Самый дорогой телескоп в мире. Самый большой телескоп в россии — хочу знать

Самый детальный снимок соседней галактики. Андромеду сфотографировали при помощи новой камеры сверхвысокого разрешения Hyper-Suprime Cam (HSC), установленной на японском телескопе “Субару”. Это один из самых больших в мире работающих оптических телескопов – с диаметром главного зеркала более восьми метров. В астрономии размер часто имеет решающее значение. Давайте поближе познакомимся с другими гигантами, расширяющими границы наших наблюдений за космосом.

1. “Субару”

Телескоп “Субару” расположен на вершине вулкана Мауна-Кеа (Гавайи) и работает вот уже четырнадцать лет. Это телескоп-рефлектор, выполненный по оптической схеме Ричи – Кретьена с главным зеркалом гиперболической формы. Для минимизации искажений его положение постоянно корректирует система из двухсот шестидесяти одного независимого привода. Даже корпус здания имеет особую форму, снижающую негативное влияние турбулентных потоков воздуха.

Телескоп “Субару” (фото: naoj.org).

Обычно изображение с подобных телескопов недоступно непосредственному восприятию. Оно фиксируется матрицами камер, откуда передаётся на мониторы высокого разрешения и сохраняется в архив для детального изучения. “Субару” примечателен ещё и тем, что ранее позволял вести наблюдения по старинке. До установки камер был сконструирован окуляр, в который смотрели не только астрономы национальной обсерватории, но и первые лица страны, включая принцессу Саяко Курода – дочь императора Японии Акихито.

Сегодня на “Субару” может быть одновременно установлено до четырёх камер и спектрографов для наблюдений в диапазоне видимого и инфракрасного света. Самая совершенная из них (HSC) была создана компанией Canon и работает с 2012 года.

Камера HSC проектировалась в Национальной астрономической обсерватории Японии при участии множества партнерских организаций из других стран. Она состоит из блока линз высотой 165 см, светофильтров, затвора, шести независимых приводов и CCD матрицы. Её эффективное разрешение составляет 870 мегапикселей. Используемая ранее камера Subaru Prime Focus обладала на порядок меньшим разрешением – 80 мегапикселей.

Поскольку HSC разрабатывалась для конкретного телескопа, диаметр её первой линзы составляет 82 см – ровно в десять раз меньше диаметра главного зеркала “Субару”. Для снижения шумов матрица установлена в вакуумной криогенной камере Дьюара и работает при температуре -100 °С.

Телескоп “Субару” удерживал пальму первенства вплоть до 2005 года, когда завершилось строительство нового гиганта – SALT.

2. SALT

Большой южно-африканский телескоп (SALT) расположен на вершине холма в трёхстах семидесяти километрах к северо-востоку от Кейптауна, близ городка Сазерленд. Это самый крупный из действующих оптических телескопов для наблюдений за южной полусферой. Его главное зеркало с размерами 11,1×9,8 метра состоит из девяносто одной шестиугольной пластины.

Первичные зеркала большого диаметра исключительно сложно изготовить как монолитную конструкцию, поэтому у крупнейших телескопов они составные. Для изготовления пластин используются различные материалы с минимальным температурным расширением, такие как стеклокерамика.

Основная задача SALT – исследование квазаров, далёких галактик и других объектов, свет от которых слишком слаб для наблюдения с помощью большинства других астрономических инструментов. По своей архитектуре SALT подобен “Субару” и паре других известных телескопов обсерватории Мауна-Кеа.

3. Keck

Десятиметровые зеркала двух главных телескопов обсерватории Кека состоят из тридцати шести сегментов и уже сами по себе позволяют достичь высокого разрешения. Однако главная особенность конструкции в том, что два таких телескопа могут работать совместно в режиме интерферометра. Пара Keck I и Keck II по разрешающей способности эквивалентна гипотетическому телескопу с диаметром зеркала 85 метров, создание которого на сегодня технически невозможно.

Впервые на телескопах Keck была опробована система адаптивной оптики с подстройкой по лазерному лучу. Анализируя характер его распространения, автоматика компенсирует атмосферные помехи.

Пики потухших вулканов – одна из лучших площадок для строительства гигантских телескопов. Большая высота над уровнем моря и удалённость от крупных городов обеспечивают отличные условия для наблюдений.

4. GTC

Большой Канарский телескоп (GTC) также расположен на пике вулкана в обсерватории Ла-Пальма. В 2009 году он стал самым большим и самым совершенным наземным оптическим телескопом. Его главное зеркало диаметром 10,4 метра состоит из тридцати шести сегментов и считается самым совершенным из когда-либо созданных. Тем сильнее удивляет сравнительно низкая стоимость этого грандиозного проекта. Вместе с камерой инфракрасного диапазона CanariCam и вспомогательным оборудованием на строительство телескопа было затрачено всего $130 млн.

Благодаря CanariCam выполняются спектроскопические, коронографические и поляриметрические исследования. Оптическая часть охлаждается до 28 К, а сам детектор – до 8 градусов выше абсолютного нуля.

5. LSST

Поколение больших телескопов с диаметром главного зеркала до десяти метров заканчивается. В рамках ближайших проектов предусмотрено создание серии новых с увеличением размеров зеркал в два–три раза. Уже в следующем году в северной части Чили запланировано строительство широкоугольного обзорного телескопа-рефлектора Large Synoptic Survey Telescope (LSST).

LSST – Большой обзорный телескоп (изображение: lsst.org).

Ожидается, что он будет обладать самым большим полем зрения (семь видимых диаметров Солнца) и камерой с разрешением 3,2 гигапикселя. За год LSST должен делать более двухсот тысяч фотографий, общий объём которых в несжатом виде превысит петабайт.

Основной задачей станут наблюдения за объектами со сверхслабой светимостью, включая астероиды, угрожающие Земле. Запланированы также измерения слабого гравитационного линзирования для обнаружения признаков тёмной материи и регистрация кратковременных астрономических событий (таких как взрыв сверхновой). По данным LSST предполагается строить интерактивную и постоянно обновляемую карту звёздного неба со свободным доступом через интернет.

При надлежащем финансировании телескоп будет введён строй уже в 2020 году. На первом этапе требуется $465 млн.

6. GMT

Гигантский Магелланов телескоп (GMT) – перспективный астрономический инструмент, создаваемый в обсерватории Лас-Кампанас в Чили. Главным элементом этого телескопа нового поколения станет составное зеркало из семи вогнутых сегментов общим диаметром 24,5 метра.

Даже с учётом вносимых атмосферой искажений детальность сделанных им снимков будет примерно в десять раз выше, чем у орбитального телескопа “Хаббл”. В августе 2013 года завершается отливка третьего зеркала. Ввод телескопа в эксплуатацию намечен в 2024 году. Стоимость проекта сегодня оценивается в $1,1 млрд.

7. TMT

Тридцатиметровый телескоп (TMT) – ещё один проект оптического телескопа нового поколения для обсерватории Мауна-Кеа. Главное зеркало диаметром в 30 метров будет выполнено из 492 сегментов. Его разрешающая способность оценивается как в двенадцать раз превышающая таковую у “Хаббла”.

Начало строительства запланировано на следующий год, завершение – к 2030-му. Расчётная стоимость – $1,2 млрд.

8. E-ELT

Европейский чрезвычайно большой телескоп (E-ELT) сегодня выглядит наиболее привлекательным по соотношению возможностей и затрат. Проектом предусмотрено его создание в пустыне Атакама в Чили к 2018 году. Текущая стоимость оценивается в $1,5 млрд. Диаметр главного зеркала составит 39,3 метра. Оно будет состоять из 798 шестиугольных сегментов, каждое из которых – около полутора метров в поперечнике. Система адаптивной оптики будет устранять искажения при помощи пяти дополнительных зеркал и шести тысяч независимых приводов.

Европейский чрезвычайно большой телескоп – E-ELT (фото: ESO).

Расчётная масса телескопа составляет более 2800 тонн. На нём будет установлено шесть спектрографов, камера ближнего ИК-диапазона MICADO и специализированный инструмент EPICS, оптимизированный для поиска планет земного типа.

Основной задачей коллектива обсерватории E-ELT станет детальное исследование открытых к настоящему времени экзопланет и поиск новых. В качестве дополнительных целей указывается обнаружение признаков наличия в их атмосфере воды и органических веществ, а также изучение формирования планетарных систем.

Оптический диапазон составляет лишь малую часть электромагнитного спектра и обладает рядом свойств, ограничивающих возможности наблюдения. Многие астрономические объекты практически не обнаруживаются в видимом и ближнем инфракрасном спектре, но при этом выдают себя за счёт радиочастотных импульсов. Поэтому в современной астрономии большая роль отводится радиотелескопам, размер которых напрямую влияет на их чувствительность.

9. Arecibo

В одной из ведущих радиоастрономических обсерваторий Аресибо (Пуэрто-Рико) расположен крупнейший радиотелескоп на одной апертуре с диаметром рефлектора триста пять метров. Он состоит из 38 778 алюминиевых панелей суммарной площадью около семидесяти трёх тысяч квадратных метров.

Радиотелескоп обсерватории Аресибо (фото: NAIC – Arecibo Observatory).

С его помощью уже был сделан ряд астрономических открытий. К примеру, в 1990 году обнаружен первый пульсар с экзопланетами, а в рамках проекта распределённых вычислений Einstein@home за последние годы были найдены десятки двойных радиопульсаров. Однако для ряда задач современной радиоастрономии возможностей “Аресибо” уже едва хватает. Новые обсерватории будут создаваться по принципу масштабируемых массивов с перспективой роста до сотен и тысяч антенн. Одними из таких станут ALMA и SKA.

10. ALMA и SKA

Атакамская большая миллиметровая/субмиллиметровая решётка (ALMA) представляет собой массив из параболических антенн диаметром до 12 метров и массой более ста тонн каждая. К середине осени 2013 года число антенн, объединённых в единый радиоинтерферометр ALMA, достигнет шестидесяти шести. Как и у большинства современных астрономических проектов, стоимость ALMA превышает миллиард долларов.

Квадратная километровая решётка (SKA) – другой радиоинтерферометр из массива праболических антенн, расположенных в Южной Африке, Австралии и Новой Зеландии на общей площади около одного квадратного километра.

Антенны радиоинтерферометра “Квадратная километровая решётка” (фото: stfc.ac.uk).

Его чувствительность примерно в пятьдесят раз превосходит возможности радиотелескопа обсерватории Аресибо. SKA способен уловить сверхслабые сигналы от астрономических объектов, расположенных на удалении 10–12 млрд световых лет от Земли. Начать первые наблюдения планируется в 2019 году. Проект оценивается в $2 млрд.

Несмотря на огромные масштабы современных телескопов, их запредельную сложность и многолетние наблюдения, исследование космоса только начинается. Даже в Солнечной системе до сих пор обнаружена лишь малая часть объектов, заслуживающих внимания и способных повлиять на судьбу Земли.

За последние 20-30 лет спутниковая антенна стала неотъемлемым атрибутом в нашей жизни. Множество современных городов имеют доступ к спутниковому телевидению. Массово-популярными спутниковые тарелки стали в начале 1990-х. Для таких антенн-тарелок, используемых, в качестве радио-телескопов для получения информации с разных уголков планеты, размер действительно имеет значение. Вашему вниманию представляются десять самых больших телескопов на Земле, расположенных в самых больших обсерваториях мира

10 Спутниковый телескоп Стэнфорда, США

Диаметр: 150 футов (46 метров)

Расположен в предгорьях Стэнфорда, Калифорния, радио-телескоп, известный, как тарелка-достопримечательность. Его посещают приблизительно 1 500 человек каждый день. Построенный Стэнфордским Научно-исследовательским институтом в 1966, в 150 футов диаметром (46 метров) радио-телескоп был первоначально предназначен для исследования химического состава нашей атмосферы, но, с такой сильной радарной антенной, позже использовался для коммуникации со спутниками и космическими кораблями.


9 Обсерватория Алгонкин, Канада

Диаметр: 150 футов (46 метров )

Эта обсерватория находится в провинциальном парке Алгонкин в Онтарио, Канада. Главная центральная часть обсерватории - 150-футовая (46 м) параболическая тарелка, о которой стало известно в 1960-м году в период ранних технических тестов VLBI. VLBI учитывает одновременные наблюдения за многими телескопами, которые объединены между собой.

8 Большой Телескоп LMT, Мексика

Диаметр: 164 фута (50 метров)

Большой Телескоп LMT является относительно недавним дополнением к списку самых больших радиотелескопов. Построенный в 2006, этот 164-футовый (50 m) инструмент представляет собой лучший телескоп для того, чтобы посылать радиоволны в его собственном частотном диапазоне. Предоставляя астрономам ценную информацию относительно звездного формирования, LMT расположен в горной цепи Негра - это пятая по высоте гора в Мексике. Это объединенный мексиканский и американский проект обошелся в $116 миллионов.


7 Обсерватория Паркса, Австралия

Диаметр: 210 футов (64 метра)

Постройка была закончена в 1961 году, Обсерватория Паркса в Австралии была одной из нескольких, используемых чтобы передавать телевизионные сигналы в 1969 году. Обсерватория предоставляла НАСА ценную информацию во время их лунных миссий, передавая сигналы и предоставляя необходимую помощь, когда наш единственный естественный спутник был на австралийской стороне Земли. Больше 50-и процентов известных пульсаров -нейтронных звезд - были обнаружены в Парксе.


6 Авантюриновый Коммуникационный Комплекс, США

Диаметр: 230 футов (70 метров)

Известный, как Авантюриновая Обсерватория, этот комплекс расположен в Пустыне Мохаве, Калифорния. Это один из 3-х подобных комплексов - другие два расположены в Мадриде и Канберре. Авантюрин известен, как антенна Марса, которая составляет 230 футов (70 м) в диаметре. Этот очень чувствительный радио-телескоп - который был фактически смоделирован и позже модернизирован, чтобы быть больше чем, тарелка из Обсерватории Паркса Австралии, и предоставлять больше информации, которая поможет в картографии квазаров, комет, планет, астероидов и многих других небесных тел. Авантюриновый комплекс также доказал свою ценность в поиске высокоэнергетических передач нейтрино на луне.

5 Евпатория, Радио-Телескоп RT-70, Украина

Диаметр: 230 футов (70 метров)

Телескоп в Евпатории использовался, чтобы обнаруживать астероиды и космический мусор. Именно отсюда 9 октября 2008 года был отправлен сигнал к планете Gliese 581c под названием "Суперземля". Если Gliese 581населена разумными существами, возможно они пошлют нам обратный сигнал! Однако, мы должны будем ждать, пока сообщение достигает планеты в 2029 году

4 Телескоп Ловелл, Великобритания

Диаметр: 250 футов (76 метров)

Ловелл - Телескоп Соединенного Королевства, расположен в Обсерватории Джорделл-Бэнк на северо-западе Англии. Построенный в 1955, он был назван в честь одного из создателей, Бернарда Ловелла. Среди самых известных достижений телескопа было подтверждение существования пульсара. Телескоп также способствовал открытию квазаров.


3 Эффельсберг Радио-Телескоп в Германии

Радиотелескоп Эффельсберг расположен в западной Германии. Построенный в период между 1968 и 1971, телескоп находится в распоряжении Института Радиоастрономии Макса Планка, в Бонне. Оборудованный, чтобы наблюдать за пульсарами, звездными формированиями и ядрами отдаленных галактик, Эффельсберг - один из самых важных в мире суперсильных телескопов.

2 Зеленый Телескоп Банка, США

Диаметр: 328 футов (100 метров)

Зеленый Телескоп Банка расположен в Западной Вирджинии, в центре Национальной Тихой Зоны Соединенных Штатов - это область ограниченных или запрещенных радио-передач, который очень помогает телескопу в достижении его самого высокого потенциала. Телескоп, который был закончен в 2002 году, строился в течении 11 лет.

1. Обсерватория Аресибо, Пуэрто-Рико

Диаметр: 1 001 фут (305 метров)

Самый большой телескоп на Земле безусловно находится в Обсерватории Аресибо (Arecibo) близ одноименного города в Пуэрто-Рико. Управляемая SRI International - научно-исследовательским институтом от Стэнфордского университета, Обсерватория участвует в радиоастрономии, радарных наблюдениях за солнечной системой и в исследовании атмосфер других планет. Огромная тарелка была построена в 1963 году.


Аресибо - астрономическая обсерватория, расположенная в Пуэрто Рико, в 15 км от города Аресибо, на высоте 497 м над уровнем моря. Ее радиотелескоп является самым большим в мире и используется для исследований в области радиоастрономии, физики атмосферы и радиолокационных наблюдений объектов Солнечной системы. Также информация с телескопа поступает для обработки проектом SETI@home, посредством подключённых к Интернету компьютеров добровольцев. Проект этот, напомним, занимается поиском внеземных цивилизаций.

Помните 10 лет назад был фильм про Джеймса Бонда - "Золотой глаз". Там как раз действия разворачивались на этом телескопе.

Многие наверное подумали что это декорации к фильму. А телескоп к тому моменту уже работал 50 лет

Обсерватория Аресибо находится на высоте 497 метров над уровнем моря. Несмотря на то, что расположена она в Пуэрто Рико, используется и финансируется она всевозможными университетами и агентствами США. Основным предназначением обсерватории является исследование в области радиоастрономии, а также наблюдение за космическими телами. Для этих целей и был построен самый большой в мире радиотелескоп. Диаметр тарелки составляет 304,8 метров.

Глубина тарелки (зеркало рефлектора по научному) сотавляет - 50,9 метров, общая площадь - 73000 м2. Изготовлена она из 38778 перфорированных (дырчатых) алюминиевых пластин, уложенных на сетку из стальных тросов.

Над тарелкой подвешена массивная конструкция, передвижной облучатель и его направляющие. Держится она на 18 тросах, натянутых от трёх башен поддержки.



Если Вы купите входной билет на экскурсию, стоимостью 5$, то получите возможность подняться на облучатель по специальной галерее или в клетке подъёмника.

Строительство радиотелескопа было начато в 1960 году, а уже 1 ноября 1963 года состоялось открытие обсерватории.


За время своего существования, радиотелескоп Аресибо отличился тем, что были открыты несколько новых космических объектов (пульсары, первые планеты за пределами нашей Солнечной системы), лучше исследованы поверхности планет нашей Солнечной системы, а также, в 1974 году было отправлено послание Аресибо, в надежде, что какая-нибудь внеземная цивилизация откликнется на него. Ждёмс.

При проведении этих исследований включается мощный радар и измеряется ответная реакция ионосферы. Антенна такого большого размера является необходимой, потому что на тарелку для измерения попадает лишь малая часть рассеянной энергии. Сегодня только треть времени работы телескопа отведено для изучения ионосферы, треть - для исследования галактик, а оставшаяся треть отдана астрономии пульсаров.

Аресибо, без сомнения, превосходный выбор для поиска новых пульсаров, поскольку огромные размеры телескопа делают поиски более продуктивными, позволяя астрономам находить доселе неизвестные пульсары, которые оказались слишком малы, чтобы быть замеченными при помощи телескопов меньших размеров. Тем не менее, такие размеры имеют и свои недостатки. Например, антенна должна оставаться закрепленной на земле из-за невозможности управлять ей. Вследствие чего телескоп в состоянии охватить только сектор неба, который находится непосредственно над ним на пути вращения земли. Это позволяет Аресибо наблюдать за сравнительно небольшой частью неба, по сравнению с большинством других телескопов, которые могут охватывать от 75 до 90% неба.


Второй, третий и четвертый по величине телескопы, которые используются (или будут использоваться) для исследования пульсаров - это соответственно телескоп Национальной радиоастрономической обсерватории (НРАО) в Западной Вирджинии, телескоп института Макса Планка в Эффельсберге и телескоп Грин-Бэнк НРАО тоже в Западной Вирджинии. Все они имеют диаметр не менее 100 м и полностью управляемы. Несколько лет назад 100-метровая антенна НРАО упала на землю, и сейчас ведутся работы по установке более качественного 105-метрового телескопа.

Это лучшие телескопы для изучения пульсаров, не попадающих в радиус действия Аресибо. Заметьте, что Аресибо втрое больше 100-метровых телескопов, а это значит, что он охватывает площадь в 9 раз большую и достигает результатов научных наблюдений в 81 раз быстрее.

Тем не менее, существует множество телескопов диаметром меньше 100 метров, которые также успешно используются для изучения пульсаров. Среди них Parkes в Австралии и 42-метровый телескоп НРАО.

Большой телескоп может быть заменен совмещением нескольких телескопов меньших размеров. Эти телескопы, точнее, сети телескопов, могут охватывать площадь, равную той, которая охватывается стометровыми антеннами. Одна из таких сетей, созданная для апертурного синтеза, называется Very Large Array. Она насчитывает 27 антенн, каждая 25 метров в диаметре.



Начиная с 1963 года, когда было закончено строительство обсерватории Аресибо в Пуэрто-Рико (Arecibo Observatory in Puerto Rico), радиотелескоп этой обсерватории, диаметром 305 метров и площадью 73000 квадратных метров, был самым большим радиотелескопом в мире. Но вскоре Аресибо может потерять этот статус из-за того, что в провинции Гуйчжоу, расположенной в южной части Китая, начато строительство нового радиотелескопа Five-hundred-meter Aperture Spherical radio Telescope (FAST). По завершению строительства этого телескопа, которое согласно планам должно завершиться в 2016 году, телескоп FAST будет в состоянии "видеть" космос на глубину в три раза больше и производить обработку данных в десять раз быстрее, чем это позволяет оборудование телескопа Аресибо.


Изначально строительство телескопа FAST было намечено для участия в международной программе Square Kilometer Array (SKA), в рамках которой будут объединены сигналы с тысяч антенн радиотелескопов меньших размеров, разнесенных на расстояние 3000 км. Как известно на данный момент , телескоп SKA будет возводиться в южном полушарии, но вот где именно, в Южной Африке или Австралии, будет решено позже.

Несмотря на то, что предложенный проект телескопа FAST не стал частью проекта SKA, китайское правительство дало проекту зеленый свет и выделило финансирование в размере 107,9 миллионов долларов для начала строительства нового телескопа. Строительство было начато в марте месяце, в провинции Гуйчжоу, в южной части Китая.

В отличие от телескопа Аресибо, который имеет неподвижную параболическую систему, фокусирующую радиоволны, кабельная сеть телескопа FAST и система конструкции параболического отражателя позволят телескопу менять форму поверхности отражателя в режиме реального времени с помощью системы активного контроля. Это станет возможным благодаря наличию 4400 треугольных алюминиевых листов, из которых формируется параболическая форма отражателя и которую можно навести на любую точку ночного неба.

Использование специальной современной приемной аппаратуры придаст телескопу FAST беспрецедентно высокую чувствительность и высокие скорости обработки поступающих данных. С помощью антенны телескопа FAST можно будет принять настолько слабые сигналы, что станет возможным "рассматривание" с его помощью нейтральных облаков водорода в Млечном пути и других галактиках. А основными задачами, над которыми будет работать радиотелескоп FAST, будут обнаружение новых пульсаров, поиск новых ярких звезд и поиск внеземных форм жизни.

источники
grandstroy.blogspot.com
relaxic.net
planetseed.com
dailytechinfo.org

Термин телескоп в буквальном смысле означает «далеко смотрю». Современные устройства оптического типа позволяют астрономам изучать нашу Солнечную систему, а также открывать новые планеты, находящиеся за ее пределами. В ниже представленную десятку вошли самые мощные телескопы в мире.

БТА

БТА открывает рейтинг самых мощных телескопов, имеющий одно из крупнейших монолитных зеркал во всем мире. Этот гигант, построенный в 70-х годах прошлого века, по сей день удерживает преимущества в плане самого большого астрономического купола. Зеркало диаметром свыше 6 метров сделано в виде параболоида вращения. Его масса составляет сорок две тонны, если не учитывать вес оправы. Общая масса этой громадины равна 850 тонн. Главным конструктором БТА является Б.К. Ионнисани. Покрытие отражающее зеркала было изготовлено из незащищенного алюминия. Рабочий слой требует замены каждые десять лет.

Гигантский Магелланов телескоп входит в десятку наиболее крупных и мощных во всем мире. Полное завершение его строительства планируется на 2020 год. Для собирания света будет использована система, включающая в себя семь первичных зеркал, каждое из которых станет обладателем диаметра в 8,4 м. Суммарная апертура устройства будет соответствовать телескопу, имеющего зеркало более 24 м диаметром. Предположительно МГТ будет в несколько раз мощнее всех современных телескопов. Планируется, что МГТ станет самым мощным и поможет открыть много новых экзопланет.

Джемини Юг и Джемини Север

Джемини Юг и Джемини Север представляют собой комплекс, в который включены два телескопа, высотой в восемь метров. Они предназначены для обеспечения полноценного беспрепятственного покрытия небосводов и расположены на разных вершинах. Это одни из самых мощных и совершенных инфракрасных оптических телескопов на сегодняшний день. Приборы обеспечивают получение максимально четких снимков, что достигается с помощью спектроскопии и адаптивной оптики. Управление телескопами часто осуществляется удаленно. Устройства принимают активное участие в поиске экзопланет.

Субару

Субару – один из мощнейших телескопов в мире, созданный японскими учеными. Находится он на вершине вулкана Мауна-Кеа. Имеет одно из самых больших монолитных зеркал в мире диаметром более восьми метров. Субару способен обнаруживать планеты, принадлежащие не нашей Солнечной системе, а также может устанавливать их размер при помощи исследования планетного света и обнаруживать газы, которые преобладают в атмосфере экзопланет.

Hobby-Eberly Telescope

Hobby-Eberly Telescope входит в десятку наиболее мощных телескопов на сегодняшний день с диаметром главного зеркала, превышающего девять метров. При его создании было использовано множество нововведений, что является одним из главных преимуществ данного прибора. Основное зеркало включает в себя 91 элемент, функционирующих как единое целое. Хобби - Эберли используется как для изучения нашей солнечной системы, так и для исследования внегалактических объектов. С помощью него было открыто несколько экзопланет.

SALT

SALT – полное название звучит, как Southern African Large Telescope. Оптический прибор имеет большое главное зеркало, диаметр которого равен одиннадцати метрам и состоит из массива зеркал. Расположился он на холме высотой почти 1,8 км неподалеку от провинции Сутерланд. С помощью данного устройства специалисты в области астрономии проводят исследования близлежащих галактик и находят новые планеты. Данное наимощнейшее астрономическое устройство позволяет проводить различного рода анализы излучения астрономических объектов.

LBT или Large Binocular Telescope в переводе на русский означает Большой бинокулярный телескоп. Является одним из самых передовых в технологическом плане приборов, который обладает максимальным оптическим разрешением в мире. Разместился он на высоте более чем 3 километров на горе под названием Грэхем. Устройство включает в себя пару громаднейших зеркал параболического типа диаметром в 8,4 м. Они установлены на общем креплении, отсюда и название «бинокулярный». По своей мощности астрономический прибор эквивалентен телескопу с одним зеркалом, имеющем диаметр более 11 метров. Благодаря необычному строению, устройство способно выдавать снимки одного объекта одновременно через разные фильтры. Это является одним из его главных преимуществ, ведь благодаря этому можно значительно сократить время на получение всей необходимой информации.

Keck I и Keck II

Keck I и Keck II расположились на самой вершине горы Мауна-Кеа, высота которой превышает 4 километра над уровнем моря. Данные астрономические приборы способны работать в режиме интерферометра, который используется в астрономии для телескопов с высоким разрешением. Они могут заменить телескоп с большой апертурой на решетку устройств с наименьшими апертурами, которые соединены по принципу интерферометра. Каждое из зеркал состоит из тридцати шести малых шестиугольных. Общий их диаметр составляет десять метров. Телескопы были созданы по системе Ричи – Кретьена. Управление устройствами близнецами ведется из офисов штаб-квартиры Ваймеа. Именно благодаря этим астрономическим агрегатам было найдено большинство планет, расположенных вне Солнечной системы.

GTC – данная аббревиатура в переводе на русский означает Большой Канарский телескоп. Прибор действительно имеет впечатляющие размеры. Данный оптический телескоп-рефлектор имеет самое огромное зеркало в мире, диаметр которого превышает десять метров. Оно сделано из 36 шестиугольных сегментов, которые были получены из стеклокристаллических материалов Zerodur. Данный астрономический прибор имеет активную и адаптивную оптику. Расположился он на самой вершине потухшего вулкана Мучачос на Канарских островах. Особенностью устройства является способность видеть различные объекты на очень большом расстоянии в миллиард более слабые, чем способен различать невооруженный человеческий глаз.

VLT или Very Large Telescope, что в переводе на русский означает «очень большой телескоп». Он представляет собой комплекс приборов такого типа. В него входят четыре отдельных и такое же количество оптических телескопов. Это самый большой оптический прибор в мире по общей площади зеркал. Также он оснащен максимальной разрешающей способностью в мире. Расположилось астрономическое устройство в Чили на высоте более 2,6 км на горе с названием Серро Параналь, расположенной в пустыне неподалеку от Тихого океана. Благодаря этому мощнейшему телескопическому устройству пару лет назад ученым наконец-то удалось получить четкие фотографии планеты Юпитер.

Где-то далеко в бескрайних пустынях, там, где нет привычной нам суеты и городских огней, где пики гор подпирают небосвод, стоят неподвижно гордые гиганты, взгляд которых всегда устремлен в необъятное звёздное небо. В то время как одни из них только собираются увидеть свои первые звёзды, другие уже десятилетиями исправно выполняют свой долг. Теперь нам предстоит узнать, где же расположен самый большой телескоп в мире, а также познакомиться с десяткой самых внушительных по своим размерам супер телескопов.

Именно этот телескоп и является самым большим в мире, так как его диаметр – 500 метров! FAST – космическая обсерватория, запуск которой произошел 25 сентября 2016 года в Китае. Основной целью этого гиганта является пристальное изучение всего бескрайнего космоса и поиск там заветных надежд на существование инопланетного разума.

Характеристики самого большого телескопа:

    Поверхность рефлектора – 4450 треугольных панелей;

    Частота работы – 70 МГц-3 ГГц;

    Собирающая площадь – 70000 м3;

    Длина волн – 0,3-5,1 ГГц;

    Фокусное расстояние – 140 м.

Обсерватория FAST – это довольно дорогой и значимый проект, запущенный еще в 2011 году. Его бюджет составил 180 млн долларов США. Власти страны проделали огромную работу для обеспечения корректной работы телескопа, при этом даже планируя переселить часть населения в радиусе 5-ти км для улучшения условий видимости.

В астрономической обсерватории Аресибо расположился один из самых внушительных по размеру телескопов. Официальное открытие произошло в 1963 году. Прибор для наблюдения за космосом диаметром 305 метров расположен в Пуэрто-Рико, в 15 км от города с одноименным названием. Обсерватория, которая управляется SRI International, задействована в строительстве радарных наблюдений за системой планет, в центре которых находится Солнце, а также в радиоастрономии и изучении других планет.

В западной Вирдгинии находится Green Bank Telescope. Данный параболический радиотелескоп строился на протяжении почти 11-ти лет, его диаметр 328 футов (100 метров). Сконструированный в 2002 году прибор можно направить вв любую точку на небе.

В западной Германии находится радиотелескоп Эффельсберг, который был сконструирован в 1968-1971 годах двадцатого века. Теперь права на управление прибором принадлежат сотрудникам Радиоастрономического института Макса Планка, расположенного в Бонне-Эндених. Диаметр этого радиотелескопа составляет 100 метров. Он предназначен для наблюдения за космическими источниками радио-, оптического, рентгеновского и/или гамма- излучений, которые приходят на Землю в виде периодических всплесков, а также формированием звёзд и отдалённых галактик.

Если проектирование инструмента для радиоастрономических наблюдений с высоким угловым разрешением закончится удачно, то у обсерватории SKA будет запас превзойти более чем в 50 раз крупнейших из ныне имеющихся телескопов. Её антенны смогут занять площадь до одного квадратного километра. По своей конструкции проект похож на ALMA телескоп, но по своим размерам он превосходит своего конкурента из Чили.

На данный момент в мире разработали два пути развития этих моментов: ведётся строительство 30 телескопов с 200 м антеннами либо же создание 90 и 150-ти метровых телескопов. Но по проектированию учёных обсерватория будет иметь протяжённость более 3000 км, а размещаться SKA будет на двух государствах: Южной Африканской Республике и Австралии. Цена проекта будет составлять около 2 миллиардов долларов, а стоимость проекта будет поделена между 10 государствами. Завершение проекта планируется в 2020 году.

На северо-западе Соединенного Королевства находится Jodrell Bank Observatory, где и расположился телескоп Ловелл, диаметр которого составляет 76 метров. Он был сконструирован в середине 20 века и назван именем своего творца Бернарда Ловелла. В списке открытий с помощью данного телескопа находится достаточно много достижений, наряду с которыми и самые важные, такие как доказательство существования пульсара и существование звездного ядра.

Данный телескоп был задействован на территории Украины с целью обнаружения планетоидов и космического треша, но позже, ему была поставлена задача посерьезней. В 2008 году, 9 октября, с телескопа RT-70 был послан сигнал к планете Gliese 581c, так называемой «Суперземле», который должен достигнуть ее пределов примерно в 2029 году. Возможно, мы получим ответный сигнал, если на Gliese 581c действительно обитают разумные существа. Диаметр данного телескопа составляет 230 футов (70 метров).

Комплекс известный как Авантюриновая Обсерватория находится на юго-западе США, в пустыне Мохаве. В мире существуют три таких комплекса, два из которых находятся в других точках земли: в Мадриде и в Канберре. Диаметр телескопа составляет 70 метров, так называемая антенна Марса. Спустя время Авантюрин был усовершенствован с целью получения более развернутой информации об астероидах, планетах, кометах и других небесных телах. Благодаря модернизации телескопа, список его достижений пополняется. Среди них и поисковые работы на Луне.

Название данного проекта – «Тридцатиметровый телескоп», так как диаметр его основного зеркала составляет 39,3 метра. Примечательно то, что он находится только на стадии проектирования, а вот проект E-ELT (European Extremely Large Telescope) – уже в процессе строительства. К 2025 году его планируют закончить и запустить на полную мощность.

Этот гигант с 798 подвижными зеркалами и 40 метровым основным зеркалом затмит все телескопы на земле. С помощью него откроются абсолютно новые перспективы в изучении других планет, особенно тех, что расположены за пределами Солнечной системы. Кроме того, с помощью этого телескопа можно будет изучать состав их атмосферы, а также размеры планет.

Кроме обнаружения таких планет, данный телескоп будет изучать сам космос, его развитие и зарождение, а также он будет измерять, насколько быстро расширяется Вселенная. Кроме того задачей телескопа будет являться проверка и подтверждение некоторых уже существующих данных и фактов, таких как постоянство во времени. Благодаря этому проекту, ученые смогут найти ответ на многие ранее неизвестные факты: зарождение планет, их химический состав, наличие жизненных форм и даже разума.

Этот проект имеет сходство с гавайским телескопом Keck, который имел когда-то огромный успех. У них достаточно схожие характеристики и технологии. Принцип работы этих телескопов заключается в том, что главное зеркало разделено на множество подвижных элементов, которые и дают такую мощь и супер возможности. Целью данного проекта является исследование самых отдаленных участков Вселенной, фото зарождающихся галактик, их динамика и рост.

По данным некоторых источников цена проекта достигает более чем 1 миллиард долларов. Желающие поучаствовать в столь масштабном проекте сразу объявили о себе и о своём желании частично финансировать строительство TMT. Ими стали Китай и Индия. Тридцатиметровый телескоп планируется строить на Гавайских островах, на горе Мауна Кеа, но правительство Гавайев до сих пор не может решить проблему с коренными жителями, так как они против строительства на священном месте. Попытки договориться с местными продолжаются, а успешный финал строительства супер гиганта назначен на 2022 год.