Случайные функции и их характеристики (примеры). Комплексные случайные функции и их характеристики

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj( 4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

СЕВАСТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

М.М. Гхашим, Т.В.Чернэуцану

СЛУЧАЙНЫЕ ФУНКЦИИ

Учебное пособие

Утверждено

ученым советом института

Севастополь


Гхашим М.М., Т.В.Чернэуцану

Случайные функции: учеб.-метод. пособие. – Севастополь: СевГУ, 2015.

В данном пособии рассмотрены три основных раздела: « », « », « ». Каждый из разделов включает в себя основные вопросы теории, разбор типовых примеров, задания для самостоятельной работы с ответами к ним.

предназначено для студентов третьего курса при изучении темы « ».

Рецензенты:

к.ф.-м..,

к.т.н, доцент

нк.ф.-м.н доцент

© Издание СевГУ, 2015

§ 1. Понятие о случайной функции……………………………………

§ 2. Характеристики случайных функций……………………………

§ 3. Оператор динамической системы……………………………….

§ 4. Линейные преобразования случайных функций………………

§ 5. Стационарные случайные процессы ……………………

§ 6. Спектральное разложение стационарной случайной функции………

§ 7. Эргодическое свойство стационарных случайных функций………….

Решение типовых задач………………………………………………..

Задачи для самостоятельного решения………………………………

ЛИТЕРАТУРА………………………………………………………………

Случайные функции

Понятие о случайной функции.

В курсе теории вероятностей основным предметом исследования были случайные величины, которые характеризовались тем, что в результате опыта принимали некоторое одно, заранее неизвестное, но единственное значение. Т.е., случайные явления изучались как бы в «статике», в каких-то фиксированных постоянных условиях отдельного опыта. Однако на практике часто приходится иметь дело со случайными величинами, непрерывно изменяющимися в процессе опыта. Например, угол упреждения при непрерывном прицеливании по движущейся цели; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения, и т.д. В принципе, любые системы с автоматизированным управлением предъявляют определенные требования к соответствующей теоретической базе – теории автоматического управления. Развитие этой теории невозможно без анализа ошибок, неизбежно сопровождающих процессы управления, которые всегда протекают в условиях непрерывно действующих случайных возмущений или «помех». Эти возмущения по своей природе являются случайными функциями. Итак:



Определение . Случайной функцией X (t ) называют функцию неслучайного аргумента t , которая при каждом фиксированном значении аргумента является случайной величиной.

Конкретный вид, принимаемый случайной функцией X (t ) в результате опыта, называется реализацией случайной функции.

Пример . Самолет на воздушном курсе имеет теоретически постоянную воздушную скорость V . Фактически его скорость колеблется около этого среднего номинального значения и представляет собой случайную функцию времени. Полет можно рассматривать как опыт, в котором случайная функция V (t ) принимает определенную реализацию (Рис.1).


От опыта к опыту вид реализации меняется. Если на самолете установлен самописец, то он в каждом полете запишет новую, отличную от других, реализацию случайной функции. В результате нескольких полетов можно получить семейство реализаций случайной функции V (t ) (Рис.2).

На практике встречаются случайные функции, зависящие не от одного аргумента, а от нескольких, например, состояние атмосферы (температура, давление, ветер, осадки). В данном курсе мы будем рассматривать только случайные функции одного аргумента. Так как этим аргументом чаще всего является время, будем обозначать его буквой t . Кроме того, условимся обозначать случайные функции большими буквами (X (t ), Y (t ), …) в отличие от неслучайных функций (x (t ), y (t ), …).

Рассмотрим некоторую случайную функцию X (t ). Предположим, что над ней произведено n независимых опытов, в результате которых получено n реализаций, которые мы обозначим соответственно номерам опытов x 1 (t ), x 2 (t ), …, x n (t ). Очевидно, каждая реализация есть обычная (не случайная) функция. Таким образом, в результате каждого опыта случайная функция X (t ) превращается в не случайную функцию.

Зафиксируем теперь некоторое значение аргумента t . В этом случае случайная функция X (t ) превратится в случайную величину.

Определение. Сечением случайной функции X (t ) называют случайную величину, соответствующую фиксированному значению аргумента случайной функции.

Мы видим, что случайная функция совмещает в себе черты случайной величины и функции. В дальнейшем часто будем попеременно рассматривать одну и ту же функцию X (t ) то как случайную функцию, то как случайную величину, в зависимости от того, рассматривается ли она на всем диапазоне изменения t или при его фиксированном значении.

Рассмотрим случайную величину X (t ) – сечение случайной функции в момент t . Эта случайная величина, очевидно, обладает законом распределения, который в общем случае зависит от t . Обозначим его f (x , t ). Функция f (x , t ) называется одномерным законом распределения случайной функции X (t ).

Очевидно, функция f (x , t ) не является полной, исчерпывающей характеристикой случайной функции X (t ), т.к. она характеризует только закон распределения X (t ) для данного, хотя и произвольного t и не отвечает на вопрос о зависимости случайных величин X (t ) при различных t . С этой точки зрения более полной характеристикой случайной функции X (t ) является так называемый двумерный закон распределения : f (x 1 , x 2 ; t 1 , t 2). Это – закон распределения системы двух случайных величин X (t 1), X (t 2), т.е. двух произвольных сечений случайной функции X (t ). Но и эта характеристика в общем случае не является исчерпывающей. Очевидно, теоретически можно неограниченно увеличивать число аргументов и получать все более полную характеристику случайной функции, но оперировать столь громоздкими характеристиками, зависящими от многих аргументов, крайне затруднительно. В пределах данного курса мы вообще не будем пользоваться законами распределения, а ограничимся рассмотрением простейших характеристик случайных функций, аналогичных числовым характеристикам случайных величин.

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательность – временным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы

Мы имели много случаев убедиться в том, какое большое значение в теории вероятностей имеют основные числовые характеристики случайных величин: математическое ожидание и дисперсия - для одной случайной величины, математические ожидания и корреляционная матрица - для системы случайных величин. Искусство пользоваться числовыми характеристиками, оставляя по возможности в стороне законы распределения, - основа прикладной теории вероятностей. Аппарат числовых характеристик представляет собой весьма гибкий и мощный аппарат, позволяющий сравнительно просто решать многие практические задачи.

Совершенно аналогичным аппаратом пользуются и в теории случайных функций. Для случайных функций также вводятся простейшие основные характеристики, аналогичные числовым характеристикам случайных величин, и устанавливаются правила действий с этими характеристиками. Такой аппарат оказывается достаточным для решения многих практических задач.

В отличие от числовых характеристик случайных величин, предоставляющих собой определенные числа, характеристики случайных функций представляют собой в общем случае не числа, а функции.

Математическое ожидание случайной функции определяется следующим образом. Рассмотрим сечение случайной функции при фиксированном . В этом сечении мы имеем обычную случайную величину; определим ее математическое ожидание. Очевидно, в общем случае оно зависит от , т. е. представляет собой некоторую функцию :

. (15.3.1)

Таким образом, математическим ожиданием случайной функции называется неслучайная функция , которая при каждом значении аргумента равна математическому ожиданию соответствующего сечения случайной функции.

По смыслу математическое ожидание случайной функции есть некоторая средняя функция, около которой различным образом варьируются конкретные реализации случайной функции.

На рис. 15.3.1 тонкими линиями показаны реализации случайной функции, жирной линией - ее математическое ожидание.

Аналогичным образом определяется дисперсия случайной функции.

Дисперсией случайной функции называется неслучайная функция , значение которой для каждого равно дисперсии соответствующего сечения случайной функции:

. (15.3.2)

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции.

Очевидно, есть неотрицательная функция. Извлекая из нее квадратный корень, получим функцию - среднее квадратическое отклонение случайной функции:

. (15.3.3)

Математическое ожидание и дисперсия представляют собой весьма важные характеристики случайной функции; однако для описания основных особенностей случайной функции этих характеристик недостаточно. Чтобы убедиться в этом, рассмотрим две случайные функции и , наглядно изображенные семействами реализаций на рис. 15.3.2 и 15.3.3.

У случайных функций и примерно одинаковые математические ожидания и дисперсии; однако характер этих случайных функций резко различен. Для случайной функции (рис. 15.3.2) характерно плавное, постепенное изменение. Если, например, в точке случайная функция приняла значение, заметно превышающее среднее, то весьма вероятно, что и в точке она также примет значение больше среднего. Для случайной функции характерна ярко выраженная зависимость между ее значениями при различных . Напротив, случайная функция (рис. 15.3.3) имеет резко колебательный характер с неправильными, беспорядочными колебаниями. Для такой случайной функции характерно быстрое затухание зависимости между ее значениями по мере увеличения расстояния по между ними.

Очевидно, внутренняя структура обоих случайных процессов совершенно различна, но это различие не улавливается ни математическим ожиданием, ни дисперсией; для его описания необходимо вести специальную характеристику. Эта характеристика называется корреляционной функцией (иначе - автокорреляционной функцией). Корреляционная функция характеризует степень зависимости между сечениями случайной функции, относящимися к различным .

Пусть имеется случайная функция (рис. 15.3.4); рассмотрим два ее сечения, относящихся к различным моментам: и , т. е. две случайные величины и . Очевидно, что при близких значениях и величины и связаны тесной зависимостью: если величина приняла какое-то значение, то и величина с большой вероятностью примет значение, близкое к нему. Очевидно также, что при увеличении интервала между сечениями , зависимость величин и вообще должна убывать.

Степень зависимости величин и может быть в значительной мере охарактеризована их корреляционным моментом; очевидно, он является функцией двух аргументов и . Эта функция и называется корреляционной функцией.

Таким образом, корреляционной функцией случайной функции называется неслучайная функция двух аргументов , которая при каждой паре значений , равна корреляционному моменту соответствующих сечений случайной функции:

, (15.3.4)

, .

Вернемся к примерам случайных функций и (рис. 15.3.2 и 15.3.3). Мы видим теперь, что при одинаковых математических ожиданиях и дисперсиях случайные функции и имеют совершенно различные корреляционные функции. Корреляционная функция случайной функции медленно убывает по мере увеличения промежутка ; напротив, корреляционная функция случайной функции быстро убывает с увеличением этого промежутка.

Выясним, во что обращается корреляционная функция , когда ее аргументы совпадают. Полагая , имеем:

, (15.3.5)

т. е. при корреляционная функция обращается в дисперсию случайной функции.

Таким образом, необходимость в дисперсии как отдельной характеристике случайной функции отпадает: в качестве основных характеристик случайной функции достаточно рассматривать ее математическое ожидание и корреляционную функцию.

Так как корреляционный момент двух случайных величин и не зависит от последовательности, в которой эти величины рассматриваются, то корреляционная функция симметрична относительно своих аргументов, т. е. не меняется при перемене аргументов местами:

. (15.3.6)

Если изобразить корреляционную функцию в виде поверхности, то эта поверхность будет симметрична относительно вертикальной плоскости , проходящей через биссектрису угла (рис. 15.3.5).

Заметим, что свойства корреляционной функции естественно вытекают из свойств корреляционной матрицы системы случайных величин. Действительно, заменим приближенно случайную функцию системой случайных величин . При увеличении и соответственном уменьшении промежутков между аргументами корреляционная матрица системы, представляющая собой таблицу о двух входах, в пределе переходит в функцию двух непрерывно изменяющихся аргументов, обладающую аналогичными свойствами. Свойство симметричности корреляционной матрицы относительно главной диагонали переходит в свойство симметричности корреляционной функции (15.3.6). По главной диагонали корреляционной матрицы стоят дисперсии случайных величин; аналогично при корреляционная функция обращается в дисперсию .

На практике, если требуется построить корреляционную функцию случайной функции , обычно поступают следующим образом: задаются рядом равноотстоящих значений аргумента и строят корреляционную матрицу полученной системы случайных величин. Эта матрица есть не что иное, как таблица значений корреляционной функции для прямоугольной сетки значений аргументов на плоскости . Далее, путем интерполирования или аппроксимации можно построить функцию двух аргументов .

Вместо корреляционной функции можно пользоваться нормированной корреляционной функцией:

, (15.3.7)

которая представляет собой коэффициент корреляции величин , . Нормированная корреляционная функция аналогична нормированной корреляционной матрице системы случайных величин. При нормированная корреляционная функция равна единице.