Ракетное топливо. Ракетное топливо: разновидности и состав

Ни в коем случае не умаляем заслуг великого К.Э. Циолковского, но он все-таки был теоретиком ракетостроения. Мы же сегодня хотели бы упомянуть о человеке, первым построившем ракету на жидком топливе. И пусть эта ракета поднялась всего на 12 метров, но это был лишь первый маленький шажок человечества на длинной дороге к звездам.
16 марта исполнилось 90 лет с момента запуска первой в истории ракеты на жидком топливе. Подчеркнем, что имеется в виду именно первый «в истории» запуск. Вполне логично предположить, что со времен изобретения пороха китайцами, попыток запустить некие предметы в небо с помощью пороха или еще чего-либо было несть числа, однако о них сегодня мало что известно. Например, есть записи о том, что еще в 13-ом веке китайские инженеры использовали порох для отражения вражеских атак. Поэтому, отмечаем то, о чем знаем достоверно.
Сегодня запуском ракеты, будь она жидко- или твердотопливная, не удивить даже первоклассника, но 90 лет назад это было новшеством сродни открытию гравитационных волн сегодня. 16 марта 1926 года ракета на жидком топливе, представлявшем собой смесь бензина и кислорода, была запущена пионером ракетостроения американцем Робертом Годдардом.
На просторах Интернета мы нашли анимацию (ниже), на которой сотрудники Центра космических полетов Годдарда NASA отмечают 50-летие исторического испытательного полета маленькой ракеты в 1976 году.
Сотрудники центра, названного в честь Годдарда, собрались перед школьным автобусом в НАСА, наблюдая за запуском точной копии первой в мире ракеты на жидком топливе. Сегодня жидкотопливные ракеты используются в большинстве крупных космических запусков, от пилотируемых полетов до межпланетных миссий.
Однако первая ракета была совсем небольшой и летала невысоко. Но, несмотря на это, она ознаменовала собой большой прыжок в развитии ракетной техники.

Анимация запуска копии ракеты Роберта Годдарда по случаю 50-летия со дня первого запуска (16 марта 1976 года).
Фото: НАСА/Центр космических полетов Годдарда

Годдард верил в то, что будущее за жидким топливом. Такое топливо, например, обеспечивает больше тяги на единицу топлива и позволяет инженерам применять менее мощные насосы для подачи, благодаря большей плотности жидкости по сравнению с газами или тем же порохом. Однако Годдарду понадобилось целых 17 лет непрерывной работы, чтобы довести дело до первого запуска.
Годдард мечтал стать свидетелем первого межпланетного путешествия. Этого не произошло, он умер в 1945 году, но дело его жизни продолжается, потомки его детища покоряют космические тропы хотя и с переменным, но все-таки успехом.
Первый спутник был запущен Советским Союзом в 1957 году с помощью именно жидкотопливной ракеты. Жидкое топливо также использовалось для огромных ракет Сатурн V, которые доставляли астронавтов на Луну в 60-70-х годах. Жидкое топливо и сегодня предпочтительнее для пилотируемых миссий, так как его горением можно управлять, что безопаснее, чем использование твердого ракетного топлива.
Среди других на жидком топливе работают такие ракеты как европейская ракета-носитель «Ариан 5» (именно она выведет в космос телескоп Джеймс Вебб), российские «Союзы», Атлас V и Дельта от United Launch Alliance, а также Falcon 9 и SpaceX.
Годдарду принадлежат более 200 патентов на различные изобретения. Одна из его основных работ — многоступенчатые ракеты, которые в настоящее время являются основными «рабочими лошадками» космических программ всех стран.
При всех своих заслугах, как говорится в одном из сообщений НАСА, «США не признали в полной мере его (Годдарда) потенциал при жизни, некоторые из его идей о покорении космического пространства подвергались насмешкам. Но полет первой жидкотопливной ракеты является столь же значимым для космоса событием как первый полет братьев Райт для авиации, и даже 90 лет спустя его изобретения по-прежнему являются неотъемлемой частью космических технологий».

«... И нет ничего нового под солнцем»
(Экклизиаст 1:9).
О топливах, ракетах, ракетных двигателях писалось, пишут и будут писать.


Одной из первых работ по топливам ЖРД можно считать книгу В.П. Глушко "Жидкое топливо для реактивных двигателей", изданную в 1936 г.

Для меня тема показалась интересной, связанной с моей бывшей специальностью и учёбой в ВУЗе, тем паче "приволок" её мой младший отпрыск: "Шеф давай замесим, что нить такое и запустим, а если лень, то мы сами "сообразим". Видимо, не дают покоя.

Так хочется правильно взорвать свой ракетный двигатель.


"Соображать" будем вместе, под строгим родительским контролем. Руки ноги должны быть целыми, чужие тем более.

Важный параметр - коэффициент избытка окислителя (обозн. греческой "α" с индексом "ок.") и массовое соотношение компонентов Kм.

Kм=(dmок./dt)/(dmг../dt), т.е. отношение массового расхода окислителя к массовому расходу горючего. Он специфичен для каждого топлива. В идеальном случае представляет собой стехиометрическое соотношение окислителя и горючего, т.е. показывает сколько кг окислителя нужно для окисления 1 кг горючего. Однако реальные значения отличаются от идеальных. Соотношение реального Kм к идеальному и есть коэффициент избытка окислителя.

Как правило, αок.<=1. И вот почему. Зависимости Tk(αок.) и Iуд.(αок.) нелинейны и для многих топлив последняя имеет максимум при αок. не при стехиометрическом соотношении компонентов, т.е макс. значения Iуд. получаются при некотором снижении количества окислителя по отношению к стехиометрическому. Ещё немного терпения, т.к. не могу обойти понятие: . Это пригодится и в статье, и в повседневной жизни.

Кратко энтальпия – это энергия. Для статьи важны две её "ипостаси":
Термодинамическая энтальпия - количество энергии, затраченной на образование вещества из исходных химических элементов. Для веществ, состоящих из одинаковых молекул (H 2 , O 2 и пр.), она равна нулю.
Энтальпия сгорания - имеет смысл только при условии протекания химической реакции. В справочниках можно найти экспериментально полученные при нормальных условиях значения этой величины. Чаще всего для горючих это полное окисление в среде кислорода, для окислителей – окисление водорода заданным окислителем. Причем значения могут быть как положительными, так и отрицательными в зависимости от вида реакции.

"Сумму термодинамической энтальпии и энтальпии сгорания называют полной энтальпией вещества. Собственно, этой величиной и оперируют при тепловом расчёте камер ЖРД."

Требования к ЖРТ:
-как к источнику энергии;
-как к веществу, которое приходится (на данном уровне развития технологий) использовать для охлаждения РД и ТНА, иногда к наддуву баков с РТ, предоставлять ему объём (баки РН) и т.д.;
-как к веществу вне ЖРД, т.е. при хранении, транспортировке, заправке, испытаниях, экологической безопасности и т.д.

Такая градация относительна условна, но в принципе отражает суть. Назову эти требования так: №1, №2, №3. Кто-то может дополнить список в комментариях.
Эти требования классический пример , которые "тянут" создателей РД в разные стороны:

# С точки зрения источника энергии ЖРД (№1)

Т.е. необходимо получить макс. Iуд. Не буду дальше забивать головы всем, в общем случае:

При прочих важных параметрах для №1 нас интересует R и Т (со всеми индексами).
Нужно, чтобы: молекулярная масса продуктов сгорания была минимальной, максимальным было удельное теплосодержание.

# С точки зрения конструктора РН (№2):

ТК должны иметь максимальную плотность, особенно на первых ступенях ракет, т.к. они самые объёмные и имеют мощнейшие РД, с большим секундным расходом. Очевидно, что это не согласуется с требованием под №1.

# С эксплуатационных задач важны (№3):

Химическая стабильность ТК;
-простота заправки, хранения, перевозки и изготовления;
-экологическая безопасность (во всём "поле" применения), а именно токсичность, себестоимость производства и транспортировки и т.д. и безопасность при работе РД (взрывоопасность).

Подробнее смотри "Сага о ракетных топливах-обратная сторона медали".


Надеюсь, ещё никто не уснул? У меня ощущение, что разговариваю сам с собой. Скоро будет про спирт, не отключайтесь!

Конечно, это лишь вершина айсберга. Ещё влезают сюда дополнительные требования, из-за которых следует искать КОНСЕНСУСЫ и КОМПРОМИСЫ. Один из компонентов обязательно должен иметь удовлетворительные (лучше отличные) свойства охладителя, т.к. на данном уровне технологий приходится охлаждать КС и сопло, а также защитить критическое сечение РД:

На фотографии сопло ЖРД XLR-99: отчётливо видна характерная особенность конструкции американских ЖРД 50-60 годов – трубчатая камера:

Также требуется (как правило) один из компонентов использовать как рабочее тело для турбины ТНА:

Для топливных компонентов "большое значение имеет давление насыщенных паров (это грубо говоря давление, при котором жидкость начинает кипеть при данной температуре). Этот параметр сильно влияет на разработку насосов и вес баков."/ С.С. Факас/

Важный фактор-агрессивность ТК к материалам (КМ) ЖРД и баков для их хранения.
Если ТК очень "вредные" (как некоторые люди), тогда инженерам приходится тратиться на ряд специальных мер по защите своих конструкций от топлива.

Классификация ЖРТ - чаще всего по давлению насыщенных паров или , а проще говоря - температуре кипения при нормальном давлении.

Высококипящие компоненты ЖРТ.

Такие ЖРД можно классифицировать как многотопливные.
ЖРД на трехкомпонентном топливе (фтор+водород+литий) разрабатывался в .

Двухкомпонентные топлива состоят из окислителя и горючего.
ЖРД Bristol Siddeley BSSt.1 Stentor: двухкомпонентный ЖРД (H2O2+керосин)

Окислители

Кислород

Химическая формула-О 2 (дикислород, американское обозначение Oxygen-OX).
В ЖРД применяется жидкий, а не газообразный кислород-Liquid oxygen (LOX-кратко и всё понятно).
Молекулярная масса (для молекулы)-32г/моль. Для любителей точности: атомная масса (молярная масса)=15,99903;
Плотность=1,141 г/см³
Температура кипения=90,188K (−182,96°C)

С точки зрения химии, идеальный окислитель. Он использовался в первых баллистических ракетах ФАУ, ее американских и советских копиях. Но его температура кипения не устраивала военных. Требуемый диапазон рабочих температур от –55°C до +55°C (большое время подготовки к старту, малое время нахождения на боевом дежурстве).

Очень низкая коррозионная активность. Производство давно освоено, стоимость небольшая: менее $0,1 (по-моему, дешевле литра молока в разы).
Недостатки:

Криогенный - необходимо захолаживание и постоянная дозаправка для компенсации потерь перед стартом. Еще и может нагадить другим ТК (керосину):

На фото: створки защитных устройств заправочного автостыка керосина (ЗУ-2), за 2 минуты до окончания циклограммы при выполнении операции ЗАКРЫТЬ ЗУ из-за обледенения не полностью закрылись . Одновременно из-за обледенения не прошел сигнал о съезде ТУА с пусковой установки. Пуск проведен на следующий день.

Агрегат-заправщик РБ жидким кислородом снят с колес и установлен на фундаменте.

Затруднено использование в качестве охладителя КС и сопла ЖРД.

"АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ КИСЛОРОДА В КАЧЕСТВЕ ОХЛАДИТЕЛЯ КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ" САМОШКИН В.М., ВАСЯНИНА П.Ю., Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Сейчас всеми изучается возможность использования переохлажденного кислорода либо кислорода в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента. Вид будет примерно такой же, как эта красивая ледяная шуга в бухточке правее Шаморы:


Пофантазируйте: вместо Н 2 О представьте ЖК (LOX).

Шугирование позволит увеличить общую плотность окислителя.

Пример захолаживания (переохлаждения) БР Р-9А: в качестве окислителя в ракете впервые было решено использовать переохлажденный жидкий кислород, что позволило уменьшить общее время подготовки ракеты к пуску и повысить степень ее боеготовности.

Примечание: почему-то за эту же самую процедуру нагибал (почти "чморил") Илона Маска известный писатель Дмитрий Конаныхин.
См:

Озон -O 3

Молекулярная масса=48 а.е.м., молярная масса=47,998 г/моль
Плотность жидкости при -188 °C (85,2 К) составляет 1,59(7) г/см³
Плотность твёрдого озона при −195,7 °С (77,4 К) равна 1,73(2) г/см³
Температура плавления −197,2(2) °С (75,9 К)

Давно инженеры мучились с ним, пытаясь использовать в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике.

Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и Iуд. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 против 1,14 г/см³ соответственно), а его Т кипения выше (−112 °C и −183 °C соответственно).

Пока непреодолимым препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна и развивается разрушающее детонационное давление более 3·107 дин/см2 (3 МПа), что делает применение жидкого озона невозможным при нынешнем уровне техники, за исключением использования устойчивых кислород-озоновых смесей (до 24 % озона). Преимуществом подобной смеси также является больший удельный импульс для водородных двигателей, по сравнению с озон-водородными. На сегодняшний день такие высокоэффективные двигатели, как РД-170, РД-180, РД-191, а также разгонные вакуумные двигатели вышли по Iуд на близкие к предельным значениям параметры и для повышения УИ осталось лишь одна возможность, связанная с переходом на новые виды топлива.

Азотная кислота -HNO 3

Состояние - жидкость при н.у.
Молярная масса 63.012 г/моль (не важно, что я использую или молекулярную массу-это не меняет сути)
Плотность=1,513 г/см³
Т. плав.=-41,59 °C,Т. кип.=82,6 °C

HNO3 имеет высокую плотность, невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасная. Главное ее преимущество перед жидким кислородом в высокой температуре кипения, а, следовательно, в возможности неограниченно долго храниться без всякой теплоизоляции. Молекула азотной кислоты HNO 3 – почти идеальный окислитель. Она содержит в качестве “балласта” атом азота и “половинку” молекулы воды, а два с половиной атома кислорода можно использовать для окисления топлива. Но не тут-то было! Азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой–атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали медленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества, всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз.

Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Добавка диоксида азота в кислоту связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного NO 2 . Эту концентрацию использовали американцы для своих боевых ракет.

Мы почти 20 лет искали подходящую тару для азотной кислоты. Очень трудно при этом подобрать конструкционные материалы для баков, труб, камер сгорания ЖРД.

Вариант окислителя, что выбрали в США, с 14 % двуокиси азота. А наши ракетчики поступили иначе. Надо было догонять США любой ценой, поэтому окислители советских марок – АК-20 и АК-27 – содержали 20 и 27 % тетраоксида.

Интересный факт: в первом советском ракетном истребителе БИ-1 были использованы для полетов азотная кислота и керосин.

Баки и трубы пришлось изготовлять из монель-металла: сплава никеля и меди, он стал очень популярным конструкционным материалом у ракетчиков. Советские рубли были почти на 95 % сделаны из этого сплава.

Недостатки: терпимая "гадость". Коррозионною активна. Удельный импульс недостаточно высок. В настоящее время в чистом виде почти не используется.

Азотный тетраоксид -АТ (N 2 O 4)

Молярная масса=92,011 г/моль
Плотность=1,443 г/см³


"Принял эстафету" от азотной кислоты в военных двигателях. Обладает саомовоспламеняемостью с гидразином, НДМГ. Низкокипящий компонент, но может долго хранится при принятии особых мер.

Недостатки: такая же гадость, как и HNO 3 , но со своими причудами. Может разлагаться на окись азота. Токсичен. Низкий удельный импульс. Часто использовали и используют окислитель АК-NN. Это смесь азотной кислоты и азотного тетраоксида, иногда её называют "красной дымящейся азотной кислотой". Цифры обозначают процентное кол-во N 2 O 4 .

В основном эти окислители используются в ЖРД военного назначения и ЖРД КА благодаря своим свойствам: долгохранимость и самовоспламеняемость. Характерные горючие для АТ это НДМГ и гидразин.

Фтор -F 2

Атомная масса=18,998403163 а. е. м. (г/моль)
Молярная масса F2, 37,997 г/моль
Температура плавления=53,53 К (−219,70 °C)
Температура кипения=85,03 К (−188,12 °C)
Плотность (для жидкой фазы), ρ=1,5127 г/см³

Химия фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор" . Это прекрасный окислитель с точки зрения химии. Окисляет и кислород, и воду, и вообще практически всё. Расчеты показывают, что максимальный теоретический Iуд можно получить на паре F2-Be (бериллий)-порядка 6000 м/с!

Супер? Облом, а не "супер"...

Врагу такой окислитель не пожелаешь.
Чрезвычайно коррозионною активен, токсичен, склонен к взрывам при контакте с окисляющимися материалами. Криогенен. Любой продукт сгорания также имеет почти те же "грехи": жутко коррозионны и токсичны.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10-4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10-3мг/л.

ЖРД 8Д21 применение пары фтор + аммиак давало удельный импульс на уровне 4000 м/с.
Для пары F 2 +H 2 получается Iуд=4020 м/с!
Беда: HF-фтороводород на "выхлопе".

Стартовая позиция после запуска такого "энергичного движка"?
Лужа жидких металлов и прочих растворённых в плавиковой кислоте химических и органических объектов!
Н 2 +2F=2HF, при комнатной температуре существует в виде димера H 2 F 2 .

Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. А использованию его в ЖРД КА не реально из-за убийственной сложности хранения и разрушительного действия продуктов сгорания.

Всё то же самое относится и к остальным жидким галогенам, например, к хлору.

Фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя предполагалось разработать в В.П. Глушко на базе отработанного ЖРД тягой 10 т на фтороаммиачном (F 2 +NH 3) топливе.

Перекись водорода -H 2 O 2 .

Она упомянута мною выше в однокомпонентных топливах.

Walter HWK 109-507: преимущества в простоте конструкции ЖРД. Яркий пример такого топлива - перекись водорода.

Alles: список более-менее реальных окислителей закончен. Акцентирую внимание на HClО 4 . Как самостоятельные окислители на основе хлорной кислоты представляют интерес только: моногидрат (Н 2 О+ClО 4)-твёрдое кристаллическое вещество и дигидрат (2НО+НСlО 4)-плотная вязкая жидкость. Хлорная кислота (которая из-за Iуд сама по себе бесперспективна), при этом представляет интерес в качестве добавки к окислителям, гарантирующей надёжность самовоспламенения топлива.

Окислители можно классифицировать и так:

Итоговый (чаще используемый) список окислителей в связке с реальными же горючими:

Примечание: если хотите перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с.
В отличие от них - горючих у нас .

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПа

По физико-химическому составу их можно разбить на несколько групп:

Углеводородные горючие.
Низкомолекулярные углеводороды.
Простые вещества: атомарные и молекулярные.

Для этой темы пока практический интерес представляет лишь водород (Hydrogenium).
Na, Mg, Al, Bi, He, Ar, N 2 , Br 2 , Si, Cl 2 , I 2 и др. я не буду рассматривать в этой статье.
Гидразиновые топлива ("вонючки").

Просыпайтесь сони - мы добрались уже до спирта(С2Н5ОН).

Поиски оптимального горючего начались с освоения энтузиастами ЖРД. Первым широко использовавшимся горючим стал спирт (этиловый) , применявшийся на первых
советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2) и на самой Vergeltungswaffe-2.

Вернее раствор 75% этилового спирта (этанол, этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт с формулой C 2 H 5 OH (эмпирическая формула C 2 H 6 O), другой вариант: CH 3 -CH 2 -OH
У этого горючего два серьёзных недостатка , которые очевидно не устраивали военных: низкие энергетические показатели и .

Сторонники здорового образа жизни (спиртофобы) пытались решить вторую проблему с помощью фурфурилового спирта. Это ядовитая, подвижная, прозрачная, иногда желтоватая (до темно-коричневого), со временем краснеющая на воздухе жидкость. ВАРВАРЫ!

Хим. формула:C 4 H 3 OCH 2 OH, Рац. формула:C 5 H 6 O 2 . Отвратительная жижа.К питью не годна.

Группа углеводородов.

Керосин

Условная формула C 7,2107 H 13,2936
Горючая смесь жидких углеводородов (от C 8 до C 15) с температурой кипения в интервале 150-250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь
плотность - от 0,78 до 0,85 г/см³ (при температуре 20°С);
вязкость - от 1,2 – 4,5 мм²/с (при температуре 20°С);
температура вспышки - от 28°С до 72°С;
теплота сгорания - 43 Мдж/кг.

Моё мнение: о точной молярной массе писать бессмысленно

Керосин является смесью из различных углеводородов, поэтому появляются страшные дроби (в хим. формуле) и "размазанная" температура кипения. Удобное высококипящее горючее. Используется давно и успешно во всём мире в двигателях и в авиации. Именно на нем до сих пор летают "Союзы". Малотоксичен (пить настоятельно не рекомендую), стабилен. Всё же керосин опасен и вреден для здоровья (употребление внутрь).
Минздрав категорически против!
Солдатские байки: хорошо помогает избавиться от противных .

Однако и он требует осторожности в обращении при эксплуатации:

Существенные плюсы: сравнительно недорог, освоен в производстве. Пара керосин-кислород идеальна для первой ступени. Ее удельный импульс на земле 3283 м/с, пустотный 3475 м/с. Недостатки. Относительно малая плотность.

Американские ракетные керосины Rocket Propellant-1 или Refined Petroleum-1


Относительно был .
Для повышения плотности лидерами освоения космоса были разработаны синтин (СССР) и RJ-5 (США).
.

Керосин имеет склонность к отложению смолистых осадков в магистралях и тракте охлаждения, что отрицательно сказывается на охлаждении. На это его нехорошее свойство педалируют .
Керосиновые двигатели наиболее освоены в СССР.

Шедевр человеческого разума и инженерии наша "жемчужина" РД-170/171:

Теперь более корректным названием для горючих на основе керосина стал термин -"углеводородное горючее", т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ "ушло" очень .

На самом деле "Роскосмос" дезу выдаёт:

После того, как в ее баки закачают компоненты топлива - нафтил (ракетный керосин ), сжиженный кислород и пероксид водорода, космическая транспортная система будет весить более 300 тонн (в зависимости от модификации РН.

Низкомолекулярные углеводороды

Метан -CH4


Молярная масса: 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³;
жидкость (−164,6 °C) 415 кг/м³
Т. плав.=-182,49 °C
Т. кип.=-161,58 °C

Всеми сейчас рассматривается как перспективное и дешёвое топливо, как альтернатива керосину и водороду.
Главный конструктор Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Недорог, распространен, устойчив, малотоксичен. По сравнению с водородом имеет более высокую температуру кипения, а удельный импульс в паре с кислородом выше, чем у керосина: около 3250-3300 м/с на земле. Неплохой охладитель.

Недостатки. Низкая плотность (вдвое ниже чем у керосина). При некоторых режимах горения может разлагаться с выделением углерода в твердой фазе, что может привести к падению импульса из-за двухфазности течения и резкому ухудшению режима охлаждения в камере из-за отложения сажи на стенках КС. В последнее время идут активные НОР и НИОКР в области его применения (наряду с пропаном и природным газом) даже в направлении модификации уже сущ. ЖРД (в частности такие работы были проведены над ).


«Роскосмос» уже в 2016 году приступил к разработке силовой установки на сжиженном природном газе.

Или "Kinder Surpeis", как пример: американский Raptor engine от Space X:

К этим топливам можно отнести пропан и природный газ. Основные их характеристики, как горючих, близки (за исключением большей плотности и более высокой температуры кипения) к УВГ. И имеются такие же проблемы при их использовании.

Особняком среди горючих позиционируется -H 2 (Жидкий: LH 2).


Молярная масса водорода равна 2 016 г / моль или приближенно 2 г / моль.
Плотность (при н. у.)=0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления=14,01K (-259,14 °C);
Температура кипения=20,28K (-252,87 °C);


Использование пары LOX-LH 2 предложено еще Циолковским, но реализовано другими:

С точки зрения термодинамики Н 2 идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА. Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода ТНА.

Такая схема реализована в Aerojet Rocketdyne RL-10-просто шикарный (с инженерной точки зрения) движок:

Наш аналог (даже лучше , т.к. моложе): РД-0146 (Д, ДМ) - безгазогенераторный жидкостный ракетный двигатель, разработанный Конструкторским бюро химавтоматики в Воронеже.

Особенно эффективен с сопловым насадком из материала «Граурис». Но пока не летает

Этот ТК обеспечивает высокий удельный импульс-в паре с кислородом 3835 м/с.

Из реально используемых это самый высокий показатель. Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист, на "выходе" в контакте с О 2: вода (водяной пар). Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен. Однако есть очень много ложек дегтя в этой бочке мёда.

1. Чрезвычайно низкая плотность. Все видели огромные водородные баки РН "Энергия" и МТКК "Шаттл". Из-за низкой плотности применим (как правило) на верхних ступенях РН.

Кроме того, низкая плотность ставит непростую задачу для насосов: насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать.

По этой же причине приходится ставить т.н. бустерные насосные агрегаты горючего (БНАГ) сразу за заборным устройством в баках, дабы облегчить жизнь основному ТНА.

Ещё насосы водорода для оптимальных режимов требуют значительно большей частоты вращения ТНА.

2. Низкая температура. Криогенное топливо. Перед заправкой необходимо проводить многочасовое захолаживание (и/или переохлаждение) баков и всего тракта. Баки РН "Falocn 9FT" - взгляд изнутри:

Подробнее о "сюрпризах":
"МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ВОДОРОДНЫХ СИСТЕМАХ" Н0Р В.А. ГордеевВ.П. Фирсов, А.П. Гневашев, Е.И. Постоюк
ФГУП «ГКНПЦ им. М.В. Хруничева, КБ «Салют»; "Московский авиационный институт (Государственный технический университет)

В работе дана характеристика основных математических моделей тепломассообменных процессов в баке и магистралях водорода кислородно-водородного разгонного блока 12КРБ. Выявлены аномалии в подаче водорода в ЖРД и предложено их математическое описание. Модели отработаны в ходе стендовых и летных испытаний, что дало возможность на их базе прогнозировать параметры серийных разгонных блоков различных модификаций и принимать необходимые технические решения по совершенствованию пневмогидравлических систем.


Низкая температура кипения затрудняет и закачку в баки и хранение этого топлива в баках и хранилищах.

3. Жидкий водород обладает некоторыми свойствами газа:

Коэффициент сжимаемости (pv/RT) при 273,15 К: 1,0006 (0,1013 МПа), 1,0124 (2,0266 МПа), 1,0644 (10,133 МПа), 1,134 (20,266 МПа), 1,277 (40,532 МПа) ;
Водород может находиться в орто- и пара-состояниях. Ортоводород (о-Н2) имеет параллельную (одного знака) ориентацию ядерных спинов. Пара-водород (п-Н2)-антипараллельную.

При обычных и высоких температурах Н 2 (нормальный водород, н-Н2) представляет собой смесь 75% орто- и 25% пара-модификаций, которые могут взаимно превращаться друг в друга (орто-пара-превращение). При превращении о-Н 2 в п-Н 2 выделяется тепло (1418 Дж/моль) .


Это всё накладывает дополнительные трудности в проектировании магистралей, ЖРД, ТНА, циклограммы работы, и особенно насосов.

4. Газообразный водород быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Н 2г обладает высокой теплопроводностью, равной при 273,15 К и 1013 гПа 0,1717 Вт/(м*К) (7,3 по отношению к воздуху).

Водород в обычном состоянии при низких температурах малоактивен, без нагревания реагирует лишь с F 2 и на свету с Сl 2 . С неметаллами водород взаимодействует активнее, чем с металлами. С кислородом реагирует практически необратимо, образуя воду с выделением 285,75 МДж/моль тепла;

5. Со щелочными и щелочно-земельными металлами, элементами III, IV, V и VI группы периодической системы, а также с интерметаллическими соединениями водород образует гидриды. Водород восстанавливает оксиды и галогениды многих металлов до металлов, ненасыщенные углеводороды – до насыщенных (см. ).
Водород очень легко отдает свой электрон. В растворе отрывается в виде протона от многих соединений, обусловливая их кислотные свойства. В водных растворах Н+ образует с молекулой воды ион гидроксония Н 3 О. Входя в состав молекул различных соединений, водород склонен образовывать со многими электроотрицательными элементами (F, О, N, С, В, Cl, S, Р) водородную связь.

6. Пожароопастность и взрывоопасность. Можно не рассусоливать: гремучую смесь все знают.
Смесь водорода с воздухом взрывается от малейшей искры в любой концентрации - от 5 до 95 процентов.

Впечатляет Space Shuttle Main Engine (SSME)?


Теперь прикиньте его стоимость!
Вероятно, увидев это и посчитав затраты (стоимость вывода на орбиту 1 кг ПН), законодатели и те кто рулит бюджетом США и NASA в частности... решили "ну его на фиг".
И я их понимаю - на РН "Союз" и дешевле, и безопаснее, да использование РД-180/181 снимает многие проблемы американских РН и существенно экономит деньги налогоплательщиков самой богатой страны мира.

Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько (удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. /Филипп Терехов@lozga

Наиболее освоены водородные двигатели в США.
Сейчас мы позиционируемся на 3-4 месте в "Водородном клубе" (после Европы, Японии и Китая/Индии).

Отдельно упомяну твёрдый и металлический водород.


Твердый водород кристаллизуется в гексагональной решетке (а = = 0,378 нм, с = 0,6167 нм), в узлах которой расположены молекулы Н 2 , связанные между собой слабыми межмолекулярными силами; плотность 86,67 кг/м³; С° 4,618 Дж/(моль*К) при 13 К; диэлектрик. При давлении свыше 10000 МПа предполагается фазовый переход с образованием структуры, построенной из атомов и обладающей металлическими свойствами. Теоретически предсказана возможность сверхпроводимости "металлический водород".

Твёрдый водород-твёрдое агрегатное состояние водорода.
Температура плавления −259,2 °C (14,16 К).
Плотностью 0,08667 г/см³ (при −262 °C).
Белая снегоподобная масса, кристаллы гексагональной сингонии.


Шотландский химик Дж. Дьюар в 1899 году впервые получил водород в твёрдом состоянии. Для этого он использовал регенеративную охлаждающую машину, основанную на эффекте .

Беда с ним. Он постоянно теряется: . Оно и понятно: получен кубик из молекул: 6х6х6. Просто "гигантские" объёмы - прям хоть сейчас "заправляй" ракету. Почему-то мне это напомнило . Это нано-чудо не могут найти уже лет 7 или больше.

Анамезон, антивещество, метастабильный гелий пока оставлю за кадром.


...
Гидразиновые топлива ("вонючки")
Гидразин-N2H4


Состояние при н.у.- бесцветная жидкость
Молярная масса=32.05 г/моль
Плотность=1.01 г/см³


Очень распространенное топливо.
Хранится долго, и его за это "любят". Широко используется в ДУ КА и МБР/БРПЛ, где долгохранимость имеет критическое значение.

Кого смутил Iуд в размерности Н*с/кг отвечаю: это обозначение "любят" военные.
Ньютон - производная единица, исходя из она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с 2 .
Соответственно: 1 Н*с/кг =1 кг·м/с 2 *с/кг=м/с.
Освоен в производстве.

Недостатки: токсичен, вонючий.

Для человека степень токсичности гидразина не определена. По расчётам S. Krop опасной концентрацией следует считать 0,4 мг/л. Ch. Comstock с сотрудниками полагает, что предельно допустимая концентрация не должна превышать 0,006 мг/л. Согласно более поздним американским данным, эта концентрация при 8-часовой экспозиции снижена до 0,0013 мг/л. Важно отметить при этом, что порог обонятельного ощущения гидразина человеком значительно превышает указанные числа и равен 0,014-0,030 мг/л. Существенным в этой связи является и тот факт, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния, это ощущение исчезает, и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.

Пары гидразина при адиабатном сжатии взрываются. Склонен к разложению, что однако позволяет его использовать как монотопливо для ЖРД малой тяги (ЖРДМТ). В силу освоенности производства более распространен в США.

Несимметричный диметилгидразин (НДМГ)-H 2 N-N(CH 3) 2

Хим. формула:C2H8N2,Рац. формула:(CH3)2NNH2
Состояние при н.у.- жидкое
Молярная масса=60,1 г/моль
Плотность=0,79±0,01 г/см³


Широко используется на военных двигателях в следствие своей долгохранимости. При освоении технологии ампулирования - практически исчезли все проблемы (кроме утилизации и аварий припусках).

Имеет более высокий импульс по сравнению с гидразином.

Плотность и удельный импульс с основными окислителями ниже керосина с теми же окислителями. Самовоспламенятся с азотными окислителями. Освоен в производстве в СССР.
Более распространен в СССР.
А в реактивном двигателе французского истребителя-бомбардировщика (хорошее видео-рекомендую) НДМГ используют как активизирующую добавку к традиционному топливу.

По поводу гидразиновых топлив.

Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

За кадром остались:
Анилин, метил-, диметил- и триметиламины и CH 3 NHNH 2 -Метилгидразин (он же монометилгидразин или гептил) и пр.

Они не так распространены. Главное достоинство горючих группы гидразина - долгохранимость при использовании высококипящих окислителей. Работать с ними очень неприятно-токсичны горючие, агрессивные окислители, токсичны продукты сгорания.


На профессиональном жаргоне эти топлива называют "вонючими" или "вонючками".

Можно с высокой степенью уверенности сказать, что если на РН стоят "вонючие" двигатели, то "до замужества" она была боевой ракетой (МБР, БРПЛ или ЗУР - что уже редкость) . Химия на службе и армии и гражданки.

Исключение, пожалуй, лишь РН Ariane - творение кооператива: Aérospatiale, Matra Marconi Space, Alenia, Spazio, DASA и др. Её миновала в "девичестве" подобная боевая участь.

Военные практически все перешли на РДТТ, как более удобные в эксплуатации. Ниша для "вонючих" топлив в космонавтике сузилась до использования в ДУ КА, где требуется долгое хранение без особых материальных или энергетических затрат.
Пожалуй, кратко обзор можно выразить графически:

Активно работают ракетчики и с метаном. Особых эксплуатационных трудностей нет: позволяет неплохо поднять давление в камере (до 40 М Па) и получить хорошие характеристики.
() и остальными природными газами (СПГ).

О прочих направления по повышению характеристик ЖРД (металлизация горючих, использование Не 2 , ацетама и прочем) я напишу позже. Если будет интерес.

Использование эффекта свободных радикалов-хорошая перспектива.
Детонационное горение-возможность для долгожданного прыжка на Марс.

Послесловие:

вообще все ракетные ТК (кроме НТК), а так же попытка изготовить их в домашних условиях- очень опасны. Предлагаю внимательно ознакомиться:
. Смесь, которую он готовил на плите в кастрюле, ожидаемо взорвалась. В итоге мужик получил огромное количество ожогов и провел в больнице пять дней.

Все домашние (гаражные) манипуляции с такими химическими компонентами чрезвычайно опасны, а порой и противозаконны. К местам их разлива без ОЗК и противогаза ЛУЧШЕ не подходить:

Как и с разлитой ртутью: звонить в МЧС, быстро приедут и всё профессионально подберут.

Всем спасибо, кто смог вытерпеть всё это до конца.

Первоисточники:
Качур П. И., Глушко А. В. "Валентин Глушко. Конструктор ракетных двигателей и космических систем", 2008.
Г.Г. Гахун "Конструкция и проектирование жидкостных ракетных двигателей", Москва, "Машиностроение, 1989.
Возможность увеличения удельного импульса жидкостного ракетного двигателя
при добавлении в камеру сгорания гелия С.А. Орлин МГТУ им. Н.Э. Баумана, Москва
М.С.Шехтер. "Топлива и рабочие тела ракетных двигателей", Машиностроение" 1976
Завистовский Д. И."Беседы о ракетных двигателях".
Филипп Терехов @lozga (www.geektimes.ru).
"Виды топлива и их характеристика.Топливо горючие вещества, используемые для получения тепла. Состав топлива Горючая часть - углерод С-водород Н-сера."-презентация Оксана Касеева
Факас С.С."Основы ЖРД. Рабочие тела"
Использованы фото и видеоматериалы с сайтов:

http://technomag.bmstu.ru
www.abm-website-assets.s3.amazonaws.com
www.free-inform.ru
www.rusarchives.ru
www.epizodsspace.airbase.ru
www.polkovnik2000.narod.ru
www.avia-simply.ru
www.arms-expo.ru
www.npoenergomash.ru
www.buran.ru
www.fsmedia.imgix.net
www.wikimedia.org
www.youtu.be
www.cdn.tvc.ru
www.commi.narod.ru
www.dezinfo.net
www.nasa.gov
www.novosti-n.org
www.prirodasibiri.ru
www.radikal.ru
www.spacenews.com
www.esa.int
www.bse.sci-lib.com
www.kosmos-x.net.ru
www.rocketpolk44.narod.ru
www.criotehnika.ru
www.трансавтоцистерна.рф
www.chistoprudov.livejournal.com/104041.html
www.cryogenmash.ru
www.eldeprocess.ru
www.chemistry-chemists.com
www.rusvesna.su
www.arms-expo.ru
www.armedman.ru
www.трансавтоцистерна.рф
www.ec.europa.eu
www.mil.ru
www.kbkha.ru
www.naukarus.com

Вопрос снижения стоимости запусков ракет-носителей стоял всегда. Во времена космической гонки СССР и США мало задумывались о затратах - престиж страны стоил неизмеримо дороже. Сегодня сокращение расходов «по всем фронтам» стало общемировым трендом. Топливо составляет всего 0,2…0,3% от стоимости всей ракеты-носителя, но кроме стоимости топлива важен еще такой параметр, как его доступность. А здесь уже есть вопросы. За последние 50 лет список жидких горючих, широко использующихся в ракетно-космической отрасли мало изменился. Давайте же их перечислим: керосин, водород и гептил. Каждое из них имеет свои особенности и по-своему интересно, но у всех есть хотя бы один серьёзный недостаток. Вкратце рассмотрим каждое из них.

Керосин

Начал применяться ещё в 50-х годах и остаётся востребован и по сей день - именно на нём летают наша Ангара и Falcon 9 от SpaceX . Обладает множеством преимуществ, среди которых: высокая плотность, низкая токсичность, обеспечивает высокий удельный импульс, пока что приемлемая цена. Но производство керосина сегодня сопряжено с большими трудностями. Например, ракеты Союз, которые делают в Самаре, сейчас летают на искусственно созданном горючем, потому что изначально для создания керосина для этих ракет использовались только определенные сорта нефти из конкретных скважин. В основном это нефть Анастасиевско-Троицкого месторождения в Краснодарском крае. Но нефтяные скважины истощаются, и ныне используемый керосин является смешением композиций, которые добываются из нескольких скважин. Заветную марку РГ-1 получают с помощью дорогостоящей перегонки. По оценкам экспертов, проблема дефицита керосина будет только усугубляться.

«Ангара 1.1» на керосиновом двигателе РД-193

Водород

Сегодня водород, наряду с метаном, является одним из самых перспективных ракетных горючих. На нём летает сразу несколько современных ракет и разгонных блоков. В паре с кислородом он (после фтора) выдаёт самый высокий удельный импульс и для использования в верхних ступенях ракеты (или разгонных блоках) подходит идеально. Но чрезвычайно низкая плотность не позволяет в полной мере использовать его для первых ступеней ракет. Есть у него ещё один недостаток - высокая криогенность. Если ракета заправлена водородом, то он находится при температуре около 15 кельвинов (-258 по Цельсию). Это приводит к дополнительным затратам. Если сравнивать в керосином, то доступность водорода достаточно высока и его получение не является проблемой.

«Delta-IV Heavy» на водородных двигателях RS-68A

Гептил

Он же НДМГ или несимметричный диметилгидразин. У этого горючего всё ещё остаются сферы применения, но оно постепенно отходит на задний план. И причиной тому его высокая токсичность. Он обладает почти такими же, как керосин энергетическими показателями и является высококипящим компонентом (хранение при комнатной температуре) и, поэтому, в советское время использовался достаточно активно. Например, ракета Протон летает на высокотоксичной паре гептил+амил, каждый из которых способен убить человека, вдохнувшего по неосторожности их пары. Использование таких топлив в современное время неоправдано и является неприемлемым. Горючее находит применение в спутниках и межпланетных зондах, где оно, к сожалению, незаменимо.

«Протон-М» на гептиловых двигателях РД-253

Метан как альтернатива

Но есть ли топливо, которое удовлетворит всех и будет стоить дешевле всех? Возможно, это метан. Тот самый голубой газ, на котором некоторые из вас сегодня готовили пищу. Предлагаемое горючее является перспективным, активно осваивается другими отраслями промышленности, обладает более широкой сырьевой базой по сравнению с керосином и низкой стоимостью - это является важным моментом, учитывая прогнозируемые проблемы производства керосина. Метан как по плотности, так и по эффективности находится между керосином и водородом. Способы получения метана многочисленны. Главный источник метана природный газ, который состоит на 80..96% из метана. Остальное - это пропан, бутан и другие газы того же ряда, которые можно вообще не удалять, они очень схожи по свойствам с метаном. Другими словами, можно просто сжижать природный газ и использовать его как ракетное топливо. Метан можно получать и из других источников, например, переработкой отходов животноводства. Возможность использования метана в качестве ракетного топлива рассматривается уже на протяжении десятков лет, однако сейчас есть только стендовые варианты и экспериментальные образцы таких двигателей. Например, в химкинском НПО «Энергомаш» исследования в части использования сжиженного газа в двигателях велись с 1981 года. Прорабатываемая сейчас в «Энергомаше» концепция предусматривает разработку однокамерного двигателя тягой в 200 т на топливе «жидкий кислород - сжиженный метан» для первой ступени перспективного носителя легкого класса. Космическая техника ближайшего будущего обещает быть многоразовой. И тут открывается ещё одно преимущество метана. Он криогенный, а, значит, достаточно нагреть двигатель хотя бы до температуры -160 по Цельсию (а лучше выше) и двигатель сам освободится от компонентов топлива. По мнению специалистов он более всего подходит для создания многоразовых ракет-носителей. Вот что о метане думает главный конструктор НПО «Энергомаш» Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Ещё один довод в пользу использования метана - возможность добывать его на астероидах, планетах и их спутниках, обеспечивая возвращаемые миссии топливом. Там намного легче добывать метан, чем керосин. Естественно, о возможности привозить топливо с собой не может быть и речи. Перспектива таких дальних миссий, весьма отдалённая, но некоторые работы уже ведутся.

Будущее, которое так и не наступило

Так почему же метан в России так и не стал практически используемым горючим? Ответ достаточно прост. С начала 80-х в СССР, а потом и в России не было создано ни одного нового ракетного двигателя. Все российские «новинки» - это модернизация и переименование советского наследия. Единственный честно созданный комплекс - «Ангара» - с самого начала планировался как керосиновый транспорт. Его переделка обойдётся в копеечку. Вообще, Роскосмос постоянно отклоняет метановые проекты потому, что там связывают «добро» на хотя бы один подобный проект с «добром» на полную перестройку отрасли с керосина и гептила на метан, что считается долгим и дорогостоящим мероприятием.

Двигатели

На данный момент есть несколько компаний, заявляющих о скором использовании метана в своих ракетах. Двигатели, которые создаются:

FRE-1 /

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо - это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе - это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо - газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать и ждать, что там еще выкинет Элон Маск со своим SpaceX.