Преимущества и недостатки технологии газовой сварки ацетиленом. Ацетилено-кислородная сварка для начинающих. Порядок работы

Путь к IT у всех бывает очень тернистый. Я например в детстве хотел быть сварщиком - это же так красиво, когда вокруг летят брызги расплавленного металла! Но как-то не сложилось: мне начали выписывать журнал «Юный техник», где на последней странице одного из номеров рассказывали про робота, управляемого компьютером БК-0010… Но пунктик-то остался…

Также кто-то наверняка помнит передачу «Очумелые ручки», где из пластиковых бутылок делали различные креативные (как бы сказали сейчас) вещи.

Под катом - я покажу, как из пластиковой бутылки, инсулинового шприца, нескольких метров резинового шланга, клеевого пистолета (куда же без него) и некоторых других вещей, которые можно найти в каждом доме* сделать самую настоящую кислородно-ацетиленовую сварку.

Теория

Температура пламени зависит от теплоты сгорания топлива и теплоемкости продуктов реакции. Когда мы сжигаем что-то в воздухе - нагревать приходится и азот (которого почти 80%), потому температура пламени в воздухе обычно не высокая (~1500-2000C и ниже). А вот в чистом кислороде, при правильном соотношении объема горючего и кислорода - греть нужно только продукты реакции, и достижимы намного более высокие температуры.

Как топливо обычно рассматривают углеводороды. Углерод при сгорании дает углекислый газ, а водород - воду. Вода имеет очень большую теплоемкость (4.183 против 1.4 кДж/(кг*К)), соответственно, чем больше в горючем будет углерода, и меньше водорода - тем выше в первом приближении потенциально достижимая температура.

Наилучшее сочетание - у ацетилена C 2 H 2 , а например у метана CH 4 и пропана C 3 H 8 - это соотношение намного хуже.

Но существуют и другие соединения с равным количеством углерода и водорода - например бензол, C 6 H 6 . Помимо токсичности бензола, при его сгорании выделяется меньше энергии, т.к. в ацетилене «лишняя» энергия запасена в нестабильной тройной углеродной связи, что и обеспечивает ему одну из наибольших температур горения в кислороде - 3150 °C.

Эта лишняя энергия (~16%) может выделится во время самопроизвольной детонации сжатого ацетилена даже без доступа воздуха (продуктом реакции будет как раз бензол и винилацетилен). Wikipedia утверждает, что для этого нужно давление всего в 2 атмосферы - но я в шприце сжимал ацетилен до 4-5 атмосфер и ничего не происходило (видимо нужны катализаторы, удар или повышенная температура). В любом случае, из-за этого эффекта ацетилен в сжатом виде не хранят, а растворяют его в баллонах в ацетоне. Но есть и более простой и безопасный при маленьких объемах способ получения ацетилена - реакция карбида кальция с водой. Именно этот способ и будет использоваться.

Что примечательно, достигнуть еще бОльшей температуры можно - если использовать как топливо вещества, не содержащие водорода вообще: cyanogen (привет Android), (CN) 2 - горит при 4525 °C и dicyanoacetylene C 4 N 2 , горит при 4990 °C (опять благодаря тройным углеродным связям, и меньшему относительному количеству лишнего азота). Но практически с этой целью их не используют из-за токсичности.

Безопасность

Сжатые кислород и ацетилен в баллонах - могут быть очень опасны при малейших нарушениях правил эксплуатации, потому их я конечно использовать не буду.

Ацетилен будет генерироваться из небольшого количества карбида кальция (~100г на одну сессию), в бутылке объемом 0.5л. Изначально я хотел использовать 2л, чтобы давление было более равномерное - но посмотрев на YouTube как взрывается литр ацетилена с кислородом - решил урезать осетра. Чтобы не создавалось опасного давление в генераторе - выход ацетилена на горелке никогда нельзя перекрывать. Генератор ацетилена нужно охлаждать - иначе будет «саморазгон» реакции из-за нагрева.

Кислород - будет генерироваться медицинским концентратором кислорода, что относительно безопасно.

Могла быть еще опасность накачать кислорода в генератор ацетилена с последующим хлопком - но для этого нужно, чтобы не сработал защитный клапан в генераторе кислорода, и был заблокирован (грязью например) выход газа из горелки.

И конечно работать нужно в специальных очках - не только для защиты от брызг металла, но и ультрафиолетового излучения пламени (т.е. прозрачные пластиковые защитные очки тут не подойдут).

Чтобы не допустить скапливания взрывоопасной концентрации ацетилена в случае утечек - вентилятор постоянно обдувал рабочее место + все операции проводились на открытом воздухе.

Также существует проблема «обратного удара»: когда скорость течения газа в горелке становится слишком маленькая, пламя уходит внутрь горелки с хлопком, и если в ацетилене есть воздух - пламя может дойти до генератора ацетилена. Потому я не поджигал ацетилен сразу после начала реакции, а ждал ~15-30 секунд пока воздух не будет вытеснен. Также эта проблема может быть решена добавлением водяного клапана на пути ацетилена.

Конструкция

Итак, нам понадобится генератор кислорода. В моем случае - медицинский кислородный концентратор Atmung (цена порядка 20к рублей - но он, к счастью, уже был в наличии). Может генерировать 1 литр в минуту 95% кислорода, и бОльшие объемы при снижении концентрации. Работает по принципу короткоцикловой безнагревной адсорбции - за счет различной скорости прохождения газов через поры цеолита:

Далее - стандартная ацетиленовая горелка «Малютка», у неё самое маленькое сопло, куплена в интернет-магазине (960 рублей):

Мой генератор ацетилена работает следующим образом: вода из банки, стоящей на высоте 1-2 метра (для создания давления) через иглу инсулинового шприца маленькими каплями капает на карбид кальция в бутылке. Как только давление вырастает из-за выделившегося газа - вода капать перестает, до тех пор пока давление не снизится. Таким образом система стабилизирует сама себя. Тем не менее, генератор в банке с холодной водой - чтобы не допустить излишнего нагрева:

Результат

Пламя ацетилена в воздухе сильно коптит, и выглядит вполне заурядно:

С включением кислорода все меняется:

Можно плавить и поджигать сталь, резать все-таки не хватает мощности (надо брать более толстый наконечник, увеличивать давление):

Оказалось, гибкое стеклянное «оптоволокно» получается автомагически - когда расплавленное стекло капает, как только толщина шейки становится достаточно маленькой, оно очень быстро остывает и дальше не утончается.

Можно плавить стекло как масло, запаивать капсулы из стеклянных трубок:

Задача жизни выполнена, надеюсь и вам было интересно:-)

PS. И не повторяйте это дома.

Дополнение от специалиста (@freuser):

С точки зрения профессионального сварщика (30 лет, 11 стажа, из них 2 именно газосварка):
Статья гожая, в общем дисклеймеры правильные. Стоит добавить, что работы ведутся на несгораемых поверхностях (искры летят метра на 2 от ветра, а капли металла даже потемневшие до обычных цветов могут прожечь обувь, если она является туфлями.)

Конструкция генератора называется ВК (вода на карбид), есть еще КВ и ВВ (гуглится со схемами, копирайт еще советский:)).

К видео комментариев нет, особо и смотреть нечего (с моей точки зрения), только стоит добавить, что большие стекла (или целые бутылки), а также камень/бетон/некоторые кирпичи при нагревании могут лопнуть/расслоиться с образованием низколетящих осколков, которые замечательно впиваются и вплавляются в кожу (особенно на лице), правда, на миллиметр, не более, и легко вынимаются оттуда.

Еще хотел бы ответить именно на habrahabr.ru/post/185720/#comment_6461342 : это не обратный удар, вернее не то, от чего предостерегал Nepherhotep, а просто горелка либо перегрелась, либо, скорее, от малого давления и близкого от сопла препятствия (либо засора внутри сопла) пламя пошло навстречу потоку, к инжектору (в этой горелке он под накидной гайкой, между ней и вентилями), но дальше не двинулось. А обычно под обратным ударом понимается случай, когда пламя проскочило инжектор и пошло по шлангу навстречу источнику. Бывает два вида обратных ударов (один я наблюдал воочию): пламя идет по ацетиленовому шлангу (обычное горение, только конец шланга постоянно обгорает и пламя движется равномерно к баллону/генератору) и по кислородному (тут все красивее - шланг вдруг 20-30-сантиметровым куском вспыхивает и превращается в лохмотья, секундная пауза - следующий отрезок и т.д. до самого баллона.) Хотя второй случай - редкость. Простейшая защита - пережимаешь шланг в отдалении, придавливаешь ногой (не забываем про туфли) и орешь напарнику «Санька, баллоны закрывай, *** !!» Для более цивильной защиты можно сделать водяные затворы - тоже бутылка, две трубки, одна до дна - входящая, вторая короткая - на горелку. До половины наливается водой и все, пузырьки красиво бегут))

Теги:

  • ацетилен
  • кислород
  • жжем напалмом
  • cyanogen
Добавить метки

Не приступайте к работе, если не подготовлен пост газосварки. Он должен быть очищен от всех посторонних предметов.

Инструмент

Для работы могут понадобиться рожковые ключи, плоскогубцы, штангенциркуль, металлическая щетка. В качестве присадки для сварки применяют проволоку св.-08Г2 диаметром 2 мм.

Средства индивидуальной защиты

Минимальный набор средств, необходимый газосварщику — это рукавицы-краги и очки газосварщика.

Какое газосварочное оборудование понадобится для кислородной сварки

Вам понадобится:

  • рукав ацетиленовый (далее по тексту C2H2) 1-й категории для подачи ацетилена с давлением до 0,63 МПа
  • кислородный (далее О2) 3-й категории для подачи кислорода под давлением до 2 МПа
  • Редуктор к О2 (БКО-50ДМ)
  • Редуктор C2H2 (БАО- 5ДМ)
  • два соответствующих баллона объемом 40 л
  • газовая горелка Донмет Г3 с мундштуком №3

Подготовка металла

Необходимо зачистить металл от следов консервации или ржавчины, грязи и т.д. металлической щеткой.

Дальнейшие действия

Для того, чтобы выставить раб.давление 0,2МПа на C2H2 редукторе, нужно барашек баллона открыть против часовой стрелки, после чего винт на редукторе выкрутить по часовой. Точно так же выставляется давление на О2 редукторе 0,5 Мпа.

Настроить сварочное пламя можно двумя способами:

  • Открыть вентиль C2H2 на горелке, потом поджечь пламя, оно не должно отрываться от мундштука, потом подрегулировать его кислородом. Пламя должно иметь ядро, восстановительный участок и факел;

  • или открыть оба вентиля сразу, каждый на пол-оборота, после чего поджечь пламя. Затем отрегулировать его до нормального состояния. Должны получиться три ярко выраженные зоны.

Как видим, первый способ больше всего подходит для новичков.

Разогрев металла до температуры плавления

Для того, чтобы сделать сварочную ванну нужно расположить горелку под 90 градусов по отношению к основному металлу, а расстояние между ядром пламени и металлом должно быть около 1-3 мм. Металл начнет постепенно накаляться до красна. Сначала появится характерный цвет соломы, затем образуется сварочная ванна. Для начала попробуйте без присадки сделать колебательные движения «полумесяц». Для наплавки нужно отвести горелку на 30-40 градусов и сверху подать пруток каплеобразно или путем погружения в жидкую ванну. При этом не забывайте «рисовать» горелкой «полумесяцы», медленно продвигаясь вдоль шва. Старайтесь, чтобы ядро не задевало сварочную ванну.

Закрытие горелки

После того, как вы выполните сварку нужно закрыть горелку в следующем порядке:

  • закрываем C2H2 вентиль
  • продуваем и закрываем О2 вентиль.

Проконтролировать качества шва можно визуально. Шов должен быть плотным, а чешуйки – равномерными, его ширина 5-6 мм, высота 1-2 мм.

Порядок завершения работ

Закрывается барашек баллона с C2H2, затем выкручивается регулировочный винт редуктора. Затем та же процедура по баллону с О2

После нужно спустить остаточный газ с рукавов. Для этого нужно открыть оба вентиля на горелке, на манометрах рабочего давления можно увидеть, как газ сходит с рукавов, стрелка будет медленно опускаться до нуля. Закройте вентили на горелке.

Одна из старых разновидностей получения неразъемного соединения деталей, но не потерявшая своей актуальности – это ацетиленовая сварка металла. Применяется для сваривания практически любых материалов, особенно привлекательно при сваривании тонкостенных трубопроводов и других конструкций.

Почему именно ацетилен основной газ при газовой сварке металлов? Температура его горения превышает градус плавления стали и других материалов. При высокой квалификации газосварщика, выгода ацетиленовой сварки заключается в большой производительности при небольших затратах на газ и материалы. Остальные плюсы и минусы рассмотрим ниже.

Главным преимуществом ацетилено-кислородной сварки является мобильность и контроль за сварочными работами. Есть и другие преимущества:

  • при ацетиленовой сварке баллоны легко транспортируются на тележке. Удобно варить неповоротный шов, при небольшом расстоянии до стены. В этом случае не требуется делать операционный стык;
  • с помощью газовой горелки можно проводить неразъемное соединение металлов с различными температурами расплава. Осуществляя регулировку силы и вида пламени, можно добиться оптимальных условий ацетиленовой сварки;
  • при сваривании деталей небольшой толщины из конструкционной стали, меди, чугуна, латуни ацетиленовый способ незаменим;
  • можно повысить качество шва путем использования проволоки из легирующей стали или других добавок.

Осуществляя регулировку температуры нагрева, можно предотвратить сильную деформацию конструкции и стыка. При этом достигается еще и оптимальная скорость сваривания металлов.

Недостатки

Но есть у ацетиленового вида сварки и некоторые минусы. К ним относятся:

  • при нагреве образуется большая площадь с изменениями в свойствах материала, поэтому ацетиленовая сварка не применяется в машиностроении;
  • при соединении деталей толщиной более 5 мм газосварку лучше заменить ручной или полуавтоматической электросваркой;
  • соединение высокоуглеродистой стали не для кислородно-ацетиленовой сварки;
  • при соединении внахлест, металл будет значительно деформироваться, и в нем будут образовываться участки со значительным напряжением;
  • требует повышенных затрат на материалы и оборудование, по сравнению с электродуговым типом сварки.

Самый главный недостаток – это высокая взрывоопасность. Но многое в этом зависит от человеческого фактора.

Несоблюдение правил безопасности, неправильных действиях при обратном ударе – это основные ошибки, приводящие к авариям. Сварщик при работе с ацетиленом должен обладать навыками выше тех, которые достаточны для полуавтоматической и автоматической сварки.

Способ ацетиленовой сварки наиболее подходит для стыковых соединений деталей. А качество шва напрямую зависит от качества и чистоты ацетилена и кислорода.

При всех недостатках и высокой взрывоопасности, данный вид является основным для сваривания тонкостенных деталей и некоторых цветных материалов. К этому можно добавить наполненность и аккуратность шва.

Стык электродуговой сварки не может быть таким красивым и надежным как у газосварки, особенно при неповоротном стыке.

Инструменты и материалы

Для ацетиленовой сварки потребуется вполне доступное и относительно недорогое оборудование. Ранее для получения газа применялись газовые генераторы, но сейчас более распространен баллонный ацетилен.

Баллон окрашен в белый цвет. Для поддержания горения используется баллонный кислород. Как правило, их перевозят на специальных тележках.

В зависимости от толщины свариваемого металла предусмотрено использование нескольких размеров горелки и сопла. Самый маленький размер, который может иметь горелка – нулевой, а самый большой – пятый.

При необходимости сильного нагрева толстого металла используется наибольший номер с отверстием, позволяющим подавать газовую смесь в сварочную ванну и обеспечивающую нормальный прогрев стыка.

К горелке подходят шланги с ацетиленом и кислородом. Крепятся с помощью резьбового соединения.

Редукторы позволяют регулировать подачу газа и понижать давление газа, поступающего из баллона. Давление в кислородном баллоне порядка 150 атм. К тому же редукторы защищают баллон от обратного удара.

В зависимости от вида свариваемого материала, присадочная проволока может выполняться из стали или других металлов с добавлением легирующих добавок. Они улучшают качество шва. Для ацетиленовой сварки стальных водопроводных труб используют оббитые электроды для ручной электросварки, но это более дорогой вариант.

Технологический процесс газосварки

Процесс работы начинается с открывания вентилей на баллонах и регулировки давления газа с помощью редукторов. Оптимальное значение напора газов – 2 атмосферы. При большем давлении, может быть затруднена регулировка пламени.

На горелке открываем вентиль подачи ацетилена и поджигаем газ. Затем постепенно открывая кислородный вентиль, регулируем пламя. Для сваривания черных металлов наиболее часто применяется нейтральное пламя горелки. Сам факел состоит из трех, хорошо видимых невооруженным глазом, частей.

Голубой цвет с незначительным зеленоватым отливом имеет ядро, которое расположено внутри пламени.

Самая большая часть – это факел горелки. Он отвечает за нагрев металла.

Для настройки нейтрального пламени, необходимо прислонить горелку к любой металлической поверхности и отрегулировать его вентилями подачи газа. Ядро не должно быть очень большим, а восстановительное пламя регулируется до определенного цвета.

Сначала выставляется размер факела. Это делается подачей ацетилена. Затем постепенно увеличивая подачу кислорода, добиваемся нормального пламени.

При этом не следует делать очень мощное пламя. Оно увеличит не только скорость ацетиленовой сварки, но и повысит количество прожогов и подрезов шва. Поэтому регулировка – это одна из основных операций, которая облегчает выполнение сварочных работ.

Нельзя выставлять длинный и оранжевый цвет факела. Такое горение будет снижать качество шва, внося в сварочную ванну избыток углерода.

Основные способы ведения горелки и присадочного материала

Специалисты применяют два способа ведения инструмента: «от себя» и «на себя».

При ведении от себя впереди горелки располагается проволока. Такой метод применяется при сваривании конструкций больших по толщине. В этом случае расплавленный металл деталей и присадки одновременно заполняет сварочную ванну.

Этот способ требует от сварщика обеспечения равномерного перемешивания основного и присадочного металла. При недостаточном количестве расплава проволоки шов получается ослабленным.

При способе ацетиленовой сварки «на себя» первой идет горелка, и при расплавлении основного металла в ванночку добавляется металл с проволоки. Здесь надо правильно расположить горелку.

Она должна идти под острым углом по отношению к деталям. Этот способ наиболее прост. Надо разогреть металл, снять с проволоки каплю и растянуть ее по шву. По этому принципу формируется катет шва.

Для большего удобства и предохранения образования прожогов, горелку ведут либо полумесяцем или круговыми движениями.

Большую роль в качестве соединения играет правильная стыковка деталей, отсутствие больших зазоров при сварке тонких листов или труб. Следует помнить – перед ацетиленовой сваркой детали необходимо прихватить в нескольких местах. На трубах небольшого диаметра, прихватки делаются примерно через 1200.

На проведение сварочных работ оказывает влияние и характеристики свариваемого металла.

Выбор режимов

Для увеличения качества шва и его герметичности в зависимости от материала необходимо знать некоторые секреты профессиональных газосварщиков.

Высокоуглеродистые стали с помощью ацетиленовой сварки варят очень редко. А вот низкоуглеродистые, конструкционные стали – это область применения газосварки.

При этом достигаются хорошие результаты при любом пространственном положении шва. Средняя мощность горения не должна превышать 120 кубических дециметров в час.

Лучшим будет способ ведения горелки от себя. Присадку надо использовать из низкоуглеродистой стали, но можно оббивать электроды для электросварки. При расплавлении металла, из него выходит кремний, марганец и образуется крупнозернистое строение стали. Проволока из СТ.2, с содержанием кремния меньше 1%, марганца 1,1% обеспечит однородный, по структуре шов.

Для соединения низколегированных сталей необходимо использовать флюсы. Сварка ацетиленом осуществляется нормальным пламенем. Горелка должна работать на низкой мощности, подавая слабое пламя, если сваривают с сталь с высоким содержанием хрома и никеля.

Для соединения жаропрочных сталей применяется присадка с содержанием 21% никеля и хрома 25%. Сварить сталь с высокой стойкостью к образованию коррозий будет проще, если использовать проволоку с содержанием никеля, хрома и молибдена.

Работа с чугуном, медью и латунью

Перед необходимо разогреть место стыка и только затем проводить работу. В противном случае, в структуре основного металла образовывается белый чугун, и стык становится хрупким. Работа производится нормальным пламенем.

Ведут без разрывов и предварительных прихваток. Между деталями зазор не выставляется. Медь очень текучий материал при нагреве и очень теплопроводный материал. Поэтому необходимо выставлять более мощное пламя горелки. Лучше вести ацетиленовую сварку , для предотвращения окисления стыка.

Сварка латуни с помощью ацетилена и кислорода – это самый оптимальный вариант для данного материала. Температура расплава не должна превышать 9000, при этом не полностью испаряется цинк. Благодаря ацетиленовой сварке формируется надежный шов, удаляя из сварочной ванны 25% этого металла.

Необходимо поддерживать низкое содержание горючего газа в смеси, это позволит испарять цинк в необходимом объеме. Для лучшего результата необходимо использовать флюсы и качественную присадку. С помощью газосварки можно также варить бронзовые детали и другие металлы.

Чтобы понять, где применяется ацетилен, необходимо изучить и понять, что же это такое. Данное вещество представляет собой горючий бесцветный газ. Его химическая формула - С 2 Н 2 . Газ обладает атомной массой, равной 26,04. Он немного легче воздуха и обладает резким запахом. Получение и применение ацетилена осуществляется лишь в промышленных условиях. Получают данное вещество из путем разложения компонента в воде.

Чем опасен ацетилен

Ограничено его необычайными свойствами. самовоспламеняется. Происходит это при температуре 335°С, а его смесь с кислородом - при температуре от 297 до 306°С, с воздухом - при температуре от 305 до 470°С.

Стоит отметить, что ацетилен технический взрывоопасен. Это было происходит при:

  1. Повышении температуры до 450-500°С, а также при давлении в 150-200 кПа, что равно 1,5-2 атмосферам.
  2. Смесь ацетилена и кислорода при атмосферном давлении также опасна, если ацетилена в ней содержится 2,3-93%. Взрыв может произойти от сильного нагрева, открытого пламени и даже от искры.
  3. При подобных же условиях происходит взрыв смеси воздуха с ацетиленом, если в ней содержится 2,2-80,7 % ацетилена.
  4. Если газ долго соприкасается с медным или серебряным предметом, то может образоваться ацетиленистое взрывчатое серебро или же медь. Это вещество очень опасно. Взрыв может произойти от сильного удара или же в результате повышения температуры. Работать с газом следует осторожно.

Особенности вещества

Ацетилен, свойства и применение которого до конца не изучены, в результате взрыва может привести к несчастному случаю и сильнейшим разрушениям. Вот некоторые данные. При взрыве одного килограмма данного вещества выделяется в 2 раз больше тепловой энергии, чем при взрыве такого же количества тротила, а также в полтора раза больше, чем при взрыве одного килограмма нитроглицерина.

Области применения ацетилена

Ацетилен - это горючий газ, который используется при газовой сварке. Нередко его используют для кислородной резки. Стоит отметить, что температура горения смеси кислорода и ацетилена может достигать 3300°С. Благодаря этому свойству вещество чаще других используется при сварке. Ацетиленом обычно заменяют и пропан-бутан. Вещество обеспечивает производительность и высокое качество сварки.

Снабжение постов газом для резки и сварки может осуществляться от или же от баллонов с ацетиленом. Для хранения данного вещества обычно используют емкости белого цвета. Как правило, на них присутствует надпись «Ацетилен», нанесенная красной краской. Стоит учесть, что существует ГОСТ 5457-75. Согласно данному документу для обработки металлов применяется технический растворенный ацетилен марки Б или же вещество в газообразном виде.

Сварка ацетиленом: проверка

Технология сварки данным газом достаточно проста. Однако при работе с веществом требуется терпение и внимательность. Для сварки обычно используют специальные горелки, с маркировкой 0-5. Ее выбор зависит от того, какой толщиной обладают свариваемые детали. Следует учесть, что чем больше размер горелки, тем больше расход.

Сварка ацетиленом осуществляется только после того, как оборудование будет проверено и отрегулировано. При этом следует обратить внимание на номер наконечника и номер подающей газ форсунки, которая располагается около рукоятки горелки под гайкой. Также следует проверить все уплотнения.

Процесс сварки

Применение ацетилена при сварке должно осуществляться аккуратно и в соответствии с определенными правилами. Для начала горелку следует продуть газом. Это нужно делать до тех пор, пока не появится запах ацетилена. После этого газ поджигается. При этом следует добавлять кислород, пока пламя не станет более устойчивым. Из редуктора на выходе давление ацетилена должно быть от 2 до 4 атмосфер, а кислорода - от 2 атмосфер.

Для сварки черных металлов требуется нейтральное пламя. Оно обладает четко очерченной короной и условно его можно разделить на три яркие части: ядро - ярко-голубой окрас с зеленоватым отливом, восстановленное пламя - бледно-голубого оттенка, факел пламени. Последние две зоны являются рабочими.

Перед началом работы все детали нужно очистить, а затем подогнать друг к другу. При работе с горелкой также применяют левый и правый способ. В последнем случае происходит медленное остывание шва. Присадочный материал, как правило, перемещается за горелкой. При левом способе повышается эластичность и прочность шва. В данном случае пламя направляется от места сварки. Присадочный материал следует вносить в сварочную ванну только после того, как переместится на следующую позицию горелка.

Правила безопасности

Применение ацетилена без навыков и опыта запрещено. Существует несколько правил, которые следует соблюдать при работе с веществом:

Что делать, если возник пожар

Неправильное применение ацетилена может привести к печальным последствиям. Этот и приносит сильное разрушение. Что же делать, если возник пожар?

  1. При возникновении пожара следует незамедлительно убрать из опасной зоны все емкости, наполненные ацетиленом. Те баллоны, которые остались, следует постоянно охлаждать обычной водой или же специальным составом. Емкости должны полностью остыть.
  2. Если воспламенился газ, который выходит из баллона, то следует незамедлительно закрыть емкость. Для этого следует использовать неискрящийся ключ. После этого емкость необходимо остудить.
  3. При сильном возгорании тушение огня следует осуществлять только с безопасного расстояния. В такой ситуации стоит использовать огнетушители, наполненные составом, содержащим флегматизирующую концентрацию азота 70 % по объему, также 75 % по объему, песок, струи воды, сжатый азот, полотно асбестовое и так далее.

Введение

Ацетилен (C 2 H 2) – химическое газообразное соединение углерода с водородом, без цвета, со слабым эфирным запахом и сладковатым вкусом.

Ацетилен в газосварочном производстве получил наибольшее распространение благодаря важным для сварки качествам (высокая температура пламени, большая теплота сгорания). Так, при разложении 1 кг ацетилена выделяется 8473,6 кДж теплоты. Это единственный газ, горение которого возможно при отсутствии кислорода (или окислителя вообще).

Выделение тепла при сгорании ацетилена обусловлено следующими процессами:

  • распад ацетилена: C 2 H 2 = 2C + H 2
  • сгорание углерода: 2С + O 2 = 2CO, 2CO + O 2 = 2CO 2
  • сгорание водорода: H 2 + 1/2O 2 = H 2 O

Ацетилен легче воздуха, масса 1 м 3 ацетилена при температуре 20 °С (273 К) и нормальном атмосферном давлении составляет 1,09 кг. При нормальном давлении и температуре от –82,4 °С (190,6 К) до –84,0 °С (189 К) ацетилен переходит в жидкое состояние, а при температуре –85 °С (188 К) затвердевает, образуя кристаллы.

Технический ацетилен выпускается двух видов: растворенный и газообразный.

Технический растворенный ацетилен марки А предназначается для питания осветительных установок, технический растворенный ацетилен марки Б и технический газообразный ацетилен предназначаются в качестве горючего газа при газопламенной обработке металлов.

Технический ацетилен получают из карбида кальция путем разложения последнего водой. При этом из карбида кальция в ацетилен переходят вредные примеси, загрязняющие ацетилен: сероводород, аммиак, фосфорный водород, кремнистый водород. Эти примеси могут ухудшать свойства наплавленного металла и поэтому удаляются из ацетилена промывкой в воде и химической очисткой. Особенно нежелательна примесь фосфористого водорода, содержание более 0,7 % в ацетилене повышает взрывоопасность последнего.

Свойства ацетилена

Основные свойства ацетилена приведены в таблице 1.

Таблица 1 - Основные свойства ацетилена
Показатель Данные показателя
Формула С 2 H 2
Молекулярная масса 26,038
Плотность (при 0 °С и давлении 760 мм рт. ст.), кг/м 3 1,17
Плотность (при 20 °С и давлении 760 мм рт. ст.), кг/м 3 1,09
Критическая температура, °С 35,9
Критическое давление, кгс/см 2 61,6
Температура пламени, °С 3150-3200
Температура кипения (при 760 мм рт. ст.), °С -81,8
Температура плавления (затвердевания) (при 760 мм рт. ст.), °С -85
Высшая удельная теплота сгорания, кДж/м 3 58660
Низшая удельная теплота сгорания, кДж/м 3 55890
Температура самовоспламенения, °С 335
Давление самовоспламенения, МПа 0,14–0,16

По физико-химическим показателям технический ацетилен должен соответствовать нормам, указанным в таблице 2.

Таблица 2 - Физико-химические показатели технического ацетилена
Показатель Для ацетилена
растворенного газообразного
марки А марки Б
высшей категории качества высшей категории качества первой категории качества
Объемная доля ацетилена, % не менее 99,5 99,1 98,8 98,5
Объемная доля воздуха и других малорастворимых в воде газов, % не более 0,5 0,8 1,0 1,4
Объемная доля фосфористого водорода, % не более 0,005 0,02 0,05 0,08
Объемная доля сероводорода, % не более 0,002 0,005 0,05 0,05
Массовая концентрация водяных паров при температуре 20 °С и давлении 101,3 кПа (760 мм рт. ст.), г/м 3 , не более
Что соответствует температуре насыщения, °С, не выше
0,4 0,5 0,6 Не нормируется

Растворимость ацетилена

Газообразный ацетилен может растворятся во многих жидкостях. Данные о растворимости ацетилена в некоторых жидкостях при атмосферном давлении и температуре 15 °С приведены в таблице 3.

Растворимость ацетилена в жидкостях с понижением температуры увеличивается. Данные о растворимости ацетилена в ацетоне при различных температурах приведены в таблице 4.

Растворенным ацетиленом называется ацетилен, находящийся в баллоне, заполненном пористой массой, пропитанной растворителем – ацетоном. Искусственное охлаждение баллонов ускоряет процесс их наполнения. В порах пористой массы ацетилен растворен в ацетоне. При открывании вентиля баллона ацетилен выделяется из ацетона в виде газа. Растворенный ацетилен предназначен для его хранения и транспортирования.

Взрывоопасность ацетилена

При использовании ацетилена необходимо учитывать его взрывоопасные свойства. Это единственный широко применяемый в промышленности газ, горение и взрыв которого возможны даже при отсутствии кислорода или других окислителей.

Температура самовоспламенения ацетилена зависит от давления (таблица 5).

Повышение давления существенно уменьшает температуру самовоспламенения ацетилена. Частицы других веществ, присутствующие в ацетилене, увеличивают поверхность его контакта и тем самым снижают температуру самовоспламенения при атмосферном давлении до следующих значений, °С (К):

  • железная стружка – 520 (793);
  • латунная стружка – 500–520 (773–793);
  • карбид кальция – 500 (773);
  • оксид алюминия – 490 (763);
  • медная стружка – 460 (733);
  • активированный уголь – 400 (673);
  • гидрат оксида железа (ржавчина) – 280–300 (553–573);
  • оксид железа – 280 (553);
  • оксид меди – 250 (523).

Если ацетилен медленно нагревать до температуры 700–800 °С (973–1073 К) при атмосферном давлении, то происходит его полимеризация, при которой молекулы уплотняются и образуют более сложные соединения: бензол C 6 H 6 , стирол C 8 H 8 , нафталин C 10 H 8 , толуол C 7 H 8 и др. Полимеризация всегда сопровождается выделением теплоты и при быстром нагреве ацетилена может перейти в его самовоспламенение или взрывчатый распад.

Если при сжатии ацетилена в компрессоре до давления 29 кгс/м 3 (2,9 МПа) температура при завершении этого процесса не превышает 275 °С (548 К), то воспламенения не происходит, что позволяет наполнять баллоны ацетоном с целью его длительного хранения и транспортирования. С повышением давления температура, при которой начинается процесс полимеризации, понижается (рис.1).

При практическом использовании ацетилена допустим его нагрев до следующих значений температуры, °С (К):

  • 300 (573) – при давлении 1 кгс/см 2 (0,1 МПа);
  • 150–180 (423–453) – при 2,5 кгс/см 2 (0,25 МПа);
  • 100 (373) – при более высоких давлениях.

Одним из важных показателей взрывоопасности горючих газов и паров является энергия зажигания. Чем меньше эта величина, тем взрывоопаснее данной вещество. Значения энергии зажигания ацетилена (при нормальных условиях): с воздухом – 19 кДж; в кислородом – 0,3 кДж.

Водяной пар служит флегматизатором для ацетилена, т.е. его присутствие существенно снижает способность ацетилена к самовоспламенению при наличии случайных источников теплоты и взрывчатому распаду. Согласно действующим нормам для ацетиленовых генераторов, в которых ацетилен всегда насыщен парами воды, предельное избыточное давление составляет 150 кПа, а абсолютное – 250 кПа.

При атмосферном давлении смесь ацетилена с воздухом взрывоопасна, если в ней содержатся 2,2 % ацетилена и более, смесь с кислородом – 2,8 % ацетилена и более (верхних пределов концентрации ацетилена для его смесей с воздухом и кислородом не существует, так как при достаточной энергии зажигания способен взрываться и чистый ацетилен).

Получение ацетилена

В промышленности ацетилен получают при разложении жидких горючих, таких как нефть, керосин, воздействием электродугового разряда. Применяется также способ производства ацетилена из природного газа (метана). Смесь метана с кислородом сжигают в специальных реакторах при температуре 1300–1500 °С. Из полученной смеси с помощью растворителя извлекается концентрированный ацетилен. Получение ацетилена промышленным способом на 30–40 % дешевле, чем из карбида калия. Промышленный ацетилен закачивается в баллоны, где находится в порах специальный массы растворенным в ацетоне. В таком виде потребители получают баллонный промышленный ацетилен. Свойства ацетилена не зависят от способа его получения. Остаточное давление в ацетиленовом баллоне при температуре 20 °С должно быть 0,05–0,1 МПа (0,5–1,0 кгс/см 2). Рабочее давление в наполненном баллоне не должно превышать 1,9 МПа (19 кгс/см 2) при 20 °С.

Для сохранности наполнительной массы нельзя отбирать ацетилен из баллона со скоростью 1700 дм 3 /ч.

Рассмотрим подробнее способ получения ацетилена в генераторе из карбида кальция. Карбид кальция получают путем сплавления кокса и негашеной извести в электрических дуговых печах при температуре 1900–2300 °С, при которой протекает реакция:

Ca + 3C = CaC 2 + CO

Расплавленный карбид кальция сливают из печи в формы-изложницы, где он остывает. Далее его дробят и сортируют на куски размером от 2 до 80 мм. Готовый карбид кальция упаковывают в герметически закрываемые кальция не должно быть более 3 % частиц размером менее 2 мм (пыль). По ГОСТу 1460-81 устанавливаются размеры (грануляция) кусков карбида кальция: 2×8; 8×15; 15×25; 25×80 мм.

При взаимодействии с водой карбид кальция выделяет газообразный ацетилен и образует в остатке гашеную известь, являющуюся отходом.

Реакция разложения карбида кальция водой происходит по схеме:

Из 1 кг химически чистого карбида кальция теоретически можно получить 372 дм 3 (литра) ацетилена. Практически из-за наличия примесей в карбиде кальция выход ацетилена составляет до 280 дм 3 (литров). В среднем для получения 1000 дм 3 (литров) ацетилена расходуется 4,3–4,5 кг карбида кальция.

Карбидная пыль при смачивании водой разлагается почти мгновенно. Карбидную пыль нельзя применять в обычных ацетиленовых генераторах, рассчитанных для работы на кусковом карбиде кальция. Для разложения карбидной пыли применяются генераторы специальной конструкции. Для охлаждения ацетилена при разложении карбида кальция. Применяют также от 5 до 20 дм 3 (литров) воды на 1 кг карбида кальция. Применяют также «сухой» способ разложения карбида кальция. На 1 кг мелко раздробленного карбида кальция в генератор подают 0,2–1 дм 3 (литра) воды. В этом процессе гашения известь получается не в виде жидкого известкового ила, а в виде сухой «пушонки», удаление, транспортировка и утилизация которой значительно упрощается.

Транспортирование и хранение

Технический газообразный ацетилен транспортируют по трубопроводам из стальных бесшовных труб по ГОСТ 8731 и ГОСТ 8734. Давление ацетилена в трубопроводе должно быть не более 0,15 МПа (1,5 кгс/см 2). Окраска трубопроводов – по ГОСТ 14202.

Давление газа в трубопроводе должно измеряться манометром класса точности 2,5 по ГОСТ 8625, на циферблате которого должна стоять надпись «Ацетилен».

Техническим растворенным ацетиленом наполняют стальные баллоны для растворенного ацетилена с пористой массой (активным углем или литой пористой массой) и ацетиленом.

Баллоны должны быть оснащены вентилями специальных типов, предназначенными для ацетиленовых баллонов.

Давление газа в баллоне должно измеряться манометром класса точности не ниже 4 по ГОСТ 8625. Температуру газа в баллоне принимают равной температуре окружающей среды, в которой наполненный баллон должен быть выдержан не менее 8 ч.

При номинальном давлении 1,9 МПа (19,0 кгс/см 2) при 20 °С давление газа в баллоне в интервале температур от минус 5 до плюс 40 °С должно соответствовать указанному в таблице 6.

Таблица 6 - Давление ацетилена в баллоне в интервале температур
Температура газа,
°С
Давление газа в баллоне,
МПа (кгс/см 2), не более
-5 1,34 (13,4)
0 1,40 (14,0)
+5 1,50 (15,0)
+10 1,65 (16,5)
+15 1,80 (18,0)
+20 1,90 (19,0)
+25 2,15 (21,5)
+30 2,35 (23,5)
+35 2,60 (26,0)
+40 3,00 (30,0)

Остаточное давление газа в баллоне измеряют манометром класса точности 2,5 диаметром шкалы не менее 100 мм по ГОСТ 8625.

Баллоны от потребителя должны поступать с остаточным давлением, соответствующим указанному в таблице 7.

Растворенный ацетилен в баллонах перевозят всеми видами транспорта в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта, и правилами устройства и безопасной эксплуатации сосудов, работающих под давлением.

По железной дороге баллоны, наполненные растворенным ацетиленом, транспортируют повагонными и мелкими отправками в крытых вагонах. При транспортировании мелкими отправками колпаки баллонов должны быть опломбированы.

Для механизации погрузочно-разгрузочных работ и укрупнения перевозок автомобильным транспортом баллоны среднего объема помещают в металлические специальные контейнеры.

При транспортировании баллонов малого объема всеми видами транспорта они должны быть дополнительно упакованы в дощатые решетчатые ящики типа VII по ГОСТ 2991. Баллоны должны укладываться в ящики горизонтально, вентилями в одну сторону с обязательными прокладками между баллонами, предохраняющими их от ударов друг о друга.

Баллоны, наполненные ацетиленом, хранят в специальных складских помещениях или на открытых площадках под навесом, защищающим их от атмосферных осадков и прямых солнечных лучей, по группе ОЖ 2 ГОСТ 15150.

Требования безопасности

Ацетилен – взрывоопасный газ. Взрывы ацетилена обладают большой разрушительной силой.

С воздухом образует взрывоопасную смесь с нижним концентрационным пределом воспламенения при атмосферном давлении, приведенным к температуре 25 °С, – 2,5 % (по объему) по ГОСТ 12.1.004-85.

Температура самовоспламенения 335 °С.

Давление самовоспламенения 0,14–0,16 МПа.

При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения, поэтому категорически запрещается при изготовлении ацетиленового обо-рудования применение сплавов, содержащих более 70 % меди.

Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может увеличиться примерно в 10-12 раз по сравнению с начальным при взрыве в небольших сосудах и возрасти при детонации чистого ацетилена в 22 раза, а при детонации ацетилено-кислородной смеси в 50 раз.

Технический ацетилен (с примесями) имеет резкий неприятный запах; длительное вдыхание его вызывает тошноту, головокружение и даже отравление. Ацетилен обладает наркотическим действием. Отравление вызывает, главным образом, фосфористый водород, находящийся в карбидном ацетилене.

Газообразный ацетилен легче воздуха и накапливается в высших точках слабо проветриваемых помещений, где возможно образование ацетилено-воздушной смеси.

Производство ацетилена по пожарной опасности относится к категории А, по классам взрывоопасных зон – к классам В1; В1а; В1б; В1г.

Помещения ацетиленового производства должны иметь приточную и вытяжную вентиляцию.

В качестве средств пожаротушения следует использовать сжатый азот, углекислотные огнетушители, асбестовое полотно, песок.