Сформулируйте определения импульс тела импульс силы. Импульс тела. Импульс силы

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 –3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = –2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Импульс силы и импульс тела

Как было показано, второй закон Ньютона может быть записан в виде

Ft=mv-mv o =p-p o =D p.

Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы . Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела .

В СИ за единицу импульса принят импульс тела массой 1 кг, движущегося со скоростью 1 м/с, т.е. единицей импульса является килограммметр в секунду (1 кг·м/с).

Изменение импульса тела D p за время t равно импульсу силы Ft, действующей на тело в течение этого времени.

Понятие импульса является одним из фундаментальных понятий физики. Импульс тела является одной из величин, способных при определенных условиях сохранять свое значение неизменным (но модулю, и по направлению).

Сохранение полного импульса замкнутой системы

Замкнутой системой называют группу тел, не взаимодействующих ни с какими другими телами, которые не входят в состав этой группы. Силы взаимодействия между телами, входящими в замкнутую систему, называют внутренними . (Внутренние силы обычно обозначают буквой f).

Рассмотрим взаимодействие тел внутри замкнутой системы. Пусть два шара одинакового диаметра, изготовленные из разных веществ (т. е. имеющие разные массы), катятся по идеально гладкой горизонтальной поверхности и сталкиваются друг с другом. При ударе, который мы будем считать центральным и абсолютно упругим, изменяются скорости и импульсы шаров. Пусть масса первого шара m 1 , его скорость до удара V 1 , а после удара V 1 "; масса второго шара m 2 , его скорость до удара v 2 , после удара v 2 ". Согласно третьему закону Ньютона, силы взаимодействия между шарами равны по модулю и противоположны по направлению, т.е. f 1 =-f 2 .

Согласно второму закону Ньютона, изменение импульсов шаров в результате их соударения равно импульсам сил взаимодействия между ними, т. е.

m 1 v 1 "-m 1 v 1 =f 1 t (3.1)

m 2 v 2 "-m 2 v 2 =f 2 t (3.2)

где t - время взаимодействия шаров.
Почленно сложив выражения (3.1) и (3.2), найдем, что

m 1 v 1 "-m 1 v 1 +m 2 v 2 "-m 2 v 2 =0.

Следовательно,

m 1 v 1 "+m 2 v 2 "=m 1 v 1 +m 2 v 2

или иначе

p 1 "+p 2 "=p 1 +p 2 . (3.3)

Обозначим р 1 "+р 2 "=р" и р 1 +р 2 =p.
Векторную сумму импульсов всех тел, входящих в систему, называют полным импульсом этой системы . Из (3.3) видно, что р"=р, т.е. р"-р=D р=0, следовательно,

p=p 1 +p 2 =const.

Формула (3.4) выражает закон сохранения импульса в замкнутой системе , который формулируют так: полный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.
Иными словами, внутренние силы не могут изменить полного импульса системы ни по модулю, ни по направлению.

Изменение полного импульса незамкнутой системы

Группу тел, взаимодействующих не только между собой, но и с телами, не входящими в состав этой группы, называют незамкнутой системой . Силы, с которыми на тела данной системы действуют тела, не входящие в эту систему, называют внешними (обычно внешние силы обозначают буквой F).

Рассмотрим взаимодействие двух тел в незамкнутой системе. Изменение импульсов данных тел происходит как под действием внутренних сил, так и под действием внешних сил.

Согласно второму закону Ньютона, изменения импульсов рассматриваемых тел у первого и второго тел составляют

D р 1 =f 1 t+F 1 t (3.5)

D р 2 =f 2 t+F 2 t (3.6)

где t - время действия внешних и внутренних сил.
Почленно сложив выражения (3.5) и (3.6), найдем, что

D (p 1 +p 2)=(f 1 +f 2)t +(F 1 +F 2)t (3.7)

В этой формуле р=р 1 +р 2 - полный импульс системы, f 1 +f 2 =0 (так как по третьему закону Ньютона (f 1 =-f 2), F 1 +F 2 =F - равнодействующая всех внешних сил, действующих на тела данной системы. С учетом сказанного формула (3.7) принимает вид

D р=Ft. (3.8)

Из (3.8) видно, что полный импульс системы изменяется только под действием внешних сил. Если же система замкнутая, т. е. F=0, то D р=0 и, следовательно, р=const. Таким образом, формула (3.4) является частным случаем формулы (3.8), которая показывает, при каких условиях полный импульс системы сохраняется, а при каких - изменяется.

Реактивное движение.
Значение работ Циолковского для космонавтики

Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным .

Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противо-положную сторону. Действительно, так как m 1 v 1 +m 2 v 2 =0, то m 1 v 1 =-m 2 v 2 , т. е.

v 2 =-v 1 m 1 /m 2 .

Из этой формулы следует, что скорость v 2 , получаемая системой с массой m 2 , зависит от выброшенной массы m 1 и скорости v 1 ее выбрасывания.

Тепловой двигатель, в котором сила тяги, возникающая за счет реакции струи вылетающих раскаленных газов, приложена непосредственно к его корпусу, называют реактивным. В отличие от других транспортных средств устройство с реактивным двигателем может двигаться в космическом пространстве.

Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов. Идеи Циолковского успешно осуществлены в СССР при постройке искусственных спутников Земли и космических кораблей.

Основоположником практической космонавтики является советский ученый академик Королев (1906 - 1966). Под его руководством был создан и запущен первый в мире искусственный спутник Земли, состоялся первый в истории человечества полет человека в космос. Первым космонавтом Земли стал советский человек Ю.А. Гагарин (1934 - 1968).

Вопросы для самоконтроля:

  • Как записывают второй закон Ньютона в импульсной форме?
  • Что называют импульсом силы? импульсом тела?
  • Какую систему тел называют замкнутой?
  • Какие силы называют внутренними?
  • На примере взаимодействия двух тел в замкнутой системе покажите, как устанавливают закон сохранения импульса. Как его формулируют?
  • Что называют полным импульсом системы?
  • Могут ли внутренние силы изменить полный импульс системы?
  • Какую систему тел называют незамкнутой?
  • Какие силы называют внешними?
  • Установите формулу, показывающую, при каких условиях полный импульс системы изменяется, а при каких - сохраняется.
  • Какое движение называют реактивным?
  • Может ли оно происходить без взаимодействия движущегося тела с окружающей средой?
  • На каком законе основано реактивное движение?
  • Каково значение работ Циолковского для космонавтики?

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.