}}{\boldsymbol {\ell }}} (теорема Кельвина - Стокса), мы находим, что полная производная магнитного потока может быть выражена

∫ Σ ∂ B ∂ t d A = d d t ∫ Σ B d A + ∮ ∂ Σ ⁡ v × B d ℓ {\displaystyle \int \limits _{\Sigma }{\frac {\partial \mathbf {B} }{\partial t}}{\textrm {d}}\mathbf {A} ={\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} +\oint _{\partial \Sigma }\mathbf {v} \times \mathbf {B} \,{\text{d}}{\boldsymbol {\ell }}}

Добавляя член ∮ ⁡ v × B d ℓ {\displaystyle \oint \mathbf {v} \times \mathbf {B} \mathrm {d} \mathbf {\ell } } к обеим частям уравнения Фарадея-Максвелла и вводя вышеприведённое уравнение, мы получаем:

∮ ∂ Σ ⁡ (E + v × B) d ℓ = − ∫ Σ ∂ ∂ t B d A ⏟ induced emf + ∮ ∂ Σ ⁡ v × B d ℓ ⏟ motional emf = − d d t ∫ Σ B d A , {\displaystyle \oint \limits _{\partial \Sigma }{(\mathbf {E} +\mathbf {v} \times \mathbf {B})}{\text{d}}\ell =\underbrace {-\int \limits _{\Sigma }{\frac {\partial }{\partial t}}\mathbf {B} {\text{d}}\mathbf {A} } _{{\text{induced}}\ {\text{emf}}}+\underbrace {\oint \limits _{\partial \Sigma }{\mathbf {v} }\times \mathbf {B} {\text{d}}\ell } _{{\text{motional}}\ {\text{emf}}}=-{\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} ,}

что и является законом Фарадея. Таким образом, закон Фарадея и уравнения Фарадея-Максвелла физически эквивалентны.

Рис. 7 показывает интерпретацию вклада магнитной силы в ЭДС в левой части уравнения. Площадь, заметаемая сегментом d кривой ∂Σ за время dt при движении со скоростью v , равна:

d A = − d ℓ × v d t , {\displaystyle d\mathbf {A} =-d{\boldsymbol {\ell \times v}}dt\ ,}

так что изменение магнитного потока ΔΦ B через часть поверхности, ограниченной ∂Σ за время dt , равно:

d Δ Φ B d t = − B ⋅ d ℓ × v = − v × B ⋅ d ℓ , {\displaystyle {\frac {d\Delta \Phi _{B}}{dt}}=-\mathbf {B} \cdot \ d{\boldsymbol {\ell \times v}}\ =-\mathbf {v} \times \mathbf {B} \cdot \ d{\boldsymbol {\ell }}\ ,}

и если сложить эти ΔΦ B -вклады вокруг петли для всех сегментов d , мы получим суммарный вклад магнитной силы в закон Фарадея. То есть этот термин связан с двигательной ЭДС.

Пример 3: точка зрения движущегося наблюдателя

Возвращаясь к примеру на рис. 3, в движущейся системе отсчета выявляется тесная связь между E - и B -полями, а также между двигательной и индуцированной ЭДС. Представьте себе наблюдателя, движущегося вместе с петлёй. Наблюдатель вычисляет ЭДС в петле с использованием как закона Лоренца, так и с использованием закона электромагнитной индукции Фарадея. Поскольку этот наблюдатель движется с петлей, он не видит никакого движения петли, то есть нулевую величину v × B . Однако, поскольку поле B меняется в точке x , движущийся наблюдатель видит изменяющееся во времени магнитного поля, а именно:

B = k B (x + v t) , {\displaystyle \mathbf {B} =\mathbf {k} {B}(x+vt)\ ,}

где k - единичный вектор в направлении z .

Закон Лоренца

Уравнение Фарадея-Максвелла говорит, что движущийся наблюдатель видит электрическое поле E y в направлении оси y , определяемое по формуле:

∇ × E = k d E y d x {\displaystyle \nabla \times \mathbf {E} =\mathbf {k} \ {\frac {dE_{y}}{dx}}} = − ∂ B ∂ t = − k d B (x + v t) d t = − k d B d x v , {\displaystyle =-{\frac {\partial \mathbf {B} }{\partial t}}=-\mathbf {k} {\frac {dB(x+vt)}{dt}}=-\mathbf {k} {\frac {dB}{dx}}v\ \ ,} d B d t = d B d (x + v t) d (x + v t) d t = d B d x v . {\displaystyle {\frac {dB}{dt}}={\frac {dB}{d(x+vt)}}{\frac {d(x+vt)}{dt}}={\frac {dB}{dx}}v\ .}

Решение для E y с точностью до постоянной, которая ничего не добавляет в интеграл по петле:

E y (x , t) = − B (x + v t) v . {\displaystyle E_{y}(x,\ t)=-B(x+vt)\ v\ .}

Используя закон Лоренца, в котором имеется только компонента электрического поля, наблюдатель может вычислить ЭДС по петле за время t по формуле:

E = − ℓ [ E y (x C + w / 2 , t) − E y (x C − w / 2 , t) ] {\displaystyle {\mathcal {E}}=-\ell } = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ ,}

и мы видим, что точно такой же результат найден для неподвижного наблюдателя, который видит, что центр масс x C сдвинулся на величину x C + v t . Однако, движущийся наблюдатель получил результат под впечатлением, что в законе Лоренца действовала только электрическая составляющая, тогда как неподвижный наблюдатель думал, что действовала только магнитная составляющая.

Закон индукции Фарадея

Для применения закона индукции Фарадея рассмотрим наблюдателя, движущегося вместе с точкой x C . Он видит изменение магнитного потока, но петля ему кажется неподвижной: центр петли x C фиксирован, потому что наблюдатель движется вместе с петлей. Тогда поток:

Φ B = − ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 B (x + v t) d x , {\displaystyle \Phi _{B}=-\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x+vt)dx\ ,}

где знак минуса возникает из-за того, что нормаль к поверхности имеет направление, противоположное приложенному полю B . Из закона индукции Фарадея ЭДС равна:

E = − d Φ B d t = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d t B (x + v t) d x {\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dt}}B(x+vt)dx} = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d x B (x + v t) v d x {\displaystyle =\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dx}}B(x+vt)\ v\ dx} = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ \ ,}

и мы видим тот же результат. Производная по времени используется при интегрировании, поскольку пределы интегрирования не зависят от времени. Опять же, для преобразования производной по времени в производную по x используются методы дифференцирования сложной функции.

Неподвижный наблюдатель видит ЭДС как двигательную , тогда как движущийся наблюдатель думает, что это индуцированная ЭДС.

Электрический генератор

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов . Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея , показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» - Induced B). Обод, таким образом, становится электромагнитом , который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Электродвигатель

Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B , которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля , диск будет вращаться с такой скоростью, чтобы d Φ B / dt было равно напряжению, вызывающему ток.

Электрический трансформатор

ЭДС, предсказанная законом Фарадея, является также причиной работы электрических трансформаторов. Когда электрический ток в проволочной петле изменяется, меняющийся ток создаёт переменное магнитное поле. Второй провод в доступном для него магнитном поле будет испытывать эти изменения магнитного поля как изменения связанного с ним магнитного потока d Φ B / d t . Электродвижущая сила, возникающая во второй петле, называется индуцированной ЭДС или ЭДС трансформатора . Если два конца этой петли связать через электрическую нагрузку, то через неё потечёт ток.