Полярные молекулы. Ориентационная поляризация. Законы поляризации молекул

Коэффициент преломления, как уже отмечалось, зависит от поляризуемости атомов, молекул и ионов. Поэтому исследование электрических характеристик вещества даёт важную информацию о распределении зарядов в молекуле и позволяет установить некоторые свойства вещества, обусловленные его электрической асимметрией.

Рассмотрим некоторые вопросы, касающиеся природы возникновения дипольного момента в молекуле.

Поляризуемость и дипольный момент

Любая молекула представляет собой совокупность положительно заряженных ядер и отрицательно заряженных электронов. При суммарном заряде, равном +е, заряд всех электронов будет равен -е.

Если распределение ядер и электронов в пространстве таково, что центры "тяжести" положительных и отрицательных зарядов не совпадают, то молекула обладает постоянным дипольным моментом:

где l - расстояние между центрами электрических зарядов.

Такая молекула является полярной. Мерой полярности молекулы служит величина дипольного момента, которую выражают в дебаях (D):

D = 3,33564·10 ?30 Кл·м

Дипольный момент - величина векторная. Направление вектора ">"выбирается от отрицательного полюса к положительному. В химической литературе, однако, традиционно принимается противоположное направление, т. е. от "+" к "?".

Если в двухатомных молекулах простых веществ, т. е. состоящих из одинаковых атомов, и в многоатомных молекулах сложных веществ, обладающих высокой симметрией, центры "тяжести" разноимённых электрических зарядов совпадают (l = 0), то такие молекулы не обладают постоянным моментом (м = 0) и являются неполярными.

Если любую неполярную молекулу поместить в постоянное электрическое поле, создаваемое, например, конденсатором, то происходит её поляризация, выражающаяся в разнонаправленном смещении зарядов (деформационная поляризация). Тяжёлые ядра атомов будут несколько смещаться в сторону отрицательного полюса, а электроны незначительной массой будут легко смещаться в сторону положительного полюса. В результате центры "тяжести" положительных и отрицательных зарядов совпадать не будут, и в молекуле будет возникать индуцированный (наведённый) диполь, момент которого пропорционален напряжённости электрического поля:

м инд = б D Е, (11)

где Е - напряжённость внутреннего электрического поля в молекуле [эл. ст. ед./см 2 ; Кл/см 2 ]

б D - коэффициент пропорциональности, который показывает, какой дипольный момент создается при напряжённости электрического поля равной единице. Чем больше б D , тем легче поляризуется молекула. Коэффициент б D , называемый деформационной поляризуемостью, равен сумме электронной б D и атомной поляризуемостей б ат:

б D = б эл + б ат (12)

Чем дальше удалены внешние (более подвижные) валентные электроны от атомных ядер, тем выше электронная поляризуемость молекулы. Так как смещение атомных ядер незначительно (б ат составляет 5 - 10 % от б эл) и им можно пренебречь, то приближённо будет б D = б эл.

Таким образом, в электрическом поле образуется диполь с наведённым или как его называют индуцированным дипольным моментом.

Если любую полярную молекулу поместить в электрическое поле, то будут происходить два процесса. Во-первых, молекула будет ориентироваться вдоль поля, и, во-вторых, расстояние между центрами "тяжести зарядов будет увеличиваться, увеличивая дипольный момент молекулы".

Таким образом, полярные молекулы в электрическом поле так же, как и неполярные испытывают деформационную поляризацию. Кроме того, под влиянием электрического поля они ориентируются вдоль его силовых линий, стремясь принять устойчивое положение, отвечающее минимуму потенциальной энергии. Это явление, называемое ориентационной поляризацией, даёт эффект, эквивалентный увеличению поляризуемости молекулы на величину б ор, называемую ориентационной поляризуемостью:

где k - постоянная Больцмана (1,380662(44) 10 ?23 Дж/К);

Т - абсолютная температура, К.

Таким образом, полная поляризуемость молекулы б складывается из трёх величин:

б = б эл + б ат + б ор или б = б D + б ор (14)

Из уравнений (11) и (12) следует, что полная поляризуемость б будет иметь размерность объёма [см3 или A3].

Молярная поляризуемость

В электрическом (электромагнитном) поле молекулы поляризуются и возникает состояние напряжённости, характеризуемое величиной диэлектрической проницаемости (е) вещества, которая входит в уравнение закона Кулона и может быть определена экспериментально.

Измеряя диэлектрическую проницаемость, характеризующую вещество в целом, можно определить по теории поляризации диэлектриков электрооптические параметры его молекул, связанные с е формулой Клаузиуса-Моссотти:

где N A - число Авогадро;

М - молекулярная масса вещества;

С - плотность вещества, г/мл.

Р М - молярная поляризация - величина, характеризующая меру индуцированного момента в объёме, который занимает 1 моль вещества.

Молярная поляризация, дипольный момент и общая поляризуемость молекулы связаны друг с другом уравнением Дебая, которое выводится из уравнений (12) - (14):

По уравнению Дебая можно вычислить значения б и м по известным величинам е, М и с.

Поляризация молекул веществ, имеющих сравнительно большие значения е и Р (например Н 2 О, HCN, HCl), зависит от температуры, уменьшаясь при её повышении. Молекулы таких веществ, не имея центра симметрии зарядов, являются постоянными диполями. Для них молярная поляризация в уравнении Дебая выражается линейной функцией от 1/Т:

Вещества с м = 0 состоят из симметричных молекул (например О 2 , СО 2 , СS 2 , молекулы многих углеводородов). В электрическом поле в таких молекулах возникает индуцированный дипольный момент. Поляризация молекул этого типа не зависит от температуры (рис. 3).

Для случая молекул постоянных диполей (прямая а; рис. 3) отрезок ординаты ОА = а определяет величину поляризуемости б, а tgв = b - величину дипольного момента м

Полная поляризация молекул может наблюдаться или в статическом электрическом поле, или в электромагнитном поле низкой частоты, но не в поле высокой частоты, где диполи не успевают ориентироваться. Поэтому, например, в поле низкочастотного инфракрасного излучения происходит и электронная, и атомная поляризация, а в более высокочастотном поле видимого света - только электронная поляризация (Р эл = 4/3рN А б эл), т.к. при высокочастотных колебаниях успевают смещаться только очень лёгкие частицы - электроны. Для неполярных веществ: Р ОР = 0 и Р = Р Д? Р ЭЛ.

Рис. 3. Зависимость молярной поляризации

от обратной температуры

а - для молекулы, постоянных диполей;

b - для неполярных молекул.

Молекула (атом, ион) состоит из нейтральных и положительно и отрицательно заряженных частиц. Различают два вида частиц – с симметричным распределением заряда (H 2 , CH 4 , C 6 H 6 и др.) и несимметричным (HX, CH 3 X, C 6 H 5 X: Х – галоген и др.). Это неполярные и полярные молекулы. Полярную молекулу называют также диполем или дипольной молекулой.

В двухатомной дипольной молекуле на одном из атомов имеется избыток отрицательных, а на другом – такой же избыток положительных зарядов. Суммарный заряд равен нулю. У многоатомных молекул существуют некоторые области с избытками положительных и отрицательных зарядов. Однако и здесь можно представить себе два центра зарядов.

Дипольным моментом ( , Кл×м) называют произведение заряда ( , Кл) на расстояние между зарядами ( , м):

Дипольный момент следует рассматривать как вектор, направленный от отрицательного заряда к положительному (в химии обычно принимают обратное направление). Если молекула состоит из множества атомов, то ее дипольный момент определяется как векторная сумма:

В обычных условиях дипольные моменты молекул в веществе ориентированы произвольно и компенсируют друг друга.

При помещении вещества в электрическое поле (создаваемое конденсатором или полярной молекулой, ионом и т.п.) полярные молекулы стремятся ориентироваться вдоль направления поля. Суммарный дипольный момент молекул в этом случае > 0, его называют ориентационным дипольным моментом.

При помещении как полярной, так и неполярной молекулы в электрическое поле происходит смещение зарядов друг относительно друга, что создает индуцированный (наведенный) дипольный момент . Его называют деформационным дипольным моментом.

Возникновение дипольного момента молекул вещества под действием электрического поля называется поляризацией соединения . Она является суммой деформационного и ориентационного дипольного момента молекул.

Деформационная поляризация молекулы пропорциональна напряженности поля ( , В/м). Возникающий в результате этого наведенный дипольный момент связан с величиной соотношением:

в котором коэффициент пропорциональности ( , м 3) называется деформационной поляризуемостью молекулы. Деформационная поляризуемость молекулы является суммой электронного и атомного вкладов:

обусловленных смещением из положений равновесия под действием внешнего электрического поля атомов и электронов. Чем более удалены внешние электроны молекулы (атома) от ядер, тем выше электронная поляризуемость. Смещение атомных ядер, тяжелых по сравнению с электронами, невелико и составляет примерно от 5 до 10 % от .


Ориентационная поляризация соединения – полярные молекулы в электрическом поле ориентируются вдоль силовых линий поля, стремясь в результате принять наиболее устойчивое положение, соответствующее минимуму потенциальной энергии. Это явление называется ориентационной поляризацией и эквивалентно увеличению поляризуемости на величину , называемой ориентационной поляризуемостью:

где k – постоянная Больцмана, Дж/К;

T – абсолютная температура, К.

Ориентационная поляризуемость обычно на порядок выше, чем деформационная поляризуемость. Из уравнения (43) следует, что уменьшается с ростом температуры, так как тепловое движение препятствует ориентации молекул.

Полная поляризуемость молекулы является суммой трех величин:

. (44)

Поляризуемость имеет размерность объема и выражается в м 3 .

Полная поляризация вещества (мольная поляризация , м 3 /моль) связана с относительной диэлектрической проницаемостью вещества уравнением Дебая:

, (45)

где – молярная масса вещества, г/моль;

– его плотность, г/м 3 ;

– относительная диэлектрическая постоянная среды.

Полная поляризация наблюдается только в статическом поле и в поле низкой частоты. В поле высокой частоты диполи не успевают ориентироваться. Поэтому, например, в поле инфракрасного излучения возникает электронная и атомная поляризация, а в поле видимого излучения – только электронная поляризация, так как благодаря высокой частоте колебаний поля смещаются только наиболее легкие частицы – электроны. Для неполярных веществ ориентационная поляризация равна нулю.

Рефракция

Электромагнитная теория Максвелла для прозрачных неполярных веществ приводит к соотношению:

где – показатель преломления (для полярных веществ ). Подставив в уравнение (45) уравнение (46) и полагая, что , получаем:

. (47)

Величина называется молекулярной рефракцией вещества.

Из уравнения (47) следует, что величина R , определяемая через показатель преломления вещества, служит мерой электронной поляризуемости его молекул. Вообще говоря, показатель преломления n зависит от длины волны излучения и равенство строго справедливо для l = ¥. Экстраполяция n к n ¥ проводится обычно по формуле Коши:

n= n ¥ + b/l. (48)

Константы b и n ¥ определяют, измерив n при двух разных l, например l F и l C линий спектра водорода. В большинстве случаев определяют не R ¥ , а R D , измерив n D для желтой D линии натрия.

В физико-химических исследованиях пользуются также удельной рефракцией:

. (49)

Рефракция имеет размерность объема, отнесенного к определенной порции вещества:

удельная рефракция – (см 3 /г);

молекулярная – (см 3 /моль).

Весьма приближенно молекулу можно рассматривать как сферу эффективного радиуса r M с проводящей поверхностью. В этом случае:

Тогда из уравнений (47, 50) получим:

Таким образом, молекулярная рефракция равна собственному объему N A молекул вещества.

Для неполярных веществ , для полярных веществ R меньше на значение ориентационной поляризации.

Как следует из уравнения (47), молекулярная рефракция определяется только поляризуемостью и поэтому не зависит от температуры и агрегатного состояния вещества. Таким образом, рефракция является характеристической константой вещества.

Ионов, с другой - поляризуемость .

    Поляризующее действие катиона. Зависит от электронной структуры иона, величины заряда и радиуса. Поляризующее действие будет тем значительнее, чем меньше радиус, главное квантовое число внешних электронных орбиталей и больше величина заряда.

    Например: сильное поляризующее действие характерно катионам первых рядов Периодической системы.

    Поляризуемость анионов. Зависит от тех же факторов, что и поляризующее действие катионов. Чем больше у аниона радиус и заряд, тем сильнее он поляризуется.

Поляризующее действие катиона заключается в оттягивании на себя электронного облака от аниона. В результате степень ковалентности увеличивается, ионность связи уменьшается, то есть связь становится ковалентной полярной.

Поляризация ионов по своему эффекту противоположна поляризации ковалентной связи.

Поляризуемость и ее свойства

Определение 2

Поляризуемость - способность вещества приобретать электрический дипольный момент под действием внешнего электрического поля. Это способность к деформации электронного облака частицы под действием электростатического поля другого иона. Поляризующее действие иона будет определять напряженность этого поля.

Поляризуемость характеризует способность молекулы становиться полярной в результате действия внешнего электрического поля. Соединение поляризуется также при действии молекул друг на друга, например, во время химических реакций.

Результатом поляризации может стать полный разрыв связи. При этом осуществляется переход связывающей электронной пары к одному из атомов и образуются разноименные ионы. Ассиметричный разрыв связи с образованием таких ионов называется гетеролитическим:

Рисунок 1.

Поляризуемость может быть вызвана:

    смещением электронов или атомных ядер под действием электрического поля;

    изменением геометрии молекулы;

    поворотом молекулы;

    смещением иона в соседнюю свободную кристаллографическую позицию (поляризуемость Сканави) и др.

Поляризуемость ионов зависит от электронной структуры иона, его заряда и размера. В каждой подгруппе периодической системы поляризуемость ионов элементов растет с увеличением их порядкового номера.

Поляризующее действие ионов тем значительнее, чем:

    устойчивее электронная оболочка иона;

    больше заряд;

    меньше радиус иона.

Поляризуемость возрастает:

    при увеличении размеров молекулы (атома);

    с возрастанием атомного номера;

    увеличении легкости возбуждения атома.

Например: Октан более поляризуем, чем гексан, так как имеет больше электронов. Но гексадиен тоже будет более поляризуем, чем гексан, что связано с наличием у гексадиена подвижных $\pi $-электроны. А $\pi $-электроны более чувствительны к изменению электрического поля, чем $\sigma $-электроны.

Поляризуемость влияет на:

    кислотность и основность молекул в газовой фазе;

    жесткость кислот и оснований Льюиса;

    скорость нуклеофильного замещения.

Расчет поляризуемости молекул

Поляризация проявляется в возникновении индуцированного дипольного момента $\mu_{инд}$; у частиц (в результате смещения электронов и ядер).

Индуцированный дипольный момент является пропорциональным напряженности внешнего электрического поля:

$\mu_{инд} = \alpha \cdot \varepsilon_0 \cdot Е$,

где $\mu_инд$ - индуцированный дипольный момент, Д;

$\alpha $ -- коэффициент пропорциональности -- поляризуемость частицы, $\frac{Кл \cdot f {м^2}}{B}$;

$E$ -- напряженность электрического поля, $B$.

Для ионов поляризуемость пропорциональна кубу их радиуса.

В электрическом поле у полярной молекулы с постоянным дипольным моментом появляется еще индуцированный дипольный момент. Тогда учитывается суммарная относительная диэлектрическая проницаемость. Это выражается уравнением Дебая :

$N(\frac{\alpha + \mu^2}{3\varepsilon_0kT})=3(\varepsilon-1)(\varepsilon+2)$,

где $N$ - число молекул в единице объема образца;

$\alpha $ - поляризуемость молекулы;

$\varepsilon_0$ - постоянный дипольный момент молекулы;

$k$ - постоянная Больцмана;

$T$ - абсолютная температура.

Если построить график зависимости правой части этого уравнения от $\frac{1}{T}$, то

можно определить $\frac{\mu^2}{3\varepsilon_0k}$ и, следовательно, постоянный дипольный момент молекулы. Поляризуемость определяется по отрезку, отсекаемому на оси ординат при $\frac{1}{T} = 0$.

При очень высоких температурах диполь вращается так быстро, что его величина обнуляется и остается только индуцированный диполь. Он располагается в направлении индуцирующего его поля и может сохраняться при самых высоких температурах.

Влияние поляризации на свойства веществ.

Поляризуемость может объяснить некоторые особенности свойств веществ:

    Растворимость.

    Например: хлорид серебра $AgCl$ растворяется в воде намного хуже, чем хлорид натрия $NaCl$ или хлорид калия $KCl$. Радиус иона серебра $Ag^+$ соизмерим с радиусами ионов натрия $Na^+$ и калия $К^+$, но поляризуемость иона серебра гораздо больше (он имеет $18$ электронов на внешнем уровне), чем ионов натрия и калия. Поэтому межъядерное расстояние в хлориде серебра меньше, а энергия разрыва связи больше, чем в молекулах хлоридов натрия и калия.

    Температура плавления. Взаимная поляризация ионов способствует разрушению кристаллов. При этом понижается температура плавления, и тем больше, чем сильнее деформируется кристаллическая решетка.

    Например: В молекулах фторидов рубидия $RbF$ и титана $TiF$ радиусы катионов одинаковы, но ион титана $Ti^+$ сильнее поляризуется и поэтому оказывает сильное поляризующее действие на ион фтора $F^-$, чем ион рубидия $Rb^+$. Температура плавления фторида рубидия составляет $798^\circ C$, а т. пл. фторида титана $327^\circ C$.

    Температура диссоциации. Процессу поляризации будет способствовать повышение температуры. При этом увеличивается амплитуда колебаний ионов, что иногда приводит к перестройке структура вещества. Наблюдается полиморфное превращение. При нагревании возможен и полный переход электронов от аниона к катиону -- происходит термическая диссоциация вещества. Чем сильнее будет поляризующее действие, тем ниже температура диссоциации.

    Например: в ряду соединений данного катиона $MCl - MI$ и данного ниона $NaГ - LiГ$ температура разложения будет понижаться.

В электрическом поле ион или молекула деформируются, т.е. в них происходит относительное смещение ядер и электронов. Такая деформируемость ионов и молекул называется поляризуемостью . Поскольку наименее прочно в атоме связаны электроны внешнего слоя, то они испытывают смещение в первую очередь.

Поляризуемость анионов, как правило, значительно выше поляризуемости катионов.

При одинаковой структуре электронных оболочек поляризуемость иона уменьшается по мере увеличения положительного заряда, например, в ряду:

Для ионов электронных аналогов поляризуемость увеличивается с ростом числа электронных слоев, например: или
.

Поляризуемость молекул определяется поляризуемостью входящих в них атомов, геометрической конфигурацией, количеством и кратностью связей и др. Вывод об относительной поляризуемости возможен лишь для аналогично построенных молекул, различающихся одним атомом. В этом случае о различии в поляризуемости молекул можно судить по различию в поляризуемости атомов.

Электрическое поле может быть создано как заряженным электродом, так и ионом. Таким образом, ион сам может оказывать поляризующее действие (поляризацию) на другие ионы или молекулы. Поляризующее действие иона возрастает с увеличением его заряда и уменьшением радиуса.

Поляризующее действие анионов, как правило, значительно меньше, чем поляризующее действие катионов. Это объясняется большими размерами анионов по сравнению с катионами.

Молекулы обладают поляризующим действием в том случае, если они полярны; поляризующее действие тем выше, чем больше дипольный момент молекулы.

Поляризующая способность увеличивается в ряду ,т.к. радиусы увеличиваются и электрическое поле, создаваемое ионом, уменьшается.

Водородная связь

Водородная связь является особым видом химической связи. Известно, что соединения водорода с сильно электроотрицательными неметаллами, такими как F, О, N, имеют аномально высокие температуры кипения. Если в ряду Н 2 Тe – H 2 Se – H 2 S температура кипения закономерно уменьшается, то при переходе от H 2 S к Н 2 О наблюдается резкий скачок к увеличению этой температуры. Такая же картина наблюдается и в ряду галогенводородных кислот. Это свидетельствует о наличии специфического взаимодействия между молекулами Н 2 О, молекулами HF. Такое взаимодействие должно затруднять отрыв молекул друг от друга, т.е. уменьшать их летучесть, а, следовательно, повышать температуру кипения соответствующих веществ. Вследствие большой разницы в ЭО химические связи H–F, H–O, H–N сильно поляризованы. Поэтому атом водорода имеет положительный эффективный заряд (δ +), а на атомах F, O и N находится избыток электронной плотности, и они заряжены отрицательно ( -). Вследствие кулоновского притяжения происходит взаимодействие положительно заряженного атома водорода одной молекулы с электроотрицательным атомом другой молекулы. Благодаря этому молекулы притягиваются друг к другу (жирными точками обозначены водородные связи).

Водородной называется такая связь, которая образуется посредством атома водорода, входящего в состав одной из двух связанных частиц (молекул или ионов). Энергия водородной связи (21–29 кДж/моль или 5–7 ккал/моль) приблизительно в 10 раз меньше энергии обычной химической связи. И тем не менее, водородная связь обусловливает существование в парах димерных молекул (Н 2 О) 2 , (HF) 2 и муравьиной кислоты.

В ряду сочетаний атомов НF, HO, HN, HCl, HS энергия водородной связи падает. Она также уменьшается с повышением температуры, поэтому вещества в парообразном состоянии проявляют водородную связь лишь в незначительной степени; она характерна для веществ в жидком и твердом состояниях. Такие вещества как вода, лед, жидкий аммиак, органические кислоты, спирты и фенолы, ассоциированы в димеры, тримеры и полимеры. В жидком состоянии наиболее устойчивы димеры.