Применение дугового разряда

1.Образование дуги.

дугового разряда.

.

4. Температура и излучение отдельных частей дугового разряда.

трической дуги.

и сверхвысоком давлении.

III. Применение дугового разряда.

1. Современные методы электрообработки.

2. Электродуговая сварка.

3.Плазменная технология.

4.Плазменная сварка.
IV. Заключение.



Дуговой разряд в виде так называемой электрической (или вольтовой) дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:

«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями...сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий,то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».

Путь к электрической дуге начался в глубокой древности. Еще греку Фалесу Милетскому, жившему в шестом веке до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы-перышки, солому, волосы и даже создавать искорки. Вплоть до семнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения. Ученые искали объяснение этому явлению.

Английский физик Уильям Гильберт (1544-1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь-электрон).

Бургомистр из Магдебурга Отто фон Герике (1602-1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов приме- нены кожаные подушечки.

Большое значение имело изобретение в восемнадцатом веке лейденской банки-конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.

Американский ученый Бенджамин Франклин (1706-1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло-диэлектрик.

Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.

Французский физик Шарль Кулон (1736-1806)- основатель электростатики-в 1785 г. установил, что сила взаимодействия электрических зарядов пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В сороковых годах восемнадцатого века Бенджамин Франклин выдвинул теорию о том, что существует электричество только одного рода-особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке-тело заряжено отрицательно. Франклин ввел в практику знаки «плюс» и «минус»,а также термины: конденсатор, проводник, заряд.

С оригинальными теориями о природе электричества выступили М. В. Ломоносов (1711-1765), Леонард Эйлер (1707-1783), Франц Эпинус (1724-1802) и другие ученые. К концу восемнадцатого века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе-движущихся зарядах, так как не существовало устройства, которое могло бы заставить двигаться большое количество зарядов. Токи, получаемые от электростатической машины,были слишком малы, их нельзя было измерить.


1 . Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развива-ется и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.

Применение обычного способа зажигания дуги путём раздвигания электродов вызвано тем, что дуга горит при сравнительно низких напряжениях в десятки вольт, тогда как для зажигания тлеющего разряда нужно при атмосферном давлении напряжение порядка десятков киловольт. Процесс зажигания при раздвигании электродов объясняется местным нагреванием электродов вследствие образования между ними плохого контакта в момент разрыва цепи.

Вопрос о развитии дуги при разрыве цепи технически важен не только с точки зрения получения «полезных» дуг, но также и с точки зрения борьбы с «вредными» дугами, например с образованием дуги при размыкании рубильника. Пусть L-само- индукция контура, W-его сопротивление, ع-э.д.с. источника тока,U(I)-функция вольтамперной характеристики дуги. Тогда мы должны иметь: ع= L dI/dt+WI+U(I) (1) или

LdI/dt=(ع-WI)-U(I)=∆ (2).

Разность (ع - WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)- ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е.Чтобы ток I непременно уменьшался со временем и между электродами рубильника не образовалось стойкой дуги, надо, чтобы



Рис.1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев:а)когда дуга пе может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.


имело место ∆ ع-WI.

Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заклю-чение пе учитывает ёмкости в цепи и относится лишь к постоянному току.

Точка пересечения прямой сопротивления с кривой вольт-амперной характеристики установившейся дуги соответствует низшему пределу силы постоянного тока, при котором может возникнуть дуга при разрыве цепи (рис. 1, б). В случае размыкания рубильником дуги переменного тока,потухающей при каждом переходе напряжения через нуль, существенно, чтобы условия,имеющиеся налицо в разрядном промежутке при размы-кании, не допускали нового зажигания дуги при последующем возрастании напряжения источника тока. Для этого требует-ся,чтобы при возрастании напряжения разрядный промежуток был достаточно деионизован. В выключателях сильных перемен-ных токов искусственно добиваются усиленной деионизации путём введения специальных электродов, отсасывающих заря-женные частицы газа благодаря двуполярной диффузии, а также путём применения механического дутья или путём воздействия на разряд магнитным полем. При высоких напряжениях при-меняют масляные выключатели.


2 . Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.

В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катод-ного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к неко-торому постоянному предельному значению, и площадь, занима-емая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/смІ.Для ртутной дуги в вакууме найдено 4000 а/смІ.

При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увели-чивается.

Резкость видимой границы катодного пятна объясняется тем, что сравнительно медленному уменьшению температуры с удале-нием от центра пятна соответствует быстрое падение как све-тового излучения, так и термоэлектронной эмиссии, а это равносильно резкой «оптической» и «электрической» границам пятна.

Угольный катод при горении дуги в воздухе заостряется, тогда как на угольном аноде, если разряд не перекрывает всю переднюю площадь анода, образуется круглое углубление-положительный кратер дуги .

Образованно катодного пятна объясняется следующим образом. Распределение пространственных зарядов в тонком слое у катода таково, что здесь разряд требует для своего поддержания тем меньшей разницы потенциалов, чем меньше поперечное сечение канала разряда. Поэтому разряд на катоде должен стягиваться.

Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной пли катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои ско-рости в области катодного падения потенциала.

Между отрицательной кистью и положительным столбом расположена область, аналогичная фарадееву тёмному пространству тлеющего разряда. В дуге Петрова в воздухе, кроме отрицательной кисти, имеется положи-тельное пламя и ряд ореолов. Спектральный анализ указывает на наличие в этих пламенах и ореолах ряда химических соединений (циана и окислов азота).

При горизонтальном расположении электродов и большом давлении газа положительный столб дугового разряда изги-бается кверху под действием конвекционных токов нагретого разрядом газа. Отсюда произошло самое название дуговой разряд.


3 . В дуге Петрова высокая температура и высокое давление не дают возможности использовать для измерения распреде-ления потенциала метод зондов.

Падение потенциала между электродами дуги складывается из катодного падения и Uк, анодного падения Uа и падения в положительном столбе. Сумму катодного и анодного падений потенциала можно определить,сближая анод и катод до исчез-новения положительного столба и измеряя напряжение между электродами.В случае дуги при низком давлении можно опре-делить значения потенциала в двух точках столба дуги, поль-зуясь методом зондовых характеристик, вычислить отсюда продольный градиент потенциала и далее подсчитать как анодное, так и катодное падение потенциала.

Установлено, что в дуговом рязряде при атмосферном давлении сумма катодного и анодного падений примерно той же величины,что и ионизационный потенциал газа или пара, в котором происходит разряд.

В технике применения дуги Петрова с угольными электродами обычно пользуются эмпирической формулой Айртона:

U=a+bl+(c+dl)/I (3)

Здесь U-напряжение между электродами, I-сила тока в дуге, l-длина дуги, а, b, с и d-четыре постоянных. Формула характеристики (3) установлена для дуги между угольными электродами в воздухе. Под l подразумевается расстояние между катодом и плоскостью, проведённой через края положи-тельного кратера.

Перепишем формулу (4) в виде

U=а+c/I+l(b+d/I). (4)

В (4) члены, содержащие множитель l, соответствуют падению потенциала в положительном столбе; первые два члена представляют собой сумму катодного и ано-дного падения Uк+Uа. Постоянные в (3) зависят от давления воздуха и от условий охлаждения электродов, а следовательно, от размеров и формы углей.

В случае дугового разряда в откачанном сосуде, запол-ненном парами металла (например, ртути), давление пара зависит от температуры наиболее холодных частей сосуда и поэтому ход характеристики сильно зависит от условий охлаждения всей трубки.

Динамическая характеристика дугового разряда силь-но отличается от статической. Вид динамической характеристики зависит от быстроты изменения режима дуги. Практически наиболее интересна характеристика дуги при питании переменным током. Одновременное осциллографирование тока и напряжения даёт картину, изображенную на рис.2. Начерченная по этим кривым характеристика дуги за целый период имеет

вид, представленный на рис.3. Пунктиром покыазан ход напряжения при отсутствии разряда.







Рис.4. Динамическая характерис-

тика дугового разряда на

переменном токе низкой частоты.

Ис. 3. Осциллограмма тока и напряжения дугового разряда на переменном токе

низкой частоты. Точки А, В, С и т.д.

соответствуют точкам,обозначенным теми

же буквами на рис.4.


Катод, не успевший ещё охладиться после разряда, имевшего место в предыдущем полупериоде тока, с самого начала полупериода, когда внешняя э.д.с. проходит через нуль, эмиттирует электроны. От точки О до точки А характеристика соответствует несамостоятельному разряду, источником которого являются эмиттируемые катодом электроны. В точке А происходит зажигание дуги. После точки А разрядный ток быстро увеличивается. При наличии сопротивления во внешней цепи напряжение между электродами дуги падает, хотя э.д.с. источника тока (пунктир на рис.3), пробегая синусоиду, ещё увеличивается. С уменьшением напряжения и тока, даваемого внешним источником, разрядный ток начинает уменьшаться.

С уменьшением тока в дуге напряжение между её электро-дами может вновь возрасти в зависимости от внешнего сопро-тивления, но часть ВС характеристики на рис.4 может быть и горизонтальной или иметь про-тивоположный наклон. В точке С имеет место потухание дуги.

После точки С ток несамостоятельного разряда уменьшается до нуля вместе с уменьшением напряжения между электродами.

П
осле перехода напряжения через

нуль роль катода начинает играть прежний анод и картина повторяется при обратных знаках тока и напряжения.

Рис.5. Изменение динамической харак-теристики при повышенной частоты переменного тока, наложенного на пос-тоянный.


На вид динамической харак-теристики оказывают влияние все условия, определяющие режим дуги: расстояние между элек-тродами, величина внешнего сопро-тивления, самоиндукция и ёмкость внешней цепи, частота переменного тока, питающего дугу, и т. д.

Если на электроды дуги, питаемой постоянным током, на-ложить переменное напряжение амплитуды, меньшей, чем напряжение питающего дугу постоянного тока, то харак-теристика имеет вид замкнутой петли, охватывающей стати-ческую характеристику ВС с двух сторон. При увеличении частоты переменного тока ось этой петли поворачивается, сама петля сплющивается и, наконец, стремится принять вид отрезка прямой ОА , проходящей через начало координат (рис.5). При очень малой частоте петля динамической харак-теристики превращается в отрезок статической характеристики ВС, так как все внутренние параметры разряда,в частности концентрация ионов и электронов, успевают в каждой точке характеристики принимать значения, соответствующие стацио-нарному разряду при данных U и I. Наоборот, при очень быстром изменении и параметры разряда совершенно не успе-вают изменяться, поэтому I оказывается пропорциональным и, что соответствует прямой ОА, проходящей через начало координат.Таким образом, при увеличении частоты переменного тока петля характеристики (рис. 5) становится во всех своих точках возрастающей.

В связи с возможностью полной ионизации газа в дуговом

разряде стоит вопрос об обрыве дуги при малом давлении газа

и очень сильных токах. В явлении обрыва дуги существенную роль играет значительное уменьшение плотности газа вслед-ствие электрофореза и отсоса ионов к стенкам, особенно в таких местах, где разрядный промежуток сильно сужен. Прак-тически это приводит к необходимости избегать чрезмерных сужений при постройке ртутных выпрямителей на очень большие силы тока.

Электрики, имевшие впервые дело с электрической дугой,

пытались применить закон Ома также и в этом случае. Для получения результатов расчёта по закону Ома, согласных с действительностью, им пришлось ввести представление об обратной электродвижущей силе дуги. По аналогии с явлениями в гальванических элементах, предполагаемое появление этой э.д.с. назвали поляризацией дуги. Вопросу об обратной э.д.с. дуги посвящены работы русских учёных Д. А. Лачинова и В. Ф. Миткевича. Дальнейшее развитие представлений об электрических разрядах в газах показало, что такая пос-тановка вопроса является чисто формальной и может быть с успехом заменена представлением о падающей характеристике дуги. Справедливость этой точки зрения подтверждается неу-дачей всех попыток непосредственно обнаружить эксперимен-тально обратную э.д.с. электрической дуги.


4 . В случае дуги в воздухе между угольными электродами

преобладает излучение раскалённых электродов, главным образом,положительного кратера.

Излучение анода, как излучение твёрдого тела, обладает

сплошным спектром. Интенсивность его определяется темпера-турой анода. Послздняя является характерной величиной для дуги в атмосферном воздухе при аноде из какого-либо данного материала, так как температура анода от силы тока не зави-сит и определяется исключительно температурой плавления или иозгонки материала анода. Температура плавления или возгон-ки зависит от давления, под которым находится плавящееся или возгоняемое тело. Поэтому температура анода, а следова-тельно, и интенсивность излучения положительного кратера зависят от давления, при котором горит дуга. В этом отно-шении известны классические опыты с угольной дугой под давленрюм, приведшие к получению очень высоких температур.

Об изменении температуры положительного кратера с давле-

на этом чертеже укладываются точки для давлений от 1 атм

и выше, служит подтверждением предположения, что темпера-тура положительного кратера определяется температурой плав-ления или возгонки вещества анода, так как в этом случае должна существовать линейная зависимость между ln р и 1/T. Отступление от линейной зависимости при более низких дав-лениях объясняется тем, что при давлении ниже 1 атм коли-чество тепла, выделяющееся на аноде, недостаточно для н

Рис. 6. Изменение температуры угольного анода электрической дкги в воздухе при изменении давления. Шкала по оси ординат логарифмическая.


агревания анода до температуры плавления или возгонки.

Температура катодного пятна дуги Петрова всегда на несколь-

ко сот градусов ниже температуры положительного кратера.

Высокие температуры шнура дуги не могут быть определены

при помощи термоэлемента или болометра. В настоящее время

для определения температуры в дуге применяют спектральные

При больших силах тока температура газа в дуге Петрова

может быть выше температуры анода и достигает 6000° К. Такие высокие температуры газа характерны для всех случаев дугового разряда при атмосферном давлении. В случае очень больших давлений (десятки и сотни атмосфер) температура в центральных частях отшнуровавшегося положительного столба дуги доходит до 10 000° К. В дуговом разряде при низких давлениях температура газа в положительном столбе того же порядка, как и в положительном столбе тлеющего разряда.

Температура положительного кратера дуги выше, чем темпе-ратура катода, потому что на аноде весь ток переносится электронами, бомбардирующими и нагревающими анод. Электроны

отдают аноду не только всю приобретённую в области анодного

падения кинетическую энергию, но ещё и работу выхода(«скры-

тую теплоту испарения» электронов). Напротив, на катод по-

падает и его бомбардирует и нагревает малое число положи-тельных ионов по сравнению с числом электронов, попадающих на анод при той же силе тока. Остальная часть тока на като-де осуществляется электронами, при выходе которых в случае

термоэлектронной дуги на работу выхода затрачивается тепло-

вая энергия катода.


5 . Благодаря тому, что дуга имеет падающую характеристику, она может быть использована в качестве генератора незатуха-ющих колебаний. Схема такого дугового генератора представ-лена на рис. 7. Условия генерации колебаний в этой

с
хеме можно вывести из рассмо-

трения условий устойчивости ста-

ционарного разряда при заданных

параметрах внешней цепи.

Пусть электродвижущая сила

источника постоянного тока, пи-

Рис. 7. Принципиальная электри-ческая схема дугового генератора.


ающего разряд (рис.7), равна ع,

напряжение между электродами

трубки U, сила стационарного то-

ка через разрядную трубку при данном режиме равна I, ём-кость катод-анод трубки плюс ёмкость всех подводящих прово-дов С, самоиндукция в цепи L, сопротивление, через которое подаётся ток от источника, R. При установившемся режиме постоянного тока будем иметь:

ع=U о +IR (5)

Допустим, что этот стацийнарный режим нарушен. Разрядный

ток в какой-либо данный момент времени равен I+i , где i -малая величина, а разность потенциалов между электродами равна U.

Введём обозначение

(dU/di )i=0 равно тангенсу угла наклона касательной к вольтамперной характеристике в рабочей точке, соответ-ствующей выбранному нами первоначально режиму (ток I). Посмотрим, как будет дальше изменяться i . Если i будет возрастать, то данный режим разряда неустойчив; если, наоборот, i беспредельно убывает, то режим разряда устой-чивый.

Обратимся к вольтамперной характеристике рассматриваемого

разрядного промежутка U=f (I +i )- Через трубку идёт ток

I +i и ёмкость С заряжается (или разряжается). Разность

потенциалов на ёмкости С уравновешивается в этом случае

не только напряжением на разрядном промежутке, но и э.д.с.

самоиндукции цепи. Пусть I +i 2 -общий ток через сопротивле-

ние R. Обозначим ток, заряжающий ёмкость С, через i 1 ; мгно-

венное значение разности потенциалов на ёмкости С- через U1.Разность потенциалов между электродами дуги будет U 0 +iU ’.

ع=U 1 +(i+I 2 )R, (6)

U 1 -U 0 =U’i+Ldi/dt, (7)

i 2 =i 1 +i. (8)

Добавочный заряд Q на ёмкости С по сравнению со стационарным режимом:

Q=∫i 1 dt=(U 1 -U 0)C. (9)

Вычитая (5) из (6), находим:

U 1 -U 0 =-i 2 R (10)

Выражения (7), (8) и (10) дают:

U"i+Ldi/dt=-R(i+i 1 ) . (11)

Выражения (7) и (9) дают:

1/C i 1 dt=U’i+Ldi/dt . (12)

Дифференцируя (12) по t и вставляя результат в (11), находим:

U’i+Ldi/dt=-iR-RCU’di/dt-RLCd І i/dt І . (13)

d І i/dt І +(1/CR+U’/L )di/dt + 1/LC(U’/R+1)i =0 (14)

Формула (14) представляет собой дифференциальное уравнение,

которому подчиняется добавочный ток i .

Как известно, полный интеграл уравнения (14) имеет вид:

i=А1е^r1t+А2е^r2t, (15)

где r1 и r2- корни характеристического уравнения, опре-деляемые формулой

r =-1/2(1/CR+U’/L )+ 1/4(1/CR+U’/L)І-1/LC(U’/R+1) . (16)

Если подкоренная величина в (16) больше нуля, то r1 и r2

оба действительны, i изменяется апериодически по экспо-ненциальному закону и решение (15) соответствует апериодическому изменению тока. Для того чтобы в рас-сматриваемой нами схеме возникли колебания тока, необ-ходимо, чтобы r 1 и r 2 были комплексными величинами, т. е. чтобы

1/LC(U’/R+1)>1/4(1/CR+U’/L)І (17)

В этом случае (15) можно представить в виде

i= A 1 e -δt+jωt + A 2 e -δt-jωt , (18)

δ=1/2(1/CR+U’/L); i= √-1.

При δ δ > 0 они быстро затухают, и разряд на постоянном токе будет устойчив.

Таким образом, для того чтобы в рассматриваемой схеме в конечном итоге могли установиться незатухающие колебания, надо, чтобы

(1/CR+U’/L) (19)

Так как Р, L и С существенно положительные величины, то

неравенство (19) может быть соблюдено только при условии:

Отсюда заключаем, что колебания в рассматриваемом контуре

могут возникнуть только при падающей вольтамперной характе-

ристике разряда.

Исследование условий, при которых r1 и r2 действительны

и оба меньше нуля, приводит к условиям устойчивости разряда

постоянного тока:

(1/CR+U’/L)>0 и (21)

U’/R+1 >0 . (22)

Условия (21) и (22) представляют собой общие условия

Устойчивости разряда, питаемого постоянным напряжением. Из

(21) следует, что при возрастающей вольтамперной характе-

ристике разряд всегда устойчив.


Объединяя это требование с условием (22), находим, что

при падающей характеристике разряд может быть устойчивым

только при

При непосредственном применении формул этого параграфа

к вопросу о генерации колебаний при помощи дуги приходится

брать U" из «средней характеристики», построенной на основании восходящей и нисходящей ветвей динамической характеристики.

При периодическом изменении силы тока в дуге Петрова из-

меняются температура и плотность газа и скорости аэродина-мических потоков. При подборе соответствующего режима эти

изменения приводят к возникновению акустических колебании

в окружающем воздухе. В результате получается так называ-емая поющая дуга, воспроизводящая чистые музыкальные тона.


6 . С увеличением давления газа и с увеличением плотности тока температура по оси положительного столба, отшнуровав-шегося от стенок разрядной трубки, поднимается все больше и больше. Процессы ионизации начинают принимать характер, всё более и более соответствующий чисто термической ионизации. Средняя кинетическая энергия электронов плазмы приближается к средней кинетической энергии частиц нейтрального газа. Плазма становится близкой по своим свойствам к изотерми-

ческой плазме. Всё это позволяет решать задачу о нахождении

различных параметров разряда, в том число продольного градиента поля в зависимости от плотности разрядного тока, на основании термодинамических соотношений.

Исходными положениями теории положительного столба дуго-

вого разряда при высоком и сверхвысоком давлении служит уравнение Сага для термической ионизации в виде


αІp=AT 5/2 e -eUi/kT (24)

и теорема Больцмана в виде соотношения


n a =nge (-eU a /kT) (25)


Здесь α-степень ионизации, р-давление газа, А-постоянная,

Т-температура газа, U i -потенциал ионизации, k-постоянная

Больцмана, «n a -концентрация возбуждённых атомов, n-концен-

трация нормальных атомов, U a -потенциал возбуждения, g-отно-

шение статистических весов g a /g n возбуждённого и нормаль-ного состояния атома. Температура электронного газа принимается равной температуре нейтрального газа. Для упрощения задача учитывает лишь один «усреднённый» уровень возбуждения. Разрядная трубка предполагается расположенной вертикально.В любом другом положении конвекционные потоки газа искажают осевую симметрию режима газа.

Обозначим внутренний радиус разрядной трубки через R1, расстояние какой-либо точки от оси трубки-через r. Проведём

на расстоянии одного сантиметра один от другого два сече-ния, перпендикулярные к оси трубки, и выделим между ними элементарный объём при помощи двух концентрических цилин-дров с радиусами r и r+dr(рис. 8). Обозначим количество энергии, выделяемой разрядом в единицу времени, приходя-щееся на единицу длины трубки, через N1, а количество энергии, приходящееся на рассматриваемый нами элементарный объём,-через dN1. Количество энергии, излучаемой в едини-ц
у времени газом, заключённым

в единице длины всей трубки и

в рассматриваемом элементарном

объёме, обозначим через S1 и dS1.

Внутри трубки существует

Рис. 8. Элемент объема в аксиально-сим-метрическом разряде.


епрерывный радиальный поток

тепла через газ по направлению

от оси к стенке. Обозначим че-рез dL1 избыток количества тепла, покидающего в единицу времени рассматриваемый элемент объёма через его внешнюю границу, над количеством тепла, проникающего в тот же объём в единицу времени через его внутреннюю границу со стороны оси трубки. Допустим, что конвекционные потоки газа строго вертикальны и не нарушают теплового режима газа.

Условие теплового баланса рассматриваемого элементарного

объёма напишется в общем виде так:

dN 1 =dL 1 +dS 1 . (26)

Вследствие наличия осевой симметрии все величины, характе-

ризующие состояние газа и режим разряда, одинаковы для

точек, находящихся на одном и том же расстоянии r от оси.

Так как площадь основания рассматриваемого элементарного

объёма равна 2пrdr, то для мощности, выделяемой в этом

объёме, можем написать:

dN 1 =2 п ri r E z dr, (27)

нде i r -плотность тока на расстоянии r от оси, а E z -про-дольный градиент поля, одинаковый по всему поперечному сечению трубки. Обозначая коэффициент теплопроводности газа при температуре Т через λ т, напишим для dL 1 , пренебрегая членами высшего порядка малости:

dL 1 =2п(r+dr)(λ т dT/dr) r+dr -2пr(λ т dT/dr) r =2пd(rλ т dT/dr)/dr (28)

Допустим, что излучаемая газом энергия целиком покидает

разрядный промежуток без заметной реабсорбции в газе. Такое

допущение можно сделать потому, что абсорбируемое газом резонансное излучение составляет при большом давлении лишь незначительную долго общего излучения газа. Так как излу-чаемая за единицу временя энергия пропорциональна концен-трации возбуждённых атомов n a , то для dS 1 можем написать:

dS 1 =2пrCn a dr, (29)

где С-постоянный множитель, не зависящий от Т. Подстановка

значений (29) и (28) в (26) даёт:

2 п ri r E z dr=2 п d(r λ т dT/dr)dr/dr + 2 п rCn a dr (30)

Пренебрегая малой долей тока, приходящейся на долю поло-

жительных ионов, и обозначая подвижность электронов через К e , можем написать:

i=n e eK e E z . (31)

Если обозначим правую часть уравнения Сага (24) через f 1 (T), а р в левой части заменим через nkТ, где n - концен-трация нейтральных частиц газа, то найдём:

α 2 = f 1 (T)/ nkТ. (32)

n пропорционально массе газа, заключённого в единице длины

трубки, g 1 и обратно пропорционально квадрату радиуса труб-ки R1 и температуре газа в данной точке:

n=C 1 g 1 /TR 1 2 (33)

Поэтому вместо (32) можем написать:

α=R 1 √f1(T)/C1k/ √g 1 =R 1 f 2 (T)/√g 1 (34)

Согласно уравнению Ланжевена скорость движения электрона

в газе в поле напряжённости Е z равна:

u=K e E z =aeλ e E z /mv (35)

где v- средняя арифметическая скорость теплового движения

электронов, прямо пропорциональная квадратному корню из температуры электронного газа, в то время как λ e обратно пропорционально n. Следовательно,

K e =C 2 /nT 1/2 (36)

Согласно определению величины α:

Из (31), (34), (37) и (36) следует:

i r =E z R i C 2 f 2 (T)/g 1 1/2 T 1/2 (38)

где Т-температура газа на расстоянии r от оси. Из (38)

и (27) следует:

dN 1 =2пrE r 2 R 1 C 2 f 2 (T)dr/g 1 1/2 T 1/2 =2пrE z 2 R 1 f 3 (T)dr/g 1 1/2 ,(39)

Согласно уравнению Больцмана (25):

n a =nge (-eU a /kT) =C 1 gg 1 e (-eU a /kT) /TR 1 2 =g 1 f 4 (T)/ R 1 2 , (40)

где f 4 (T)= C 1 ge (-eU a /kT) /T.

Вставляя это значение n a в (29) и заменяя Сf 4 (Т) через f 5 (Т), находим:

dS 1 =g 1 2пrf 5 (Т)dr/R 1 2 . (41)

Подстановка (39), (28) и (41) в (26) даёт

E r 2 R 1 f 3 (T)/g 1 1/2 =d(rλ т dT/dr)/rdr+g 1 f 5 (Т)dr/R 1 2 (42)

В уравнении (42) f 3 (T) и f 5 (T), а также λ т -функции одного только переменного Т. Поэтому (42) представляет собой

дифференциальное уравнение, связывающее переменные Т и r.

Граничными условиями, которым должно удовлетворять решение

этого уравнения, являются: а) при r=R условие Т=Т ст, где Т ст - температура стенки разрядной трубки; б) при r=0 условие dT/dr = 0, так как на оси трубки температура газа имеет максимальное значение.

Все величины, характеризующие разряд, являются функциями

от одного только Т . Поэтому решение уравнения (42) могло

бы дать полное решение всех количественных вопросов, связанных с данным типом разряда. Однако значение уравнения (42) заключается главным образом в том, что путём перехода к безразмерным величинам оно приводит к характерным для данного типа разряда законам подобия, позволяющим перено-сить количественные результаты, установленные эксперимента-льно для одних значений N 1 , R 1 и g 1 на режим разряда при других значениях этих величин. Этот приём аналогичен тому, который применяется для решения некоторых задач гидродина-мики также лишь на основании анализа дифференциального уравнения и экспериментальных измерений на моделях, постро-енных в соответствии с законами подобия гидродинамики. В данном случае подобными являются два разряда, в которых в соответственных точках, характеризуемых одной и той же величиной отношения r/R 1 , температура газа одна и та же.

Практически наиболее существенными являются следующие

два закона подобия:

Первый закон подобия отшнурованного дугового разряда высокого давления. Два дуговых разряда высокого давления в цилиндрических трубках различного диаметра (2R 1 ≠ 2R 1 "), наполненных газом так, что на один сантиметр длины той и другой трубки приходится одно и то же количество газа (g 1 =g 1 ’), являются подобными в том случае, если N 1 =N 1 ’,т. е. если расходуемые мощности на единицу длины трубки в обоих случаях одинаковы.

Второй закон подобия отшнурованного дугового разряда высокого давления. Два дуговых разряда высокого давления в парах ртути в цилиндрических трубках различного диаметра (2R 1 ≠ 2R 1 "), наполненных парами ртути так, что на один сантиметр длины каждой из трубок приходятся различные коли-чества паров ртути (g 1 ≠g 1 ’), являются подобными, если расходуемые на единицу длины каждой трубки мощности N 1 и N 1 ’ удовлетворяют соотношению

N 1 /N 1 ’=8,5+5,7g 1 /8,5+5,7g 1 ’ (43)

При этом предполагается, что ртуть в разряде полностью перешла в парообразное состояние. Коэффициенты 8,5 и 5,75 определены экспериментально.

К описанному в этой главе типу разряда принадлежит также

и положительный столб (пламя) дуги Петрова, представляющий

собой шнур изотермической плазмы. В этом случае граничные

условия на стенках трубки отпадают и должны быть заменены

условиями в пограничном слое шнура.

В настоящее время, кроме дугового разряда в парах ртути

сверхвысокого давления (до 100 атм и более), исследован и нашёл техническое применение также и дуговой разряд в инер-тных газах Nе, Аr, Кr и Хе при давлениях до 20 атм и выше.

    ВВедение.

    Свойства дугового разряда.

1.Образование дуги.

2. Катодное пятно. Внешний вид и отдельные части

дугового разряда.

3. Распределение потенциала и вольтамперная

характеристика при дуговом разряде.

4. Температура и излучение отдельных частей дуювого разряда.

5. Генерация незатухающих колебаний при помощи элек-

трической дуги.

6. Положительный столб дугового разряда при высоком

и сверхвысоком давлении.

    Применение дугового разряда.

1. Современные методы электрообработки. Среди современных технологических процессов одним из самых распространенных является электросварка. Сварка позволяет сваривать, паять, склеивать, напылять не только металлы, но и пластмассы, керамику и даже стекло. Диапазон применения этого метода поистине необъятен - от производства мощных подъемных кранов, строительных металлоконструкций, оборудования для атомных и других электростанций, постройки крупнотоннажных судов, атомных ледоколов до изготовления тончайших микросхем и различных бытовых изделий. В ряде производств внедрение сварки привело к коренному изменению технологии. Так, подлинной революцией в судостроении стало освоение поточной постройки судов из крупных сварных секций. На многих верфях страны сейчас строят крупнотоннажные цельносварные танкеры. Электросварка позволила решить про-блемы создания газопроводов, рассчитанных на работу в северных условиях при давлении 100-120 атмосфер. Сотрудники Института электросварки им. Е. О. Патона предложили ори-

гинальный метод изготовления труб на основе сварочной тех-нологии, предназначенных для таких газопроводов. Из таких

труб со стенками толщиной до 40 миллиметров и собирают высоконадежные газопроводы, пересекающие континенты.

Большой вклад в развитие электросварки внесли советские ученые и специалисты. Продолжая и творчески развивая насле-дие своих великих предшественников-В. В. Петрова, Н. Н. Бенардоса, Н. Г. Славянова, они создали науку о теорети-ческих основах сварочной техники, разработали ряд новых технологических процессов. Всему миру известны имена акаде-миков Е. О. Патона, В. П. Вологдина, К. К. Хренова, Н. Н.

Рыкалина и др.

В настоящее время широко применяется электродуговая, электрошлаковая и плазменно-дуговая сварка.


2. Электродуговая сварка. Простейшим способом является ручная дуговая сварка. К одному полюсу источника тока гибким проводом присоединяется держатель, к другому-свариваемое изделие. В держатель вставляется угольный или металлический электрод. При коротком прикосновении электро-да к изделию зажигается дуга, которая плавит основной металл и стержень электрода, образуя сварочную ванну, даю-щую при затвердевании сварочный шов.

Ручная дуговая сварка требует высокой квалификации рабо-чего и отличается не самыми лучшими условиями труда, но с ее помощью можно сваривать детали в любом пространственном положении, что особенно важно при монтаже металлоконстру-кций. Производительность ручной сварки сравнительно невысо-кая и зависит в значительной мере от такой простой детали,

кaк электрододержатель. И сейчас, как и сто лет назад,

продолжаются поиски наилучшей его конструкции. Серию про-стых и надежных электрододержателей изготовили ленинград-ские новаторы М. Э. Васильев и В. С. Шумский.

При дуговой сварке большое значение имеет защита металла шва от кислорода и азота воздуха. Активно взаимодействуя с расплавленным металлом, кислород и азот атмосферного воздуха образуют окислы и нитриды, снижающие прочность и пластичность сварного соединения.

Существуют два способа защиты места сварки: введение в материал электрода и электродного покрытия различных веществ (внутренняя защита) и введение в зону сварки инертных газов и окиси углерода, покрытие места сварки флюсами (внешняя защита).

В 1932 г. в Московском электромеханическом институте инженеров железнодорожного транспорта под руководством академика К. К. Хренова впервые в мире была осуществлена дуговая электросварка под водой. Однако еще в 1856 г. Л. И. Шпаковский впервые провел опыт по оплавлению дугой медных электродов, опущенных в воду. По совету Д. А. Лачинова, получившего подводную дугу, Н. Н. Бенардос в 1887 г. про-извел подводную резку металла. Понадобилось 45 лет, чтобы

первый опыт получил научное обоснование и превратился в метод.

А 16 октября 1969 г. электрическая дуга впервые вырва-лась в космос. Вот как об этом выдающемся событии сообща-лось в газете «Известия»; «Экипаж космического корабля «Союз-6» в составе подполковника Г. С. Шонина и бортинжене-ра В. Н. Кубасова осуществил эксперименты по проведению сварочных работ, в космосе. Целью этих экспериментов яви-лось определение особенностей сварки различных металлов в условиях космического пространства... Поочередно были осуществлены несколько видов автоматической сварки». И да-

лее: «Проведенный эксперимент является уникальным и имеет большое значение для науки и техники при разработке техно-логии сварочно-монтажных работ в космосе» ...


3. Плазменная технология. Эта технология основана

на использовании дуги с высокой температурой. Она

включает плазменную сварку, резку, наплавку и плазменно-механическую обработку.

Как повысить производительность дуги? Для этого надо получить дугу с большей концентрацией энергии, т. е. дугу надо сфокусировать. Добиться этого удалось в 1957-1958 гг., когда в Институте металлургии им. А. А. Байкова была созда-на аппаратура для плазменно-дуговой резки.

Как увеличить температуру дуги? Наверное, так же, как повышают давление водяной или воздушной струи,-пропустив ее через узкий канал.

Проходя через узкий канал сопла горелки, дуга обжимается струей газа (нейтрального, кислородсодержащего) или смесью газов и вытягивается в тонкую струю. При этом резко меня-ются ее свойства: температура дугового разряда достигает

50 000 градусов, удельная мощность доходит до 500 и более киловатт на один квадратный сантиметр. Ионизация плазмы в газовом столбе настолько велика, что электропроводность ее оказывается почти такой же, как и у металлов.

Сжатую дугу называют плазменной. С ее помощью осуществля-ют плазменную сварку, резку, направку, напыление и т. п. Для получения плазменной дуги созданы специальные генера-торы - плазмотроны.

Плазменная дуга, как и обычная, бывает прямого и косвен-ного действия. Дуга прямого действия замыкается на изделие, косвенного действия - на второй электрод, которым служит сопло. Во втором случае из сопла вырывается не дуга, а плазменная струя, возникающая за счет нагрева дугой и последующей ионизации плазмообразующего газа. Плазменная струя применяется в основном для плазменного напыления и обработки неэлектропроводных материалов.

Газ, окружающий дугу, выполняет также теплозащитную функцию.

Наибольшую нагрузку в плазмотроне несет сопло. Чем выше его теплостойкость, тем больший ток можно получить в плаз-мотроне косвенного действия. Наружный слой плазмообразу-ющего газа имеет относительно низкую температуру, поэтому он защищает сопло от разрушения.

Значительное повышение температуры плазмообразующего газа в плазмотронах прямого действия может привести к электри-ческому пробою и возникновению двойной дуги - между катодом и соплом и между соплом и изделием. В таком случае сопло обычно выходит из строя.


4. Плазменная сварка. Существуют две конструкции плазмо-тронов. В одних конструкциях газ подается вдоль дуги, при этом достигается хорошее ее обжатие. В других конструкциях газ охватывает дугу по спирали, за счет чего удается полу-чить стабильную дугу в канале сопла и обеспечить надежную защиту сопла пристеночным слоем газа.

В плазмотронах прямого действия дуга возбуждается не сразу, так как слишком велик воздушный промежуток между катодом и изделием. Сначала возбуждается так называемая дежурная, или вспомогательная, дуга между катодом и соплом. Развивается она из искрового разряда, который возникает под действием напряжения высокой частоты, создаваемого осцилля-тором. Поток газа выдувает дежурную дугу, она касается обрабатываемого металла, и тогда зажигается основная дуга. После этого осциллятор выключают, и дежурная дуга гаснет. Если этого не произойдет, может возникнуть двойная дуга.

Зону шва при плазменной сварке, как и при других ее видах, защищают от действия окружающего воздуха. Для этого кроме плазмообразующего газа в специальное сопло подают защитный газ: аргон или более дешевый и распространенный углекислый газ. Углекислый газ часто используют не только для защиты, но и для образования плазмы. Иногда плазменную сварку ведут под слоем флюса.

Плазменно-дуговую сварку можно производить как автомати-чески, так и вручную. В настоящее время этот метод получил довольно широкое распространение. На многих заводах внедре-на плазменная сварка сплавов алюминия и сталей. Значитель-ную экономию дало применение однопроходной плазменной сварки алюминия вместо многопроходной аргонно-дуговой свар-

ки. Сварку ведут на автоматической установке с применением углекислого газа в качестве плазмообразующего и защитного.


В современной жизни применение электрической энергии полу-чило самое широкое распространение. Достижения электротех-ники используются во всех сферах практической деятельности человека: в промышленности, сельском хозяйстве, на транс-порте, в медицине, в быту и т. д. Успехи электротехники оказывают существенное влияние на развитие радиотехники, электроники, телемеханики, автоматики, вычислительной тех-ники, кибернетики. Все это стало возможным в результате строительства мощных электростанций, электрических сетей, создания новых электроэнергетических систем, совершенс-твования электротехнических устройств. Современная электротехническая промышленность выпускает машины и аппараты для производства, передачи, преобразования, распределения и потребления электроэнергии, разнообразную электротехническую аппаратуру и технологическое обору-дование, электроизмерительные приборы и средства электро-связи, регулирующую, контролирующую и управляющую аппарату-ру для систем автоматического управления, медицинское и научное оборудование, электробытовые приборы и машины и многое другое. В последние годы дальнейшее развитие получи-ли различные методы электрообработки: электросварка, плазменная резка и наплавка металлов, плазменно механи-ческая и электроэрозионная обработка. Из вышесказанного

видно, что исследование разряда в газе имеет большое значе- ние для общенаучного и технического прогерсса. Следова-тельно, не нужно останавливаться на достигнутом,а необходи-мо продолжать исследования, отыскивая неизвестное, тем самым стимулируя вдальнейшем построение новых теорий.




Хабаровский государственный педагогический университет

КУРСОВАЯ РАБОТА

« ДУГОВОЙ РАЗРЯД В ГАЗАХ »

Выполнил: студент 131гр. ФМФ

Зюльев М. Н.


Светящийся токовый канал этого разряда был дугообразно изогнут, что и обусловило название Д. р.

Формированию Д. р. предшествует короткий нестационарный процесс в пространстве между электродами - разрядном промежутке. Длительность этого процесса (время установления Д. р.) обычно Дуговой разряд 10 -6 -10 -4 сек в зависимости от давления и рода газа, длины разрядного промежутка, состояния поверхностей электродов и т.д. Д. р. получают, ионизуя газ в разрядном промежутке (например, с помощью вспомогательного, так называемого поджигающего электрода). В др. случаях для получения Д. р. разогревают один или оба электрода до высокой температуры либо раздвигают сомкнутые на короткое время электроды. Д. р. может также возникнуть в результате пробоя электрического (См. Пробой электрический) разрядного промежутка при кратковременном резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то нестационарным процессом, предшествующим Д. р., является Искровой разряд .

Типичные параметры Д. р. Для Д. р. характерно чрезвычайное разнообразие принимаемых им форм: он может возникать практически при любом давлении газа - от менее 10 -5 мм рт. ст. до сотен атм ; разность потенциалов между электродами Д. р. может принимать значения от нескольких вольт до нескольких тысяч вольт (высоковольтный Д. р.). Д. р. может протекать не только при постоянном, но и при переменном напряжении между электродами. Однако полупериод переменного напряжения обычно намного больше времени установления Д. р., что позволяет рассматривать каждый электрод в течение одного полупериода как катод, а в следующем полупериоде - как анод. Отличительными особенностями всех форм Д. р. (тесно связанными с характером эмиссии электронов из катода в этом типе разряда) являются малая величина катодного падения (См. Катодное падение) и высокая плотность тока на катоде. Катодное падение в Д. р. обычно порядка ионизационного потенциала (См. Ионизационный потенциал) рабочего газа или ещё ниже (1-10 в ); плотность тока на катоде составляет 10 2 -10 7 а/см 2 . При столь большой плотности тока сила тока в Д. р. обычно также велика - порядка 1-10 a и выше, а в некоторых формах Д. р. достигает многих сотен и тысяч ампер. Однако существуют и Д. р. с малой силой тока (например, Д. р. с ртутным катодом может гореть при токах 0,1 a и ниже).

Электронная эмиссия в Д. р. Коренное отличие Д. р. от др. типов стационарного электрического разряда в газе заключается в характере элементарных процессов, происходящих на катоде и в прикатодной области. Если в тлеющем разряде (См. Тлеющий разряд) и отрицательном коронном разряде (См. Коронный разряд) имеет место Вторичная электронная эмиссия , то в Д. р. электроны вылетают из катода в процессах термоэлектронной эмиссии (См. Термоэлектронная эмиссия) и автоэлектронной эмиссии (называется также туннельной эмиссией (См. Туннельная эмиссия)). Когда в Д. р. происходит только первый из этих процессов, его называют термоэмиссионным. Интенсивность термоэмиссии определяется температурой катода; поэтому для существования термоэмиссионного Д. р. необходимо, чтобы катод или отдельные его участки были разогреты до высокой температуры. Такой разогрев осуществляют, подключая катод к вспомогательному источнику энергии (Д. р. с внешним накалом; Д. р. с искусственным подогревом). Термоэмиссионный Д. р. возникает и в том случае, когда температуру катода в достаточной степени повышают удары положительных ионов, образующихся в разрядном промежутке и ускоряемых электрическим полем по направлению к катоду. Однако чаще при Д. р. без искусственного подогрева интенсивность термоэлектронной эмиссии слишком мала для поддержания разряда, и значительную роль играет процесс автоэлектронной эмиссии. Сочетание этих двух видов эмиссии носит название термоавтоэмиссии.

Автоэлектронная эмиссия из катода требует существования у его поверхности сильного электрического поля. Такое поле в Д. р. создаётся объёмным зарядом положительных ионов, удалённым от катода на расстояние порядка длины свободного пробега (См. Длина свободного пробега) этих ионов (10 -6 -10 -4 см ). Расчёты показывают, что автоэлектронная эмиссия не может самостоятельно поддерживать Д. р. и всегда в той или иной степени сопровождается термоэлектронной эмиссией. Вследствие сложности исследования процессов в тонком прикатодном слое при высоких плотностях тока экспериментальных данных о роли автоэлектронной эмиссии в Д. р. накоплено ещё недостаточно. Теоретический же анализ пока не может удовлетворительно объяснить все явления, наблюдаемые в различных формах Д. р.

Связь между характеристиками Д. р. и процессами эмиссии. Слой, в котором возникает электрическое поле, вызывающее автоэлектронную эмиссию, настолько тонок, что не создаёт большого падения разности потенциалов у катода. Однако для того чтобы это поле было достаточно сильным, плотность объёмного заряда ионов у катода, а следовательно, и плотность ионного тока должны быть велики. Термоэлектронная эмиссия также может происходить при малой кинетической энергии ионов у катода (т. е. при малом катодном падении), но требует в этих условиях высокой плотности тока - катод нагревается тем сильнее, чем больше число бомбардирующих его ионов. Т. о., отличительные черты Д. р. (малое катодное падение и высокая плотность тока) обусловлены характером прикатодных процессов.

Плазма Д. р. Разрядный промежуток Д. р. заполняет Плазма , состоящая из электронов, ионов, нейтральных и возбуждённых атомов и молекул рабочего газа и вещества электродов. Средние энергии частиц различного сорта в плазме Д. р. могут быть разными. Поэтому, говоря о температуре Д. р., различают ионную температуру, электронную температуру и температуру нейтральной компоненты. В случае равенства этих температур плазму называют изотермической.

Несамостоятельный Д. р. Несамостоятельным называется Д. р. с искусственным подогревом катода, поскольку поддержание такого разряда нельзя осуществить за счёт его собственной энергии: при выключении внешнего источника накала он гаснет. Разряд легко зажигается без вспомогательных поджигающих электродов. Повышение напряжения такого Д. р. вначале усиливает его ток до величины, определяемой интенсивностью термоэлектронной эмиссии из катода при данной температуре накала. Затем вплоть до некоторого критического напряжения ток остаётся почти постоянным (так называемый свободный режим). Когда напряжение превышает критическое, характер эмиссии из катода меняется: существенную роль в ней начинают играть Фотоэффект и вторичная электронная эмиссия (энергия положительных ионов становится достаточной для выбивания электронов из катода). Это приводит к резкому возрастанию тока разряда - он переходит в несвободный режим.

При определённых условиях Д. р. с искусственным подогревом продолжает устойчиво гореть, когда напряжение между электродами понижают до значений, меньших не только ионизационного потенциала рабочего газа, но и наименьшего его потенциала возбуждения. Эту форму Д. р. называют низковольтной дугой. Её существование обусловлено возникновением вблизи катода максимума потенциала, превышающего потенциал анода и близкого к первому потенциалу возбуждения газа, вследствие чего становится возможной ступенчатая ионизация (см. Ионизация).

Самостоятельный Д. р. Поддержание такого Д. р. осуществляется за счёт энергии самого разряда. На тугоплавких катодах (вольфрам, молибден, графит) самостоятельный Д. р. носит чисто термоэмиссионный характер - бомбардировка положительными ионами нагревает катод до очень высокой температуры. Вещество легкоплавкого катода интенсивно испаряется при Д. р.; испарение охлаждает катод, и его температура не достигает значений, при которых разряд может поддерживаться одной термоэлектронной эмиссией - наряду с ней происходит автоэлектронная эмиссия.

Самостоятельный Д. р. может существовать как при крайне малых давлениях газа (так называемые вакуумные дуги), так и при высоких давлениях. Плазму самостоятельного Д. р. низкого давления отличает неизотермичность: ионная температура лишь ненамного превышает температуру нейтрального газа в пространстве, окружающем область разряда, в то время как электронная температура достигает десятков тысяч градусов, а в узких трубках и при больших токах - сотен тысяч. Объясняется это тем, что более подвижные электроны, получая энергию от электрического поля, не успевают передать её тяжёлым частицам в редких столкновениях.

В Д. р. высокого давления плазма изотермична (точнее - квазиизотермична, т. к., хотя температуры всех компонент равны, температура в разных участках столба Д. р. не одинакова). Эта форма Д. р. характеризуется значительной силой тока (от 10 до 10 3 а ) и высокой температурой плазмы (порядка 10 4 К ). Наибольшие температуры в таком Д. р. достигаются при охлаждении дуги потоком жидкости или газа - токовый канал «охлаждаемой дуги» становится тоньше и при той же величине тока нагревается сильнее. Именно эту форму Д. р. называют электрической дугой - под действием направленных извне или конвекционных, вызванных самим разрядом, потоков газа токовый канал Д. р. изгибается.

Катодные пятна. Самостоятельный Д. р. на легкоплавких катодах отличает то, что термоавтоэмиссия электронов происходит в нём лишь с небольших участков катода - так называемых катодных пятен. Малые размеры этих пятен (менее 10 -2 см ) обусловлены Пинч-эффект ом - стягиванием токового канала его собственным магнитным полем. Плотность тока в катодном пятне зависит от материала катода и может достигать десятков тысяч а/см 2 . Поэтому в катодных пятнах происходит интенсивная эрозия - из них вылетают струи паров вещества катода со скоростью порядка 10 6 см/сек . Катодные пятна образуются и при Д. р. на тугоплавких катодах, если давление рабочего газа меньше примерно 10 2 мм рт. cт. При более высоких давлениях термоавтоэмиссионный Д. р. с хаотически перемещающимися по катоду катодными пятнами переходит в термоэмиссионный Д. р. без катодного пятна.

Применения Д. р. Д. р. широко применяется в дуговых печах (См. Дуговая печь) для выплавки металлов, в газоразрядных источниках света (См. ), при электросварке (См. Электросварка), служит источником плазмы в Плазматрон ах. Различные формы Д. р. возникают в газонаполненных и вакуумных преобразователях электрического тока (ртутных выпрямителях тока (См. Выпрямитель тока), газовых и вакуумных выключателях электрических (См. Выключатель электрический) и т.п.). Д. р. с искусственным подогревом катода используется в люминесцентных лампах (См. Люминесцентная лампа), Газотрон ах, Тиратрон ах, ионных источниках и источниках электронных пучков.

Лит.: Электрический ток в газе. Установившийся ток, М., 1971; Кесаев И. Г., Катодные процессы электрической дуги, М., 1968; Финкельнбург В., Meккep Г., Электрические дуги и термическая плазма, пер. с нем., М., 1961; Энгель А., Ионизованные газы, пер. с англ., М., 1959; Капцов Н. А., Электрические явления в газах и вакууме, М.-Л., 1947.

А. К. Мусин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

дуговой разряд - дуговой разряд; отрасл. дугообразный разряд; вольтова дуга Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов, характеризуемый малым катодным… … Политехнический терминологический толковый словарь

Электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при… … Большой Энциклопедический словарь

ДУГОВОЙ РАЗРЯД - один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в… … Большая политехническая энциклопедия

дуговой разряд - lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f … Fizikos terminų žodynas

Электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10 2 10 3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе… … Энциклопедический словарь

Электрическая дуга в воздухе Электрическая дуга физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд. Впервые была описана в 1802 году русским ученым В. В. Петровым. Электрическая дуга является… … Википедия

дуговой разряд - lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f … Automatikos terminų žodynas

дуговой разряд - lankinis išlydis statusas T sritis chemija apibrėžtis Savaiminio elektros išlydžio dujose rūšis. atitikmenys: angl. arc discharge rus. дуговой разряд … Chemijos terminų aiškinamasis žodynas

Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».

Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.

Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.

Тлеющий разряд. Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.

А работает это вот как. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. При этом в отличие от дугового разряда катод все время остается холодным. Почему же в этом случае происходит образование ионов?

Падение потенциала или напряжения на каждом сантиметре длины газового столба в тлеющем разряде очень различно в разных частях разряда. Получается, что почти все падение потенциала приходится на темное пространство. Разность потенциалов, существующая между катодом и ближайшей к нему границей пространства, называют катодным падением потенциала. Оно измеряется сотнями, а в некоторых случаях и тысячами вольт. Весь разряд оказывается существует за счет этого катодного падения.

Значение катодного падения заключается в том, что положительные ионы, пробегая эту большую разность потенциалов, приобретают большую скорость. Так как катодное падение сосредоточено в тонком слое газа, то здесь почти не происходит соударений ионов с газовыми атомами, и по этому, проходя через область катодного падения, ионы приобретают очень большую кинетическую энергию. Вследствие этого при соударении с катодом они выбивают из него некоторое количество электронов, которые начинают двигаться к аноду. Проходя через темное пространство, электроны в свою очередь ускоряются катодным падением потенциала и при соударения с газовыми атомами в более удаленной части разряда производят ионизацию ударом. Возникающие при этом положительные ионы опять ускоряются катодным падением и выбивают из катода новые электроны и т. д. Таким образом все повторяется до тех пор пока на электродах есть напряжение.

Значит мы видим, что причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами.

Такой разряд используют в основном для освещения. Применяется в люминесцентных лампа.

Д О К Л А Д

на тему: «ВИДЫ РАЗРЯДОВ И ИХ ПРИМЕНЕНИЕ»

Выполнил: Шутов Е.Ю.

10 А класс

Проверил.

  • 2.1.3. Условия гашения дуги постоянного тока
  • 2.1.4. Энергия, выделяемая в дуге
  • 2.1.5. Условия гашения дуги переменного тока
  • Лекция № 3
  • 2.1.6. Способы гашения электрической дуги
  • 2.1.7. Дугогасительные устройства постоянного и переменного тока
  • 2.1.8. Применение полупроводниковых приборов для гашения дуги
  • Лекция № 4
  • 2.2. Электрические контакты
  • 2.2.1.Общие сведения
  • 2.2.2. Режимы работы контактов
  • 2.2.3. Материалы контактов
  • 2.2.4. Конструкция твёрдометаллических контактов
  • 2.2.5. Жидкометаллические контакты
  • 2.2.6. Расчёт контактов аппаратов
  • Лекция № 5
  • 2.3. Электродинамические усилия в электрических аппаратах
  • 2.3.1. Общие сведения
  • 2.3.2. Методы расчёта электродинамических усилий (эду)
  • 2.3.3. Усилия между параллельными проводниками
  • 2.3.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
  • 2.3.5. Усилия в витке, катушке и между катушками
  • Лекция № 6
  • 2.3.6. Усилия в месте изменения сечения проводника
  • 2.3.7. Усилия при наличии ферромагнитных частей
  • 2.3.8. Электродинамические усилия при переменном токе
  • 2.3.9. Электродинамическая стойкость электрических аппаратов
  • 2.3.10. Расчёт динамической стойкости шин
  • Лекция 7
  • 2.4. Нагрев электрических аппаратов
  • 2.4.1. Общие сведения
  • 2.4.2. Активные потери энергии в аппаратах
  • 2.4.3. Способы передачи тепла внутри нагретых тел и с их поверхности
  • 2.4.4. Установившийся режим нагрева
  • 2.4.5. Нагрев аппаратов в переходных режимах
  • 2.4.6. Нагрев аппаратов при коротком замыкании
  • 2.4.7. Допустимая температура частей электрических аппаратов
  • 2.4.8. Термическая стойкость электрических аппаратов
  • Лекция № 8
  • 3.1. Электромагнитные контакторы переменного тока
  • 3.1.1. Назначение контакторов
  • 3.1.2. Классификация контакторов
  • 3.1.3. Область применения контакторов
  • 3.1.4. Узлы контактора и принцип его действия; физические явления, происходящие в электрическом аппарате
  • 3.1.5. Параметры контакторов
  • Лекция № 9
  • 3.1.6. Контакторы переменного тока, их конструкция и параметры
  • 3.1.6.1.Контактная система
  • 3.1.6.2. Электромагнитные системы: физические явления, происходящие в электрических аппаратах
  • 3.1.6.3. Конструкция контакторов переменного тока
  • 3.1.6.4. Контакторы серии кт6600
  • 3.1.6.5. Контакторы серии кт64 и кт65
  • 3.1.6.6.Контакторы серии мк
  • 3.1.6.7. Контакторы переменного тока на напряжение 1140 в
  • 3.1.6.8. Контакторы переменного тока вакуумные
  • 3.1.6.9. Выбор, применение и эксплуатация контакторов
  • Лекция № 10
  • 3.2. Электромагнитные контакторы постоянного тока
  • 3.2.1. Режимы работы контакторов, физические явления, происходящие в электрических аппаратах
  • 3.2.2. Контакторы постоянного тока, их конструкция и параметры
  • 3.2.3. Контакторы серии кпв-600
  • 3.2.4. Контакторы типа ктпв-600
  • 3.2.5. Контакторы типа кмв. Контакторы серии кп81
  • 3.2.6. Выбор электрических аппаратов
  • 3.3.3. Конструкция и схема включения
  • 3.3.4. Магнитные пускатели серии пмл
  • 3.3.5. Пускатели серии пма
  • 3.3.6. Нереверсивные пускатели
  • 3.3.7. Схема включения нереверсивного пускателя
  • 3.3.8. Реверсивный магнитный пускатель
  • 3.3.9. Схема включения реверсивного пускателя
  • 3.3.10. Выбор магнитных пускателей
  • Лекция №12
  • 4.1. Электромагнитные реле
  • 4.1.1. Назначение и область применения реле
  • 4.1.2. Классификация реле
  • 4.1.3.Устройство и принцип действия и электромагнитных реле, физические явления в электрических аппаратах
  • Поляризованные электромагнитные системы
  • 4.1.4. Основные характеристики и параметры реле
  • 4.1.5. Требования, предъявляемые к реле
  • 4.1.6. Согласование тяговых и противодействующих характеристик реле
  • 4.1.7. Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода
  • 4.1.8. Выбор, применение и эксплуатация максимально-токовых реле
  • Iуст.(1,3 – 1,5)Iпуск,
  • I уст 0,75i пуск.
  • 4.2.2. Основные параметры герконового реле
  • 4.2.3. Конструкции герконовых реле
  • 4.2.4. Реле тока на герконе
  • 4.2.5. Поляризованные гр
  • 4.2.6. Управление герконом с помощью ферромагнитного экрана
  • Лекция № 15
  • 5.1. Тяговые электромагниты
  • 5.1.1. Основные понятия, физические явления в электрических аппаратах
  • 5.1.2. Энергия магнитного поля и индуктивность системы
  • 5.1.3. Работа, производимая якорем магнита при перемещении
  • 5.1.4. Вычисление сил и моментов электромагнита
  • 5.1.5. Электромагниты переменного тока
  • 5.1.6. Короткозамкнутый виток
  • 5.1.7. Статические тяговые характеристики электромагнитов и механические характеристики аппаратов
  • Лекция № 17
  • 6.1. Предохранители низкого напряжения
  • 6.1.1. Назначение, принцип действия и устройство предохранителя
  • 6.1.2. Параметры предохранителя
  • 6.1.3. Конструкция предохранителей
  • 6.1.4. Предохранители с гашением дуги в закрытом объёме
  • 6.1.5. Предохранители с мелкозернистым наполнителем (пн-2, прс)
  • 6.1.8. Предохранитель-выключатель
  • 6.1.9. Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств
  • Лекция № 18
  • 6.2 Автоматические воздушные выключатели (автоматы)
  • 6.2.1. Назначение, классификация и область применения автоматов
  • 6.2.2. Требования, предъявляемые к автоматам
  • 6.2.3. Узлы автомата и принцип его действия, физические явления в электрическом аппарате
  • 6.2.4. Основные параметры автомата
  • 6.4. Изменение тока цепи и напряжения на контактах в процессе отключения
  • 6.2.5. Универсальные и установочные автоматы
  • 6.2.8. Выбор, применение и эксплуатация автоматических воздушных выключателей
  • Лекция № 23
  • 7.4. Токоограничивающие реакторы
  • 7.4.1. Назначение, область применения и принцип работы реактора, физические явления в электрическом аппарате
  • 7.4.2. Основные параметры реактора
  • Лекция № 24
  • 7.5. Разрядники
  • 7.5. Назначение, область применения разрядников
  • 7.5.1. Требования, предъявляемые к разрядникам
  • 7.5.2. Основные параметры разрядников
  • 7.5.4. Конструкции разрядников, физические явления в них
  • 7.5.5. Трубчатые разрядники, физические явления в них
  • 7.5.8. Ограничители перенапряжения, физические явления в электрических аппаратах
  • 7.5.9. Выбор разрядников
  • Лекция № 25
  • 7.6. Предохранители высокого напряжения
  • 7.6.1. Назначение предохранителей
  • 7.6.2. Требования, предъявляемые к предохранителям вн
  • 7.6.3. Принцип действия, устройство и основные параметры предохранителей вн, физические явления в электрических аппаратах
  • 7.6.4. Предохранители с мелкозернистым наполнителем серий пк и пкт
  • 7.6.5. Предохранители серии пктн
  • 7.6.6. Предохранители с автогазовым, газовым и жидкостным гашением дуги
  • 7.6.7. Выбор, применение и эксплуатация предохранителей вн
  • I отк. Пред I кз. Уст лекция № 26
  • 8.1. Измерительные трансформаторы тока (тт)
  • 8.1.1.Назначение, принцип действия, включение трансформатора тока
  • 8.1.2. Основные параметры трансформаторов тока
  • 8.1.3. Режимы работы трансформаторов тока
  • I"1апер,i2апер,I"0апер– кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
  • 8.1.4. Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
  • 8.1.5. Выбор трансформаторов тока
  • Список рекомендованной литературы
  • Список вопросов кзачетупо ЭиЭа
  • 2.1.1. Свойства дугового разряда

    В коммутационных ЭА, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250-300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

    Если ток в цепи напряжения выше значений = 0,03-0,9 А, то имеет место дуговой разряд. Основные свойства дугового разряда:

    1.Дуговой разряд имеет место только при токах большой величины. Минимальный ток дуги для различных материалов и для металлов составляет 0,5А.

    2. Температура центральной части дуги очень велика и в аппаратах может достигать 6000-25000 К.

    3. Плотность тока на катоде чрезвычайно велика и достигает .

    4. Падение напряжения у катода составляет всего 10-20 В и практически не зависит от тока.

    В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги и околоанодную.

    Электрическая сварочная дуга

    Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

    Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

    С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

    Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

    Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

    В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

    Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

    Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

    Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

    Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

    В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

    При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

    Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

    Строение дуги Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

    К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

    Влияние на дугу магнитных полей

    При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

    Столб сварочной дуги резко откланяется от нормального положения; - дуга горит неустойчиво, часто обрывается; - изменяется звук горения дуги - появляются хлопки.

    Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

    Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

    В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

    Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

    Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

    Уменьшить влияние магнитного дутья на сварочный процесс можно:

    Выполнением сварки короткой дугой; - наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья; - подведением токоподвода ближе к дуге.

    Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

    У электродов в прианодной и в прикатодной областях имеет место резкое падение напряжения: катодное Ukи анодноеUa. Величина этого падения напряжения зависит от материалов электродов и от газа (15В – 30В). В остальной части дуги, называемой стволом, падение напряжения прямопропорционально длине дугиlд. Градиент приблизительно постоянен вдоль ствола и достигает от 100 до 200 В/см. Итоговое напряжение на дуге

    Uд=Uк+Uа+lд∙Ед

    Если после зажигания искового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться. Когда сопротивление цепи станет достаточно малым, возникает новая форма газового разряда, называемая дуговым разрядом (см. приложение 1.5). При этом сила тока резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке уменьшается до нескольких десятков вольт. Это показывает, что в разряде возникают новые процессы, сообщающие газу очень большую проводимость.

    Дуговой разряд можно получить от источника низкого напряжения, минуя стадию искры. Профессор физики Петербургской медико-хирургической академии В.В.Петров, открывший в 1802 г. эту важную форму газового разряда, получил электрическую дугу, раздвигая два кусочка древесного угля, предварительно приведенные в соприкосновение и присоединённые к мощной батарее гальванических элементов. Он обнаружил, что при этом между концами углей возникает ярко светящийся столб газа, а сами угли раскаляются до ослепительного свечения.

    В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами, изготовленными прессованием порошкообразного графита и связующих веществ (дуговые угли). Наиболее горячим местом дуги является углубление, образующееся на положительном электроде и называемое «кратером дуги». Его температура при атмосферном давлении равна около 4000 К, а при давлении в 20 атм превышает 7000 К, т.е. больше температуры внешней поверхности Солнца (около 6000 К).

    Что же является основной причиной большой электропроводности газа в дуговом разряде? Установлено, что хорошая электропроводность дуги поддерживается за счет высокой температуры отрицательного электрода из-за интенсивной термоэлектронной эмиссии. Это хорошо подтверждается тем фактом, что во многих случаях устойчивую дугу можно получить только при условии, что катод имеет высокую температуру, температура же анода не имеет существенного значения. Так, например, если одним из электродов дуги сделать угольный стержень, а другим - массивную, хорошо охлаждающуюся медную пластину и перемещать угольный стержень возле пластины (чтобы она не могла разогреться), то устойчивая дуга возникает только при отрицательном угле. Если же отрицательным полюсом служит пластина, то дуга периодически зажигается и снова гаснет, а получить её устойчивое горение нельзя. Дуговой разряд возникает во всех случаях, когда вследствие разогревания катода основной причиной ионизации газа становится термоэлектронная эмиссия. Например, в тлеющем разряде положительные ионы, бомбардирующие катод, не только вызывают вторичную эмиссию электронов, но и нагревают катод. Поэтому, если увеличивать силу тока в тлеющем разряде, то температура катода увеличивается, и когда она достигает такой величины, что начинается заметная термоэлектронная эмиссия, тлеющий разряд переходит в дуговой. При этом исчезает и катодное падение потенциала.

    Наряду с рассмотренными выше термоэлектронными дугами наблюдаются и дуговые разряды при сравнительно низкой температуре катода (например, в ртутной дуговой лампе).

    Электрическая дуга впервые была использована для освещения в 1875 году русским инженером-изобретателем П.Н. Яблочкиным (1847-1894) и получила название «русского света» или «северного света». В «свече Яблочкова» угли были расположены параллельно и разделены изогнутой прослойкой, а их концы соединены проводящим «запальным мостиком». Когда ток включался, запальный мостик сгорал и между углями образовывалась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась.

    Многочисленные исследования электрических дуг с холодными электродами показывают, что источником мощной электронной эмиссии с катода является небольшое, ярко светящееся и непрерывно движущееся пятнышко на катоде, всегда возникающее в подобных дугах (катодное пятно). Плотность тока в катодном пятне огромна и может достигать 10 10 -10 11 А/м 2 . Причина образования катодного пятна заключается в сильном увеличении концентрации положительных ионов у катода, которое создает очень сильное местное электрическое поле, вызывающее мощную автоэлектронную эмиссию. Поэтому электрические дуги с холодными катодами иногда называют автоэлектронными дугами. Катодное пятно может возникнуть не только у поверхности ртути, но и у любого металлического твердого электрода.

    Вследствие высокой температуры электроды дуги испускают ослепительный свет (свечение столба дуги слабее, так как излучающая способность газа мала), и поэтому электрическая дуга является одним из лучших источников света. Электрическая дуга широко применяется в проекционных, прожекторных и других установках. Расходуемая ею удельная мощность меньше, чем у ламп накаливания. Она потребляет всего около 3 Вт на канделу и является значительно более экономичной, нежели наилучшие лампы накаливания.

    В качестве источников света употребляют также дуговые лампы высокого давления. Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух откачивают. Свет ртутной дуги чрезвычайно богат ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Чтобы можно было использовать это излучение, лампу делают не из стекла, которое сильно поглощает УФО, а из плавленого кварца. Ртутные лампы широко используют при лечении разнообразных болезней, а также при научных исследованиях как сильный источник ультрафиолетового излучения.

    В 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла. Разряд между неподвижным угольным электродом и металлом нагревает место соединения двух металлических листов (или пластин) и сваривает их. Этот же метод Бенардос применил для резания металлических пластин и получения в них отверстий. В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.