Способы уменьшения трения. Как увеличить трение Как увеличивается и уменьшается сила трения

Анатолий ШМЕЛЕВ

Когда еще в 2004 году я читал лекцию для литовских перевозчиков и дошел до объяснения роли трения, страховщик, который организовал эту лекцию, воскликнул: “Я знаю, как избежать этих глупых убытков: надо в каждую машину раздать по несколько ковриков противоскольжения!». Надеюсь, что и читатель поймет всю важность трения, прочитав эту статью, и примет соответствующие меры.

1. Теория. Классификация основных видов трения

При соприкосновении движущихся (или приходящих в движение) тел с другими телами, а также с частицами вещества окружающей среды возникают силы, препятствующие такому движению. Эти силы называют силами трения . Действие сил трения всегда сопровождается превращением механической энергии во внутреннюю и вызывает нагревание тел и окружающей их среды.

Существует внешнее и внутреннее трение, иначе называемое вязкостью . Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению. В креплении грузов этот вид трения рассматривается только при исследовании современных прокладочных материалов, изготовленных из резины и полимеров. В данной статье мы не будем детально рассматривать внутреннее трение.

Внешнее трение подразделяют на трение покоя (статическое трение ) и кинематическое трение . Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Трение покоя

Наблюдения показывают, что сила трения покоя всегда направлена противоположно действующей на тело внешней силе, стремящейся привести это тело в движение. До определенного момента сила трения покоя увеличивается с возрастанием внешней силы, уравновешивая последнюю.

По третьему закону Ньютона сила F G давления тела на опору равна по модулю силе F N реакции опоры. Поэтому максимальная сила трения покоя пропорциональна силе реакции опоры. Для модулей этих сил справедливо следующее соотношение:

F F =  S F N ,

где  S - безразмерный коэффициент пропорциональности, называемый коэффициентом трения покоя . Значение этого коэффициента зависит от материала и состояния трущихся поверхностей.

Считается, что в состоянии покоя между двумя телами существует притяжение на молекулярном уровне, которое исчезает после начала взаимного движения тел.

При расчетах необходимого крепления согласно «Руководству по укладке грузов в грузовые транспортные единицы» (ГТЕ) принимается к учету именно трение покоя.

Трение скольжения

Трение скольжения возникает при скольжении одного твердого тела по поверхности другого. Закон для трения скольжения имеет вид:

F F =  D F N ,

где F F - модуль силы трения скольжения;  D - безразмерный коэффициент трения скольжения или динамический коэффициент трения; F N - модуль силы реакции опоры. Значение  D зависит от того, из каких веществ изготовлены трущиеся поверхности и от качества их обработки. Если сделать поверхности более гладкими, значение  D уменьшится. Однако уменьшать шероховатость поверхностей можно лишь до определенного предела, так как при очень гладких (например, полированных) поверхностях значение  D вновь увеличивается. Происходит это потому, что молекулы тел с гладкими поверхностями близко подходят друг к другу и силы молекулярного притяжения между ними вызывают "прилипание" тел, препятствующее их скольжению.

Принято считать, что коэффициент трения скольжения равен 70 % коэффициента трения покоя. В какой-то степени это правильно для пар твердых материалов, таких как древесина, металлы и др., но исследования свойств полимерных материалов, увеличивающих трение, показали, что такая зависимость существует не всегда.

Стандарт EN 12195-1 “Устройства крепления груза на автомобилях. Часть 1: Расчет сил крепления” требует, чтобы к расчету принималось трение скольжения. В период транспортирования из-за вибрации грузовая единица совершает микроперемещения, молекулярное притяжение между грузом и грузовой платформой уже нарушено.

Трение качения

Трение качения возникает при качении (без скольжения) твердых тел круглой формы по поверхности других твердых тел. В креплении грузов данный вид трения рассматривается крайне редко. Рекомендуется блокировать колеса и колесики грузовых единиц и применять коэффициенты трения покоя и скольжения. Однако эффект трения качения следует учитывать, когда груз погружен в неподметенное транспортное средство на остатки груза, например гранулы или просто щепки. В этом случае возникает эффект качения, и коэффициент трения качения значительно меньше коэффициента трения скольжения и в некоторых случаях стремится к нулю.

Поэтому наиважнейшим вспомогательным средством крепления в арсенале водителя транспортного средства является щетка.

2. Основные формулы крепления

Условие несмещаемости груза

«Сумма сил трения и крепления равна или больше смещающей силы, возникающей при изменении условий движения (торможение, начало движения, поворот или смена полосы).

При блокировке это условие выглядит следующим образом:

F B + F F = F X , Y ,

F B + F F = F X , Y ,

F B + m c z g = m c x , y g ,

F B = ( c x , y - c z ) m g ,

масса груза;

ускорение свободного падения;

c x , c y , и c z

коэффициент трения.

Мы рассматриваем автомобильную транспортировку, где Cz = 1.

Таким образом, когда сила трения будет равна смещающей силе, т.е. когда соответствующие коэффициенты ускорения равны коэффициенту трения – нет необходимости в дополнительном креплении груза.

При креплении растяжками это условие выглядит следующим образом:

(иллюстрация из стандарта EN 12195-1)

Расчет по стандарту EN 12195-1

Крепление четырехтонного станка от смещения вперед 4 растяжками.

Вертикальный угол установки ремней a = 20 - 65º.

Горизонтальный угол установки ремней b = 6 - 55º.

При коэффициенте трения  = 0,2 требуемая рабочая нагрузка растяжек LC = 4000 daN.

При коэффициенте трения  = 0,3 требуемая рабочая нагрузка растяжек LC = 2000 daN.

При коэффициенте трения  = 0,6 требуемая рабочая нагрузка растяжек LC = 750 daN.

При коэффициенте трения  = 0,8 требуемая рабочая нагрузка растяжек LC = 0. В креплении нет необходимости.

Крепление прижимом

F

необходимая сила натяжения ремней;

m

масса груза;

g

ускорение свободного падения;

c x , c y , и c z

соответствующие коэффициенты ускорения;

коэффициент трения;

вертикальный угол установки ремней;

коэффициент передачи.

Если мы посмотрим, как будет изменяться количество ремней при изменении коэффициента трения, то увидим, что трение является наиважнейшим элементом крепления.

расчет по стандарту EN 12195-1.

Крепление четырехтонного станка от смещения вперед прижимными ремнями с прижимающей силой STF=250 daN.

Вертикальный угол установки ремней a = 60º.

Коэффициент ускорения C X = 0,8

При коэффициенте трения  = 0,3 требуемое количество ремней – 21 шт.

При коэффициенте трения  = 0,6 требуемое количество ремней – 5 шт.

При коэффициенте трения = 0,8 требуемое количество ремней – 0.

Другой пример иллюстрируется диаграммой компании Dolezych, которая иллюстрирует, как изменяется количество требуемых ремней с прижимающей силой STF = 750 daN при креплении груза весом 25 т.

О чем следует помнить всегда – о том, что трение само по себе не может являться единственным средством крепления. Всегда существует опасность, что на неровной дороге может исчезнуть сцепление груза и транспортного средства.

3. Основные способы увеличения коэффициента трения

1. Дооборудование кузова:

Установка специальных «зацепов», увеличивающих сцепление груза и настила грузовой платформы;

Покрытие настила кузова специальными составами, увеличивающими трение.

2. Использование специальных прокладок между грузом и настилом кузова:

Металлические шайбы с зубчиками;

Деревянные прокладки и другие материалы, увеличивающие коэффициент трения;

Специально изготовленные резиновые коврики с гарантированным коэффициентом трения.

Подкладочные материалы и прокладки, сделанные из материалов с повышенным коэффициентом трения, могут использоваться для увеличения трения между грузовой площадкой и грузом, а также между грузовыми ярусами, если необходимо. Существуют различные типы противоскользящих материалов, например коврики, резиновые маты и листы бумаги, покрытые составами, увеличивающими трение. Они должны иметь соответствующие коэффициент трения, прочность и толщину, чтобы обеспечить крепление груза на протяжении всей транспортировки. Коэффициент трения должен быть подтвержден производителем.

Использование противоскользящих материалов позволяет уменьшить количество требуемых креплений. Очень часто материал используется в виде квадратных кусков, отрезаемых от полосы, длиной от 5 до 20 м и 150, 200 или 250 мм шириной. Толщина варьируется от 3 до 10 мм. Такие куски можно использовать многократно – до десяти раз, но следует учитывать, что функциональность снижается, если прокладки становятся промасленными.

4. Основные различия между стандартами по трению

Напомню, что в Европе существуют два стандарта по креплению грузов:

1) руководство IMO/ ILO/ UN ECE Guidelines for Packing of Cargo Transport Units (CTUs),в переводе на русский «Руководство по укладке грузов в грузовые транспортные единицы» (ГТЕ);

2) стандарт EN 12195-1 “Устройства крепления груза на автомобилях. Часть 1: Расчет сил крепления”.

Оба эти стандарта используют различные начальные данные для расчета количества креплений.

Несмотря на различия в стандартах, все применяемые методы крепления учитывают силу трения, увеличение которой значительно уменьшает требуемое количество средств крепления. Целенаправленное использование покрытий с повышенным коэффициентом трения дает очень значительный экономический эффект.

Например, в Германии был опубликован расчет силы трения, а также перечень материалов с повышенным коэффициентом трения в приложениях 14 и 15 к стандарту VDI 2700. Приложение 14 устанавливает порядок определения коэффициента трения, а приложение 15 дает список материалов с увеличенным коэффициентом трения.

Появление этих двух приложений позволило упорядочить правильное применение материалов и дало толчок к развитию исследований и производства специальных материалов с повышенным коэффициентом трения, сертифицированных производителем и обладающим дополнительными техническими характеристиками, которые позволяют обеспечить сохранную транспортировку грузов. Кроме того, производитель дает гарантию на эти материалы. Примеры таких прокладочных материалов приведены на фотографиях.

А в Российской Федерации…

Единственный документ, который хоть как-то рекомендует применение материалов с повышенным коэффициентом трения, – это «Правила безопасной морской перевозки грузов», утвержденные приказом Минтранса России от 21 апреля 2003 г. N ВР-1/п.

Приложение № 4 Справочное.

Технические характеристики материалов с повышенным коэффициентом трения

1. Бризол марок БР-С и БР-П по ТУ 38.1051819-88 представляет собой безосновный материал, изготовленный методом вальцевания и последующего каландирования смеси, состоящей из нефтяного битума, дробленой резины (из старых автопокрышек), асбеста и пластификатора. Бризол поставляется в рулонах шириной 425 - 1000 мм. Длина полотна в рулоне 10 - 50 м.

2. Рубероид представляет собой картон по ГОСТ 3135, пропитанный мягкими нефтяными битумами (кровельными) по ГОСТ 9548 с последующим нанесением на обе стороны полотна тугоплавкого битума с наполнителем и крупнозернистой посыпкой с одной стороны полотна. Рубероид поставляется в рулонах шириной 1000 - 1050 мм. Длина полотна в рулоне 10 - 15 м. Токсичных веществ при нагревании до 70 ºС рубероид не выделяет.

3. Изол по ГОСТ 10296 представляет собой безосновный биостойкий гидро- и пароизоляционный материал, получаемый из резинобитумного вяжущего вещества, пластификатора, наполнителя, антисептика и полимерных добавок. Поставляется в виде рулонов из полотна толщиной 2 мм, шириной 800 или 1000 мм и длиной 10 или 15 м.

4. Стеклорубероид по ГОСТ 15879 представляет собой кровельный и гидроизоляционный материал на стекловолокнистой основе, получаемый путем двустороннего нанесения битумного вяжущего вещества на стекловолокнистый холст. Поставляется в виде полотна толщиной 2,5 мм, шириной 960 или 1000 мм и площадью 10 м, свернутого в рулоны. Выпускается с крупнозернистой (С-РК), мелкозернистой (С-РМ) или чешуйчатой (С-РЧ) посыпкой с лицевой стороны и мелкой (пылевидной) с нижней стороны. Применение стеклорубероида с чешуйчатой посыпкой (С-РЧ) для целей крепления груза не допускается.

5. Древесина преимущественно малоценных пород в виде досок, брусьев, клиньев и фанеры.

6. Другие виды специальных материалов с повышенным коэффициентом трения или клеящим эффектом.

При расчетах смещаемости грузов следует применять значения коэффициентов трения, выделенные жирно в таблице п. 4.1, если в информации о грузе не указаны иные значения.

Таблица п. 4.1.

Пара трения

Коэффициент трения покоя , f

Arctg (f) ,

градусы

Чугун по стали

Чугун по дереву

Чугун по бризолу, рубероиду

Сталь по стали

Сталь по дереву

0,3/0,4/0,5 – 0,6 (0,5)

Сталь по резине

0,5/0,6/0,7 (0,6)

Сталь по рубероиду

Дерево по дереву

0,45/0,65/ (0,55)

Резина по деореву

Мешковина (джут) по мешковине

Мешковина по стали

Мешковина по дереву

Железобетон по дереву

Бумага по бумаге

Бумага по стали

Бумага по дереву




Движение по скользкой поверхности Ходить по льду нелегко, т.к. трение, возникающее между поверхностью льда и подошвой обуви, мало. Ходить по льду нелегко, т.к. трение, возникающее между поверхностью льда и подошвой обуви, мало. Как можно облегчить хождение по скользкой поверхности? Как можно облегчить хождение по скользкой поверхности?




Опорный конспект ПОЛЬЗА ВРЕД ПОЛЬЗА ВРЕД 1. F тр. пок. – «движущая сила» 1. Препятствует движению 2. «тормозящая сила» 2. Изнашивает поверхность УВЕЛИЧИТЬ УМЕНЬШИТЬ УВЕЛИЧИТЬ УМЕНЬШИТЬ а) шероховатость («песок») а) смазка б) «нагрузить» б) подшипники F тр. кач.


Уменьшение силы трения Во-первых, мы знаем, трение бывает не всегда твердым, хотя именно от него в тысячах ситуаций стремятся избавиться. Например, смазывают детали механизмов и машин, чтобы уменьшить их износ и не терять впустую энергию, уходящую на бесполезный нагрев.




Уменьшение силы трения Подшипники Внутреннее кольцо подшипника насаживают на вал, который при вращении не скользит, а катится на шариках или роликах. Внутреннее кольцо подшипника насаживают на вал, который при вращении не скользит, а катится на шариках или роликах.








Воздушная подушка Суда на воздушной подушке - это аппараты, поддерживающие себя над опорной (земной или водной) поверхностью с помощью воздушной подушки, создаваемой судовыми вентиляторами. В отличие от обычных судов и колесного транспорта суда на воздушной подушке (СВП) не имеют физического контакта с поверхностью, над которой движутся





Вы никогда не задумывались, почему ваши руки становятся теплыми, когда вы трете их друг о друга, или почему трением двух деревяшек можно добыть огонь? Ответ – трение! Когда два тела перемещаются относительно друг друга, появляется сила трения, препятствующая такому перемещению. Трение может вызвать высвобождение энергии в виде тепла, согревая руки, высекая огонь и так далее. Чем больше трение, тем больше энергии высвобождается, поэтому, увеличив трение между движущимися частями в механической системе, вы получите немало тепла!

Шаги

Поверхности трущихся тел

    Когда два тела перемещаются относительно друг друга, могут возникнуть следующие три процесса: неровности на поверхности тел мешают движению тел относительно друг друга; одна или обе поверхности тел могут деформироваться в результате такого перемещения; атомы каждой поверхности могут взаимодействовать друг с другом. Все перечисленные процессы участвуют в возникновении трения. Поэтому для увеличения трения выберите тела с абразивной поверхностью (например, наждачная бумага), с деформируемой поверхностью (например, резиновой) или с поверхностью, имеющей адгезивные свойства (например, липкую).

    Сильнее прижмите тела друг к другу, чтобы увеличить трение, так как сила трения пропорциональна силе, действующей на трущееся тела (силе, направленной перпендикулярно направлению перемещения тел относительно друг друга).

    Если одно тело находится в движении, остановите его. До сих пор мы рассматривали трение скольжения, возникающее при перемещении тел относительно друг друга. Трение скольжения намного меньше трения покоя, то есть силы, которую необходимо преодолеть для того, чтобы привести два контактирующих тела в движение. Поэтому труднее сдвинуть с места тяжелый предмет, чем управлять им, когда он уже движется.

    • Проведите простой эксперимент, чтобы понять разницу между трением скольжения и трением покоя. Поставьте стул на гладкий пол (не на ковер). Убедитесь, что на ножках стула нет резиновых или других накладок, препятствующих его скольжению. Толкните стул, чтобы передвинуть его. Вы заметите, что как только стул пришел в движение, вам стало легче толкать его, потому что трение скольжения между стулом и полом меньше трения покоя.
  1. Избавьтесь от смазки между двумя поверхностями, чтобы увеличить трение. Смазочные материалы (масла, вазелин и так далее) значительно уменьшают силу трения между трущимися телами, потому что коэффициент трения между твердыми телами значительно выше коэффициента трения между твердым телом и жидкостью.

    • Проведите простой эксперимент. Потрите сухие руки друг о друга, и вы заметите, что их температура повысилась (они согрелись). Теперь намочите руки и потрите их еще раз. Теперь вам не только легче тереть руки друг о друга, но и нагреваются они меньше (или медленнее).
  2. Избавьтесь от подшипников, колес и других катящихся тел, чтобы избавиться от трения качения и получить трение скольжения, которое намного больше первого (поэтому катить одно тело относительно другого проще, чем толкать/тянуть его).

    • Например, представьте, что вы положили тела одинаковой массы в сани и на колесную тележку. Тележку с колесами намного легче передвигать (трение качения), чем сани (трение скольжения).
  3. Увеличьте вязкость жидкости, чтобы увеличить силу трения. Трение имеет место не только при перемещении твердых тел, но и в жидкостях и газах (вода и воздух, соответственно). Трение между жидкостью и твердым телом зависит от нескольких факторов, например, вязкости жидкости – чем больше вязкость жидкости, тем больше сила трения.

    Лобовое сопротивление

    1. Увеличьте площадь поверхности тела. Как отмечалось выше, при движении твердых тел в жидкостях и газах также возникает сила трения. Сила, препятствующая движению тел в жидкостях и газах, называется лобовым сопротивлением (иногда его называют сопротивлением воздуха или сопротивлением воды). Лобовое сопротивление больше при увеличении площади поверхности тела, которая направлена перпендикулярно направлению движения тела сквозь жидкость или газ.

      • Например, возьмите дробинку массой 1 г и лист бумаги той же массы и одновременно отпустите их. Дробинка сразу же упадет на пол, а лист бумаги будет медленно опускаться вниз. Тут как раз виден принцип лобового сопротивления – площадь поверхности бумаги намного больше, чем у дробинки, поэтому сопротивление воздуха больше и бумага падает на пол медленнее.
    2. Используйте форму тела с большим коэффициентом лобового сопротивления. По площади поверхности тела, направленной перпендикулярно движению, можно судить о лобовом сопротивлении только в общих чертах. Тела различной формы взаимодействуют с жидкостями и газами по-разному (при движении тел сквозь газ или жидкость). Например, круглая плоская пластина имеет большее лобовое сопротивление, чем круглая шарообразная пластина. Величина, характеризующая лобовое сопротивление тел различной формы, называется коэффициентом лобового сопротивления.

      Используйте тела менее обтекаемой формы. Как правило, большие тела кубической формы имеют высокое лобовое сопротивление. Такие тела имеют прямоугольные углы и не сужаются к концу. С другой стороны, тела обтекаемой формы имеют закругленные края и обычно сужаются к концу.

    3. Используйте тела без сквозных отверстий. Любое сквозное отверстие в теле уменьшает лобовое сопротивление, так как позволяет воздуху или воде течь сквозь такое отверстие (благодаря отверстиям уменьшается площадь поверхности тела, перпендикулярная движению). Чем больше сквозные отверстия, тем меньше лобовое сопротивление. Вот почему парашюты, которые предназначены для создания большого лобового сопротивления (чтобы замедлить скорость падения), сделаны из прочного, легкого шелка или нейлона, а не из марли.

      • Например, вы сможете увеличить скорость движения ракетки для пинг-понга, если просверлите в ней несколько отверстий (чтобы уменьшить площадь поверхности ракетки и соответственно уменьшить лобовое сопротивление).
    4. Увеличьте скорость тела, чтобы повысить лобовое сопротивление (это верно для тел любой формы и сделанных из любого материала). Чем выше скорость объекта, тем сквозь больший объем жидкости или газа оно должно пройти и тем больше лобовое сопротивление. Тела, движущиеся на очень высоких скоростях, испытывают огромное лобовое сопротивление, поэтому они должны быть обтекаемыми; в противном случае сила сопротивления разрушит их.

      • Например, рассмотрим Lockheed SR-71 – экспериментальный самолет-разведчик, построенный во времена холодной войны. Этот самолет мог летать с высокой скоростью М = 3,2 и, несмотря на его обтекаемую форму, испытывал огромное лобовое сопротивление (такое большое, что металл, из которого был сделан фюзеляж самолета, расширялся при нагревании, возникающем при трении).
    • Не забывайте, что при трении высвобождается много энергии в виде тепла. Например, не прикасайтесь к тормозным колодкам автомобиля непосредственно после торможения!
    • Имейте в виду, что высокие силы сопротивления могут привести к разрушению тела, движущегося в жидкости. Например, если во время прогулки на катере вы положите в воду кусок фанеры (так, чтобы ее поверхность была направлена перпендикулярно движению катера), то, скорее всего, фанера сломается.

§ 1 От чего возникает сила трения и что это такое?

Каждый из нас катался на санках или на лыжах, а кто задавал себе вопрос: «Почему я как бы сильно не оттолкнулся, все равно рано или поздно остановлюсь»?

Представьте такую картинку - учебник, лежит на парте. Если его толкнуть, то есть приложить к нему силу, то он изменит скорость с нулевого значения до какого-то определенного. Однако через некоторое время учебник остановится.

Мы уже знаем, что изменение скорости тела есть результат приложения силы. Какая же сила подействовала в этом случае?

Остановиться учебнику помогла сила трения. Сила трения возникает при движении одних тел по поверхности других, и когда тело пытаются сдвинуть с места.

От чего возникает сила трения?

Для ответа на этот вопрос можно проделать простейший эксперимент. Попробуем провести линию простым карандашом сначала на бумаге, а затем на стекле. На бумаге у нас это сделать получится, а на стекле нет. Это происходит потому, что поверхность бумаги и грифеля карандаша имеет неровности, если посмотреть на них под микроскопом. Частицы грифеля как бы зацепляются за шероховатости бумаги и остаются там. Поверхность же стекла гладкая и мы такого не наблюдаем.

Отсюда можно сделать вывод о том, что величина силы трения зависит от наличия шероховатостей соприкасающихся поверхностей.

А исчезнет ли сила трения в том случае, когда обе поверхности будут гладко отшлифованы? Для ответа на этот вопрос можно провести следующий эксперимент: с поверхности воды попытаемся оторвать стекло или зеркало. Это сделать достаточно сложно. В этом случае сила трения возникать тоже будет, но причина ее существования другая - взаимное притяжение молекул соприкасающихся поверхностей. И в последнем примере величина силы трения будет в разы больше.

Помимо величины сила должна иметь направление. Сила трения всегда направлена в противоположную движению тела сторону.

§ 2 Виды трения

Трение бывает трех видов:

1. Трение покоя. Все тела покоятся на месте только благодаря трению покоя. В противном случае все бы падало.

2. Трение скольжения. Примером данного вида трения может служить катание с горы на санках.

3. Трение качения. Примером может быть движение и остановка автомобиля.

Из всех трех видов наибольшей величиной обладает трение покоя, а наименьшей - трение качения. Катить легче, чем волочить. Именно поэтому во всех инженерных сооружениях и технике, где это возможно, скольжение заменяют на качение.

Так для постройки памятника Петру I в Санкт-Петербурге, громадную каменную глыбу весом около 1000 тонн доставили в город на катках, поскольку дотащить волоком постамент для памятника основателю города, было бы невозможно.

Величину силы трения можно измерить динамометром, а измеряется она в Ньютонах.

§ 3 Значение трения в жизни человека

С точки зрения пользы для человека трение может быть вредным и полезным. К примеру, когда начинает скрипеть и плохо открываться дверь трение считается вредным. Полезным можно назвать то трение, при котором велосипедист может остановиться на светофоре. Если бы его не было, то он продолжал бы неконтролируемое движение. В некоторых случаях для того, чтобы уменьшить трение применяют различные смазочные материалы. Ни один подшипник без технического масла работать не сможет.

Таким образом, трение имеет крайне важное значение в нашей жизни. Трение не только позволяет контролировать движение, оно способствует также и устойчивости тел.

Не будь его, все будет катиться, и скользить, пока не окажется на одном уровне. Гвозди и винты выскользнут из стен, ткани расползутся, ни одну пуговицу невозможно будет пришить, нитки просто не будут держаться ни в иглах, ни в тканях.

Без трения покоя мы бы не могли ни ходить, не ездить. Вспомните, как трудно передвигаться в гололед. Причиной возникновения силы трения может быть либо наличие шероховатостей на соприкасающихся поверхностях, либо взаимное притяжение молекул взаимодействующих тел. Сила трения измеряется в Ньютонах и направлена в противоположную движения тела сторону.

Список использованной литературы:

  1. Физика. Химия. 5-6 классы. Гуревич А.Е., Исаев Д.А., Понтак Л.С. – М.: Дрофа, 2011.
  2. Физика. 7 класс: Учебник для общеобразоват.учреждений/А.В. Перышкин. – М.: Дрофа, 2006.
  3. Физика. 8 класс: Учебник для общеобразоват.учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  4. Занимательная физика. Я. Перельман
  5. Физика. 7 класс. Учебник. Гуревич А. Е.

трение закон скольжение качение

В технике для уменьшения влияния сил сухого трения между поверхностями вводят смазку (вязкую жидкость, создающую тонкий слой между твёрдыми поверхностями).

Влияние смазки заключается в том, что между трущимися поверхностями вводится слой вязкой жидкости, которая заполняет все неровности поверхностей и, прилипая к ним, образует два трущихся слоя жидкости (рис. 15)

Рис. 15.

Поэтому вместо трения двух твердых поверхностей при смазке возникает внутреннее трение жидкости, которое значительно меньше внешнего трения двух твердых поверхностей. Применение смазочных масел уменьшает трение в 8-10 раз. Типичный пример значения смазки представляет бег конькобежца на коньках. В результате действия силы со стороны конькобежца на нож конька снег тает и под коньком появляется вода, которая вновь замерзает, после того как пробежал конькобежец и исчезло давление. Однако в механизмах вода для смазки не годится, поскольку вследствие малой вязкости она выдавливалась бы из зазора неровностей между трущимися поверхностями.

Во всех машинах есть одна общая черта: в любой из них что-нибудь обязательно вращается. И везде есть неразлучная пара - ось и её подпорка - подшипник

Поскольку силы трения качения значительно меньше сил трения скольжения, то в машинах и механизмах в большинстве случаев подшипники скольжения заменяют подшипниками качения (рис. 16).

Рис. 16.

Подшипник состоит из двух колец. Одно из них - внутреннее - плотно насажено на ось и вращается вместе с ней. Другое - наружное кольцо - неподвижно зажато между основанием и крышкой подшипника.

Эти кольца - обоймы имеют на обращенных друг к другу поверхностях выточенные канавки. Между обойм находятся стальные шарики. При кручении подшипника шарики катятся по канавкам в обоймах.

Чем лучше отполированы поверхности дорожек и шариков, тем меньше трение. Чтобы шарики не сбегались в одну кучу, их разделяет сепаратор. Сепараторы обычно делаются пластиковые, стальные или бронзовые.

При вращении в таком подшипнике появляется трение качения. Потери на трение в шариковом подшипнике раз в 20-30 меньше, чем в подшипнике скольжения! Подшипники качения делают не только с шариками, но и с роликами разной формы. Без подшипников качения современная промышленность и транспорт были бы невозможны.

В настоящее время широко применяется такой способ уменьшения трения при движении транспортных средств, как воздушная подушка.

Воздушная подушка (рис. 17) -- это слой сжатого воздуха под транспортным средством, который приподнимает его над поверхностью воды или земли. Слой сжатого воздуха создаётся вентиляторами. Отсутствие трения о поверхность позволяет снизить сопротивление движению. От высоты подъёма зависит способность такого судна двигаться над различными препятствиями на суше или над волнами на воде.

Рис. 17

Схема работы судна с воздушной подушкой: 1 -- маршевые винты; 2 -- поток воздуха; 3 -- вентилятор; 4 -- гибкая перепонка (юбка).

Первым идею подобной машины на воздушной подушке высказал К.Э. Циолковский в 1927 году, в работе «Сопротивление воздуха и скорый поезд». Это бесколесный экспресс, который мчится над бетонной дорогой, опираясь на воздушную подушку - слой сжатого воздуха.