Степенная функция и корни - определение, свойства и формулы. Степенные выражения (выражения со степенями) и их преобразование

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

    Так, сумма a 3 и b 2 есть a 3 + b 2 .
    Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .

    Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

    Так, сумма 2a 2 и 3a 2 равна 5a 2 .

    Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

    Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

    Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

    Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

    Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

    Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

    Или:
    2a 4 - (-6a 4) = 8a 4
    3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
    5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

    Умножение степеней

    Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

    Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

    Или:
    x -3 ⋅ a m = a m x -3
    3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
    a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

    Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
    Выражение примет вид: a 5 b 5 y 3 .

    Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.

    Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

    Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

    Так, a n .a m = a m+n .

    Для a n , a берётся как множитель столько раз, сколько равна степень n;

    И a m , берётся как множитель столько раз, сколько равна степень m;

    Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

    Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

    Или:
    4a n ⋅ 2a n = 8a 2n
    b 2 y 3 ⋅ b 4 y = b 6 y 4
    (b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

    Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
    Ответ: x 4 - y 4 .
    Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

    Это правило справедливо и для чисел, показатели степени которых - отрицательные .

    1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

    2. y -n .y -m = y -n-m .

    3. a -n .a m = a m-n .

    Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть

    Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

    Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

    Так, (a - y).(a + y) = a 2 - y 2 .
    (a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
    (a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

    Деление степеней

    Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

    Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

    Или:
    $\frac{9a^3y^4}{-3a^3} = -3y^4$
    $\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
    $\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$

    Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
    a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
    любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

    При делении степеней с одинаковым основанием их показатели вычитаются. .

    Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.

    И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.

    Или:
    y 2m: y m = y m
    8a n+m: 4a m = 2a n
    12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

    Правило также справедливо и для чисел с отрицательными значениями степеней.
    Результат деления a -5 на a -3 , равен a -2 .
    Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

    h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$

    Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

    Примеры решения примеров с дробями, содержащими числа со степенями

    1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.

    2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.

    3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
    a 2 .a -4 есть a -2 первый числитель.
    a 3 .a -3 есть a 0 = 1, второй числитель.
    a 3 .a -4 есть a -1 , общий числитель.
    После упрощения: a -2 /a -1 и 1/a -1 .

    4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
    Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

    5. Умножьте (a 3 + b)/b 4 на (a - b)/3.

    6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).

    7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

    8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

    9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.

    Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

    Yandex.RTB R-A-339285-1

    Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n -ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

    Определение 1

    1. Главное свойство степени: a m · a n = a m + n

    Можно обобщить до: a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

    2. Свойство частного для степеней, имеющих одинаковые основания: a m: a n = a m − n

    3. Свойство степени произведения: (a · b) n = a n · b n

    Равенство можно расширить до: (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

    4. Свойство частного в натуральной степени: (a: b) n = a n: b n

    5. Возводим степень в степень: (a m) n = a m · n ,

    Можно обобщить до: (((a n 1) n 2) …) n k = a n 1 · n 2 · … · n k

    6. Сравниваем степень с нулем:

    • если a > 0 , то при любом натуральном n, a n будет больше нуля;
    • при a , равном 0 , a n также будет равна нулю;
    • при a < 0 и таком показателе степени, который будет четным числом 2 · m , a 2 · m будет больше нуля;
    • при a < 0 и таком показателе степени, который будет нечетным числом 2 · m − 1 , a 2 · m − 1 будет меньше нуля.

    7. Равенство a n < b n будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

    8. Неравенство a m > a n будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и меньше единицы.

    В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: a m · a n = a m + n - то же самое, что и a m + n = a m · a n . В таком виде оно часто используется при упрощении выражений.

    1. Начнем с основного свойства степени: равенство a m · a n = a m + n будет верным при любых натуральных m и n и действительном a . Как доказать это утверждение?

    Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

    Это можно сократить до (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m + n . Таким образом, a m + n , значит, основное свойство степени доказано.

    Разберем конкретный пример, подтверждающий это.

    Пример 1

    Итак, у нас есть две степени с основанием 2 . Их натуральные показатели - 2 и 3 соответственно. У нас получилось равенство: 2 2 · 2 3 = 2 2 + 3 = 2 5 Вычислим значения, чтобы проверить верность этого равенства.

    Выполним необходимые математические действия: 2 2 · 2 3 = (2 · 2) · (2 · 2 · 2) = 4 · 8 = 32 и 2 5 = 2 · 2 · 2 · 2 · 2 = 32

    В итоге у нас вышло: 2 2 · 2 3 = 2 5 . Свойство доказано.

    В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n 1 , n 2 и др. буквой k , мы получим верное равенство:

    a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

    Пример 2

    2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство a m: a n = a m − n , которое справедливо при любых натуральным m и n (причем m больше n)) и любом отличном от нуля действительном a .

    Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0 n = 0). Условие, чтобы число m обязательно было больше n , нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m , мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

    Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

    a m − n · a n = a (m − n) + n = a m

    Из него можно вывести: a m − n · a n = a m

    Вспомним про связь деления и умножения. Из него следует, что a m − n – частное степеней a m и a n . Это и есть доказательство второго свойства степени.

    Пример 3

    Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π : π 5: π 2 = π 5 − 3 = π 3

    3. Следующим мы разберем свойство степени произведения: (a · b) n = a n · b n при любых действительных a и b и натуральном n .

    Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

    Вспомнив свойства умножения, запишем: . Это значит то же самое, что и a n · b n .

    Пример 4

    2 3 · - 4 2 5 4 = 2 3 4 · - 4 2 5 4

    Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

    (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

    Пример 5

    С конкретными числами получим следующее верное равенство: (2 · (- 2 , 3) · a) 7 = 2 7 · (- 2 , 3) 7 · a

    4. После этого мы попробуем доказать свойство частного: (a: b) n = a n: b n при любых действительных a и b , если b не равно 0 , а n – натуральное число.

    Для доказательства можно использовать предыдущее свойство степени. Если (a: b) n · b n = ((a: b) · b) n = a n , а (a: b) n · b n = a n , то из этого выходит, что (a: b) n есть частное от деления a n на b n .

    Пример 6

    Подсчитаем пример: 3 1 2: - 0 . 5 3 = 3 1 2 3: (- 0 , 5) 3

    Пример 7

    Начнем сразу с примера: (5 2) 3 = 5 2 · 3 = 5 6

    А теперь сформулируем цепочку равенств, которая докажет нам верность равенства:

    Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p , q , r , s , то верно будет:

    a p q y s = a p · q · y · s

    Пример 8

    Добавим конкретики: (((5 , 2) 3) 2) 5 = (5 , 2) 3 + 2 + 5 = (5 , 2) 10

    6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

    Для начала сравним степень с нулем. Почему a n > 0 при условии, что а больше 0 ?

    Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени a n с положительным основанием и натуральным показателем это будет верно.

    Пример 9

    3 5 > 0 , (0 , 00201) 2 > 0 и 34 9 13 51 > 0

    Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

    Пример 10

    0 3 = 0 и 0 762 = 0

    Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2 · m , где m – натуральное число.

    Вспомним, как правильно умножать отрицательные числа: произведение a · a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда и степень a 2 · m также положительны.

    Пример 11

    Например, (− 6) 4 > 0 , (− 2 , 2) 12 > 0 и - 2 9 6 > 0

    А если показатель степени с отрицательным основанием – нечетное число? Обозначим его 2 · m − 1 .

    Тогда

    Все произведения a · a , согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a , то конечный результат будет отрицателен.

    Тогда получим: (− 5) 3 < 0 , (− 0 , 003) 17 < 0 и - 1 1 102 9 < 0

    Как это доказать?

    a n < b n – неравенство, представляющее собой произведение левых и правых частей nверных неравенств a < b . Вспомним основные свойства неравенств справедливо и a n < b n .

    Пример 12

    Например, верны неравенства: 3 7 < (2 , 2) 7 и 3 5 11 124 > (0 , 75) 124

    8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

    Докажем эти утверждения.

    Для начала нам нужно убедиться, что a m < a n при условии, что m больше, чем n , и а больше 0 , но меньше 1 .Теперь сравним с нулем разность a m − a n

    Вынесем a n за скобки, после чего наша разность примет вид a n · (a m − n − 1) . Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m − n > 0 , тогда a m − n − 1 –отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

    У нас вышло, что a m − a n < 0 и a m < a n . Свойство доказано.

    Осталось привести доказательство второй части утверждения, сформулированного выше: a m > a справедливо при m > n и a > 1 . Укажем разность и вынесем a n за скобки: (a m − n − 1) .Степень a n при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a > 1 степень a m − n больше единицы. Выходит, a m − a n > 0 и a m > a n , что нам и требовалось доказать.

    Пример 13

    Пример с конкретными числами: 3 7 > 3 2

    Основные свойства степеней с целыми показателями

    Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

    Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

    Определение 2

    1. a m · a n = a m + n

    2. a m: a n = a m − n

    3. (a · b) n = a n · b n

    4. (a: b) n = a n: b n

    5. (a m) n = a m · n

    6. a n < b n и a − n > b − n при условии целого положительного n , положительных a и b , a < b

    7. a m < a n , при условии целых m и n , m > n и 0 < a < 1 , при a > 1 a m > a n .

    Если основание степени равно нулю, то записи a m и a n имеют смысл только лишь в случае натуральных и положительных m и n . В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

    Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

    Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (a p) q = a p · q , (a − p) q = a (− p) · q , (a p) − q = a p · (− q) и (a − p) − q = a (− p) · (− q)

    Условия: p = 0 или натуральное число; q – аналогично.

    Если значения p и q больше 0 , то у нас получится (a p) q = a p · q . Схожее равенство мы уже доказывали раньше. Если p = 0 , то:

    (a 0) q = 1 q = 1 a 0 · q = a 0 = 1

    Следовательно, (a 0) q = a 0 · q

    Для q = 0 все точно так же:

    (a p) 0 = 1 a p · 0 = a 0 = 1

    Итог: (a p) 0 = a p · 0 .

    Если же оба показателя нулевые, то (a 0) 0 = 1 0 = 1 и a 0 · 0 = a 0 = 1 , значит, (a 0) 0 = a 0 · 0 .

    Вспомним доказанное выше свойство частного в степени и запишем:

    1 a p q = 1 q a p q

    Если 1 p = 1 · 1 · … · 1 = 1 и a p q = a p · q , то 1 q a p q = 1 a p · q

    Эту запись мы можем преобразовать в силу основных правил умножения в a (− p) · q .

    Так же: a p - q = 1 (a p) q = 1 a p · q = a - (p · q) = a p · (- q) .

    И (a - p) - q = 1 a p - q = (a p) q = a p · q = a (- p) · (- q)

    Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

    Доказательство предпоследнего свойства: вспомним, a − n > b − n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b .

    Тогда неравенство можно преобразовать следующим образом:

    1 a n > 1 b n

    Запишем правую и левую части в виде разности и выполним необходимые преобразования:

    1 a n - 1 b n = b n - a n a n · b n

    Вспомним, что в условии a меньше b , тогда, согласно определению степени с натуральным показателем: - a n < b n , в итоге: b n − a n > 0 .

    a n · b n в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь b n - a n a n · b n , которая в итоге также дает положительный результат. Отсюда 1 a n > 1 b n откуда a − n > b − n , что нам и нужно было доказать.

    Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

    Основные свойства степеней с рациональными показателями

    В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

    Определение 3

    1. a m 1 n 1 · a m 2 n 2 = a m 1 n 1 + m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство произведения степеней с одинаковыми основаниями).

    2. a m 1 n 1: b m 2 n 2 = a m 1 n 1 - m 2 n 2 , если a > 0 (свойство частного).

    3. a · b m n = a m n · b m n при a > 0 и b > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 и (или) b ≥ 0 (свойство произведения в дробной степени).

    4. a: b m n = a m n: b m n при a > 0 и b > 0 , а если m n > 0 , то при a ≥ 0 и b > 0 (свойство частного в дробной степени).

    5. a m 1 n 1 m 2 n 2 = a m 1 n 1 · m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство степени в степени).

    6. a p < b p при условии любых положительных a и b , a < b и рациональном p при p > 0 ; если p < 0 - a p > b p (свойство сравнения степеней с равными рациональными показателями).

    7. a p < a q при условии рациональных чисел p и q , p > q при 0 < a < 1 ; если a > 0 – a p > a q

    Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n -ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

    Согласно тому, что из себя представляет степень с дробным показателем, получим:

    a m 1 n 1 = a m 1 n 1 и a m 2 n 2 = a m 2 n 2 , следовательно, a m 1 n 1 · a m 2 n 2 = a m 1 n 1 · a m 2 n 2

    Свойства корня позволят нам вывести равенства:

    a m 1 · m 2 n 1 · n 2 · a m 2 · m 1 n 2 · n 1 = a m 1 · n 2 · a m 2 · n 1 n 1 · n 2

    Из этого получаем: a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

    Преобразуем:

    a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

    Показатель степени можно записать в виде:

    m 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 · n 2 n 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 n 1 + m 2 n 2

    Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

    a m 1 n 1: a m 2 n 2 = a m 1 n 1: a m 2 n 2 = a m 1 · n 2: a m 2 · n 1 n 1 · n 2 = = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 n 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 n 1 - m 2 n 2

    Доказательства остальных равенств:

    a · b m n = (a · b) m n = a m · b m n = a m n · b m n = a m n · b m n ; (a: b) m n = (a: b) m n = a m: b m n = = a m n: b m n = a m n: b m n ; a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = = a m 1 m 2 n 1 n 2 = a m 1 · m 2 n 1 n 2 = = a m 1 · m 2 n 2 · n 1 = a m 1 · m 2 n 2 · n 1 = a m 1 n 1 · m 2 n 2

    Следующее свойство: докажем, что для любых значений a и b больше 0 , если а меньше b , будет выполняться a p < b p , а для p больше 0 - a p > b p

    Представим рациональное число p как m n . При этом m –целое число, n –натуральное. Тогда условия p < 0 и p > 0 будут распространяться на m < 0 и m > 0 . При m > 0 и a < b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство a m < b m .

    Используем свойство корней и выведем: a m n < b m n

    Учитывая положительность значений a и b , перепишем неравенство как a m n < b m n . Оно эквивалентно a p < b p .

    Таким же образом при m < 0 имеем a a m > b m , получаем a m n > b m n значит, a m n > b m n и a p > b p .

    Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q , p > q при 0 < a < 1 a p < a q , а при a > 0 будет верно a p > a q .

    Рациональные числа p и q можно привести к общему знаменателю и получить дроби m 1 n и m 2 n

    Здесь m 1 и m 2 – целые числа, а n – натуральное. Если p > q , то m 1 > m 2 (учитывая правило сравнения дробей). Тогда при 0 < a < 1 будет верно a m 1 < a m 2 , а при a > 1 – неравенство a 1 m > a 2 m .

    Их можно переписать в следующем виде:

    a m 1 n < a m 2 n a m 1 n > a m 2 n

    Тогда можно сделать преобразования и получить в итоге:

    a m 1 n < a m 2 n a m 1 n > a m 2 n

    Подводим итог: при p > q и 0 < a < 1 верно a p < a q , а при a > 0 – a p > a q .

    Основные свойства степеней с иррациональными показателями

    На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a > 0 , b > 0 , показатели p и q – иррациональные числа):

    Определение 4

    1. a p · a q = a p + q

    2. a p: a q = a p − q

    3. (a · b) p = a p · b p

    4. (a: b) p = a p: b p

    5. (a p) q = a p · q

    6. a p < b p верно при любых положительных a и b , если a < b и p – иррациональное число больше 0 ; если p меньше 0 , то a p > b p

    7. a p < a q верно, если p и q – иррациональные числа, p < q , 0 < a < 1 ; если a > 0 , то a p > a q .

    Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a > 0 обладают теми же свойствами.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Приведены основные свойства степенной функции, включая формулы и свойства корней. Представлены производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел степенной функции.

    Определение

    Определение
    Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
    Кроме этого, f(0) = 0 p = 0 при p > 0 .

    Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
    .
    Она определена для всех действительных .

    Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
    .
    Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

    Для отрицательных , степенная функция определяется по формуле:
    .
    Поэтому она не определена в точке .

    Для иррациональных значений показателя p , степенная функция определяется по формуле:
    ,
    где a - произвольное положительное число, не равное единице: .
    При , она определена для .
    При , степенная функция определена для .

    Непрерывность . Степенная функция непрерывна на своей области определения.

    Свойства и формулы степенной функции при x ≥ 0

    Здесь мы рассмотрим свойства степенной функции при неотрицательных значениях аргумента x . Как указано выше, при некоторых значениях показателя p , степенная функция определена и для отрицательных значений x . В этом случае, ее свойства можно получить из свойств при , используя четность или нечетность. Эти случаи подробно рассмотрены и проиллюстрированы на странице « ».

    Степенная функция, y = x p , с показателем p имеет следующие свойства:
    (1.1) определена и непрерывна на множестве
    при ,
    при ;
    (1.2) имеет множество значений
    при ,
    при ;
    (1.3) строго возрастает при ,
    строго убывает при ;
    (1.4) при ;
    при ;
    (1.5) ;
    (1.5*) ;
    (1.6) ;
    (1.7) ;
    (1.7*) ;
    (1.8) ;
    (1.9) .

    Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

    Корни - определение, формулы, свойства

    Определение
    Корень из числа x степени n - это число , возведение которого в степень n дает x :
    .
    Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

    Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
    .
    Заметим, что функция является обратной к функции .

    Квадратный корень из числа x - это корень степени 2: .

    Кубический корень из числа x - это корень степени 3: .

    Четная степень

    Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
    .
    Для квадратного корня:
    .

    Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

    Нечетная степень

    Для нечетных степеней , корень определен для всех x :
    ;
    .

    Свойства и формулы корней

    Корень из x является степенной функцией:
    .
    При x ≥ 0 имеют место следующие формулы:
    ;
    ;
    , ;
    .

    Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

    Частные значения

    Корень 0 равен 0: .
    Корень 1 равен 1: .
    Квадратный корень 0 равен 0: .
    Квадратный корень 1 равен 1: .

    Пример. Корень из корней

    Рассмотрим пример квадратного корня из корней:
    .
    Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
    .
    Теперь преобразуем исходный корень:
    .
    Итак,
    .

    y = x p при различных значениях показателя p .

    Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

    Обратная функция

    Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

    Если , то .

    Производная степенной функции

    Производная n-го порядка:
    ;

    Вывод формул > > >

    Интеграл от степенной функции

    P ≠ - 1 ;
    .

    Разложение в степенной ряд

    При - 1 < x < 1 имеет место следующее разложение:

    Выражения через комплексные числа

    Рассмотрим функцию комплексного переменного z :
    f(z) = z t .
    Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
    z = r e i φ .
    Комплексное число t представим в виде действительной и мнимой частей:
    t = p + i q .
    Имеем:

    Далее учтем, что аргумент φ определен не однозначно:
    ,

    Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
    .

    Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
    .
    То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

    Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

    Если p - рациональное, то его можно представить в виде:
    , где m, n - целые, не содержащие общих делителей. Тогда
    .
    Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
    .
    Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
    .
    Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

    Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

    В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
    .
    Так, для квадратного корня, n = 2 ,
    .
    Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
    То есть квадратный корень имеет два значения: + и - .

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

    Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

    Число c является n -ной степенью числа a когда:

    Операции со степенями.

    1. Умножая степени с одинаковым основанием их показатели складываются:

    a m ·a n = a m + n .

    2. В делении степеней с одинаковым основанием их показатели вычитаются:

    3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

    (abc…) n = a n · b n · c n …

    4. Степень дроби равняется отношению степеней делимого и делителя:

    (a/b) n = a n /b n .

    5. Возводя степень в степень, показатели степеней перемножают:

    (a m) n = a m n .

    Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

    Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

    Операции с корнями.

    1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению делимого и делителя корней:

    3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

    5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

    Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

    Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

    Например . a 4:a 7 = a 4 - 7 = a -3 .

    Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

    Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

    Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

    Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .