Стволовые клетки и выращивание тканей и органов. В россии обещают начать применять искусственные органы в трансплантологии

Возможность вырастить человеческий орган в пробирке и пересадить его человеку, нуждающемуся в пересадке — мечта трансплантологов. Ученые по всему миру работают над этим и уже научились делать ткани, небольшие работающие копии органов, и до полноценных запасных глаз, легких и почек нам на самом деле осталось совсем немного. Пока что органеллы используются в основном в научных целях, их выращивают, чтобы понять, как работают органы, как развиваются болезни. Но от этого до трансплантации всего несколько шагов. МедНовости собрали сведения о самых перспективных проектах.

Легкие . Ученые из Техасского университета вырастили легкие человека в биореакторе. Правда, без кровеносных сосудов такие легкие не функциональны. Однако команда ученых из Медицинского центра Колумбийского университета (Columbia University Medical Center, New York) недавно впервые в мире получили функциональное легкое с перфузируемой и здоровой сосудистой системой у грызунов ex vivo.

Ткани сердечной мышцы . Биоинженерам из университета Мичигана удалось вырастить в пробирке кусок мышечной ткани. Правда, полноценно сердце из такой ткани пока работать не сможет, она вдвое слабее оригинала. Тем не менее пока это самый сильный образец сердечной ткани.

Кости . Израильская биотехнологическая компания Bonus BioGroup использовалат трехмерные сканы для создания гелеобразного каркаса кости перед посевом стволовыми клетками, взятыми из жира. Кости, получившиеся в результате, они успешно пересадили грызунам. Уже планируются эксперименты по выращиванию человеческих костей по этой же технологии.

Ткани желудка . Ученым под руководством Джеймса Уэллса из Детского медицинского клинического центра в Цинциннати (Огайо) удалось вырастить «в пробирке» трехмерные структуры человеческого желудка при помощи эмбриональных стволовых клеток и из плюрипотентных клеток взрослого человека, перепрограммированных в стволовые. Эти структуры оказались способны вырабатывать все необходимые человеку кислоты и пищеварительные ферменты.

Японские ученые вырастили глаз в чашке Петри . Искусственно выращенный глаз содержал основные слои сетчатки: пигментный эпителий, фоторецепторы, ганглионарные клетки и другие. Трансплантировать его целиком пока возможности нет, а вот пересадка тканей — весьма перспективное направление . В качестве исходного материала были использованы эмбриональные стволовые клетки.

Ученые из корпорации Genentech вырастили простату из одной клетки . Молекулярным биологам из Калифорнии удалось вырастить целый орган из единственной клетки.
Ученым удалось найти единственную мощную стволовую клетку в простатической ткани, которая способна вырасти в целый орган. Таких клеток оказалось чуть меньше 1% от общего числа. В исследовании 97 мышам трансплантировали такую клетку под почку и у 14 из них выросла полноценная простата, способная нормально функционировать. Точно такую же популяцию клеток биологи нашли и в простате человека, правда, в концентрации всего 0,2%.

Сердечные клапаны . Швейцарские ученые доктор Саймон Хоерстрап (Simon Hoerstrup) и Дорта Шмидт (Dorthe Schmidt) из университета Цюриха (University of Zurich) смогли вырастить человеческие сердечные клапаны , воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости. Теперь медики смогут выращивать клапаны сердца специально для неродившегося еще ребенка, если у него еще в зародышевом состоянии обнаружатся дефекты сердца.

Ушная раковина . Используя стволовые клетки, ученые вырастили . Эксперимент был проведен исследователями из Университета Токио (University of Tokyo) И Университета Киото (Kyoto University) под руководством Томаса Сервантеса (Thomas Cervantes).

Кожа. Ученые из Цюрихского университета (Швейцария) и университетской детской больницы этого города впервые сумели вырастить в лаборатории человеческую кожу, пронизанную кровеносными и лимфатическими сосудами . Полученный кожный лоскут способен почти полностью выполнять функцию здоровой кожи при ожогах, хирургических дефектах или кожных болезнях.

Поджелудочная железа . Ученые впервые создали , способные вырабатывать инсулин. Еще одна попытка вылечить диабет I типа.

Почки . Ученые из австралийского университета Квинсленда научились выращивать искусственные почки из стволовых клеток кожи. Пока это лишь маленькие органоиды размером 1 см, но по устройству и функционированию они практически идентичны почкам взрослого человека.

Искусственные человеческие органы скоро станут выращивать в строящейся при Военно-медицинской академии имени Кирова клинике в Санкт-Петербурге. Решение о строительстве клиники принял министр обороны. Многопрофильный центр планируют оснастить самым современным оборудованием, которое позволит самым подробным образом изучать стволовые клетки. Научно-технический отдел, который займётся клеточными технологиями, уже сформирован.

«Основным направлением работы отдела станет создание биологического банка и создание возможностей для выращивания искусственных органов, - говорит начальник отдела организации научной работы и подготовки научно-педагогических кадров академии Евгений Ивченко. - Российские учёные давно работают над искусственными органами».

Два года назад завотделом Федерального научного центра трансплантологии и искусственных органов имени академика В.И. Шумакова Мурат Шагидулин сообщил о создании искусственного аналога печени, пригодного для пересадки. Учёные смогли получить искусственную печень и протестировать её в доклинических условиях. Орган вырастили на основе бесклеточного каркаса печени, из которой заранее по специальной технологии удалили все ткани. Остались только белковые структуры кровеносных сосудов и других компонентов органа. Каркас засеяли аутологичными клетками костного мозга и печени. Эксперименты на животных показали: если выращенный элемент имплантировали в печень или брызжейку тонкой кишки, он способствовал регенерации тканей и давал полное восстановление функции повреждённого органа. Животные представляли собой модели острой и хронической печёночной недостаточности. И выращенный элемент позволял увеличить выживаемость в два раза. Спустя год после имплантации все животные были ещё живы. Между тем в контрольной группе умерло около 50% особей. Через семь дней после имплантации в основной группе биохимические показатели функции печени уже были на уровне нормы. По прошествии 90 дней после пересадки в брызжейку тонкой кишки учёные нашли там жизнеспособные гепатоциты и новые сосуды, которые проросли через каркас элемента.

«Исследования в области создания таких сложных биоинженерных органов, как печень, почки, лёгкие и сердце, в последние годы ведутся в ведущих научных лабораториях США и Японии, но дальше стадии изучения на животной модели они пока не продвинулись, - комментирует заведующий отделом экспериментальной трансплантологии и искусственных органов Центра Мурат Шагидулин. - Наши опыты на животных прошли хорошо. Спустя три месяца после трансплантации в телах животных обнаружили здоровые клетки печени и новые кровеносные сосуды. Это говорило о протекавшем процессе регенерации пересаженной печени и том, что она прижилась».

Японские учёные из Университета Йокогамы сумели вырастить печень размером в несколько миллиметров. Они смогли сделать это благодаря индуцированным плюрипотентным стволовым клеткам (iPSCs). Выращенная печень работает как полноценный орган. По словам руководителя исследовательской группы профессора Хидэки Танигути, минипечень справляется с переработкой вредных веществ столь же эффективно, что и реальный человеческий орган. Учёные надеются начать клинические испытания искусственной печени в 2019 г. Новые, созданные в лаборатории органы, будут пересаживать пациентам с тяжёлыми заболеваниями печени для поддержания её нормальных функций.

Несколько ранее японские учёные лабораторным путём почти приблизились к новейшему открытию - созданию полностью функционирующих почек, способных заменить настоящие. До этого прототипы искусственной почки создавались. Но им не удавалось нормально выводить мочу (раздувались от давления). Однако японцы исправили ситуацию. Специалисты уже вполне успешно пересаживают искусственные почки свиньям и крысам.
Доктор Такаси Йооко и его коллеги из Медицинской школы Университета Дзинкей использовали стволовые клетки, но не просто вырастили ткани почки, а вырастили и дренажную трубку, и мочевой пузырь. В свою очередь, крысы, а потом и свиньи, были инкубаторами, в которых уже развивалась и росла эмбриональная ткань. Когда новую почку соединили с существовавшим в теле животных мочевым пузырем, система заработала в целом. Моча шла из пересаженной почки в пересаженный мочевой пузырь, и лишь после этого она попадала в мочевой пузырь животного. Как показали наблюдения, система работала и через восемь недель после трансплантации.

По словам учёных, в перспективе, возможно, удастся создать и полноценные имплантаты голосовых связок для людей. Исследователи собрали фрагменты ткани четырёх людей, страдающих проблемами с голосовыми связками. Этим пациентам связки были удалены. Была также забрана ткань у одного умершего донора. Специалисты изолировали, очистили и вырастили клетки слизистой оболочки в особой трёхмерной структуре, имитирующей среду тела человека. Примерно за две недели клетки срослись и сформировали ткань, напоминающую по эластичности и клейкости реальные голосовые связки. Потом специалисты присоединили полученные голосовые связки к искусственной трахее и пропустили через них увлажнённый воздух. Когда воздух доходил до связок, ткани вибрировали и продуцировали звук, как бы это происходило при нормальных условиях в организме. В ближайшее время врачи ждут закрепления полученного результата на нуждающихся в нём людях.

Прежде чем мы перейдем к непосредственному рассказу о выращивание органов, я хотел бы посвятить вас, что такое стволовые клетки.

Что такое стволовые клетки?

Стволовые клетки - прародительницы всех без исключения типов клеток в организме. Они способны к самообновлению и, что самое главное, в процессе деления образуют специализированные клетки различных тканей. Стволовые клетки обновляют и замещают клетки, утраченные в результате каких-либо повреждений во всех органах и тканях. Они призваны восстанавливать организм человека с момента его рождения.

С возрастом количество стволовых клеток в организме катастрофически снижается. У новорожденного 1 стволовая клетка встречается на 10 тысяч, к 20-25 годам – 1 на 100 тысяч, к 30 – 1 на 300 тысяч. К 50-летнему возрасту в организме уже остается всего 1 стволовая клетка на 500 тысяч. Истощение запаса стволовых клеток вследствие старения или тяжёлых заболеваний лишает организм возможностей самовосстановления. Из-за этого жизнедеятельность тех или иных органов становится менее эффективной.

Какие органы и ткани ученые смогли вырастить с помощью стволовых клеток?

Привожу только самые известные примеры научных достижений.

в 2004 году японские ученые впервые в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток

Японские ученые первыми в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток человеческого эмбриона. Об этом 26 марта 2004 года сообщила японская газета Yomiuri.

Как отмечает издание, группа исследователей из медицинской школы Киотского университета под руководством профессора Кадзува Накао использовала капиллярные клетки, генерированные из стволовых клеток, импортированных в 2002 году из Австралии. До сих пор исследователям удавалось регенерировать лишь нервные клетки и мышечную ткань, что недостаточно для "производства" цельного органа. Информация с сайта NewsRu.com

В 2005 году американские ученые впервые вырастили полноценные клетки головного мозга

Ученые из Флоридского университета (США) первыми в мире вырастили полностью сформированные и приживающиеся клетки головного мозга. Как сообщил руководитель проекта Бьорн Шеффлер, вырастить клетки удалось путем «копирования» процесса регенерации клеток головного мозга. Теперь ученые надеются выращивать клетки для трансплантации, что может помочь в лечении болезней Альцгеймера и Паркинсона.Шеффлер отметил, что ранее ученым удавалось выращивать нейроны из стволовых клеток, однако именно во Флоридском университете удалось получить полноценные клетки и изучить процесс их роста от начала до конца. Информация с сайта Газета.ру по материалам Independent.

В 2005 году ученым удалось воспроизвести нервную стволовую клетку

Итальянско-британская группа ученых из эдинбургского и миланского университетов на основе неспециализированных эмбриональных стволовых нервных клеток научилась создавать in vitro различные типы клеток нервной системы.

Ученые применили уже разработанные методы управления эмбриональными стволовыми клетками к полученным ими более специализированным нервным стволовым клеткам. Результаты, которые были достигнуты на клетках мышей, были воспроизведены и на человеческих стволовых клетках. В интервью, данном агентству BBC, Стивен Поллард из Эдинбургского университета пояснил, что разработка его коллег поможет воссоздать болезнь Паркинсона или болезнь Альцгеймера «в пробирке». Это позволит лучше понять механизм их возникновения и развития, а также обеспечит фармакологов мини-полигоном для поиска подходящих средств лечения. Соответствующие переговоры с фармакологическими компаниями уже ведутся.

В 2006 году швейцарсцкие ученые вырастили из стволовых клеток клапаны человеческого сердца

Осенью 2006 года доктор Саймон Хоерстрап и его коллеги из университета Цюриха впервые вырастили человеческие сердечные клапаны, воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости.

Это достижение может сделать реальным выращивание клапанов сердца специально для ещё не родившегося ребёнка, если у него, ещё в утробе матери, обнаружатся дефекты сердца. А вскоре после рождения младенцу можно будет пересадить новые клапаны.

Вслед за выращиванием в лаборатории из клеток человека мочевого пузыря и кровеносных сосудов - это следующий шаг на пути создания «собственных» органов для конкретного пациента, способных устранить потребность в донорских органах или искусственных механизмах.

В 2006 году британские ученые вырастили из стволовых клеток ткани печени

Осенью 2006 года британские ученые из университета Ньюкасла объявили о том, что первыми в мире вырастили в лабораторных условиях искусственную печень из стволовых клеток, взятых из пуповинной крови. Техника, которая использовалась при создании «минипечени», размером в 2 см, будет разрабатываться дальше, чтобы создать нормально функционирующую печень стандартного размера.

В 2006 году в США впервые выращен сложный человеческий орган - мочевой пузырь

Американские ученые смогли вырастить в лабораторных условиях полноценный мочевой пузырь. В качестве материала были использованы клетки самих пациентов, нуждающихся в пересадке.

"Путем биопсии можно взять кусочек ткани, а спустя два месяца ее количество умножится в несколько раз, - объясняет директор института регенеративной медицины Энтони Атала. - Исходный материал и особые вещества мы кладем в специальную форму, оставляем в специальном лабораторном инкубаторе и через несколько недель получаем готовый орган, который уже можно пересаживать". Первую трансплантацию провели еще в конце 90-х. Операцию по пересадке мочевого пузыря сделали семи пациентам. Результаты оправдали ожидания ученых, и сейчас специалисты разрабатывают методы создания еще 20-ти органов - среди них сердце, печень, кровеносные сосуды и поджелудочная железа.

В 2007 году стволовые клетки помогли британским ученым создать часть сердца человека

Весной 2007 года группе британских ученых, состоящая из физиков, биологов, инженеров, фармакологов, цитологов и опытных клиницистов, под руководством профессора кардиохирургии Магди Якуба впервые в истории удалось воссоздать одну из разновидностей тканей человеческого сердца при помощи стволовых клеток костного мозга. Эта ткань выполняет роль сердечных клапанов. Если дальнейшие испытания пройдут успешно, разработанную методику можно будет применять для выращивания из стволовых клеток полноценного сердца для трансплантации больным.

В 2007 году японские ученые вырастили из стволовых клеток роговицу глаза

Весной 2007 года на симпозиуме по вопросам репродуктивной медицины в городе Иокогама были обнародованы результаты уникального эксперимента специалистов Токийского университета. Исследователи использовали стволовую клетку, взятую из края роговицы. Такие клетки способны развиваться в различные ткани, выполняя в организме восстановительные функции. Выделенная клетка была помещена в питательную среду. Спустя неделю она развилась в группу клеток, а на четвертой неделе преобразовалась в роговицу диаметром 2 см. Таким же образом был получен тонкий защитный слой (конъюнктива), покрывающий роговицу снаружи.

Ученые подчеркивают, что впервые полноценная ткань человеческого организма выращена из единственной клетки. Пересадка органов, полученных новым способом, исключает риск переноса инфекций. Японские ученые намерены приступить к клиническим испытаниям сразу после того, как удостоверяться в безопасности новой технологии.

В 2007 году японские ученые вырастили зуб из стволовых клеток

Японским ученым удалось вырастить зуб из одной клетки. Его вырастили в лабораторных условиях и пересадили мыши. Инъекция клеточного материала была произведена в коллагеновый каркас. После выращивания оказалось, что зуб принял зрелую форму, которая состояла из полноценных частей, таких как дентин, пульпа, сосуды, периодонтальные ткани, и эмаль. По словам исследователей, зуб был идентичен естественному. После трансплантации зуба лабораторной мыши он прижился и функционировал полностью нормально. Данный метод позволит выращивать целые органы из одной-двух клеток, говорят исследователи.

В 2008 году американские ученые смогли вырастить новое сердце на каркасе от старого

Дорис Тейлор (Doris Taylor) и её коллеги из университета Миннесоты (University of Minnesota) создали живое сердце крысы, используя необычную технику. Ученые взяли взрослое сердце крысы и поместили его в специальный раствор, который удалил из сердца все клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Этот очищенный каркас был засеян клетками сердечной мышцы, взятыми у новорождённой крысы, и помещён в среду, имитирующую условия в организме.

Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь, хотя и всего на 2-процентном уровне мощности (считая от здорового взрослого сердца). Таким образом, учёные получили работоспособный орган из клеток второго животного. Этим путём в будущем можно было бы обрабатывать сердца, взятые для пересадки, для исключения отторжения органа. "Так вы можете сделать любой орган: почку, печень, лёгкое, поджелудочную железу", - говорит Тейлор. Донорский каркас, определяющий форму и структуру органа, будет наполняться родными для больного специализированными клетками, сделанными из стволовых.

Любопытно, что в случае с сердцем в качестве основы можно попробовать взять сердце свиньи, анатомически близкое к человеческому. Удалив только мышечную ткань, прочие ткани такого органа можно будет уже дополнить культивированными человеческими клетками сердечной мышцы, получив гибридный орган, который, по идее, должен хорошо прижиться. А новые клетки будут сразу хорошо снабжаться кислородом - благодаря старым сосудам и капиллярам, оставшимся от сердца донора.

Я привел наиболее интересные факты, если вас заинтересовала эта информация то вы можете углубиться в нее подробней, информация была взята с сайта

Улучшение состояние здоровья человека, спасение жизни, увеличение ее продолжительности — эти вопросы были, есть и будут самыми актуальными для человечества. Именно поэтому тема выращивания искусственных органов в России в 2018 году занимает умы российских ученых, стоит на повестке дня Министерства здравоохранения и широко обсуждается в СМИ.

Дает большие надежды, что отрасль научной медицины — биоинженерные технологии, будет, наконец, иметь полноценную законодательную основу. Это позволит заниматься разработками, проводить доклинические и клинические исследования, практически использовать клеточные продукты, руководствуясь и опираясь на нормативно-правовую базу.

Закон о биомедицинских клеточных продуктах

Главная для ученых и медиков — в России с января 2017 года вступил в силу закон «О биомедицинских клеточных продуктах».

Он разработан в рамках реализации стратегии развития науки в Российской Федерации до 2025 года и направлен на регулирование отношений в связи с разработкой, исследованиями, регистрацией, производством и контролем качества, применением в лечебной практике биологических медицинских клеточных продуктов (БМКП).

Также это закон обеспечит законодательный базис для создания в сфере здравоохранения новой индустрии, которая производством и использованием клеточного продукта решит проблемы восстановления функций и структур тканей тела человека поврежденных заболеваниями, травмами, нарушениями при внутриутробном развитии.

Основной целью федерального закона является закрепление обособленного урегулирования деятельности по обращению БМКП, которая до недавнего времени была разрозненной, неполной и в основном незаконной.

Теперь организации и предприятия, которые занимались биопродуктами нелегально, парализованы. Именно поэтому принятию закона было оказано сопротивление и создавалось множество препятствий. Негативные последствия от принятия закона ощутят только те, кто осуществлял деятельность в области применения клеточного материала нелегально, то есть, нарушали закон.

Для отрасли в целом, закон обеспечивает цивилизованные пути развития, расширение возможностей, а для пациентов гарантирует получение качественного, безопасного продукта.

Новая эпоха в медицине

Вместе с поиском и разработкой эффективных методов лечения и восстановления организма человека, российская медицина ведет активную работу над созданием искусственных органов. Этой темой стали заниматься более пятидесяти лет назад, с того времени, когда методика пересадки донорских органов из теории перешла в практику.

Донорство спасло много жизней, но этот метод имеет значительный ряд проблем — нехватка донорских органов, несовместимость, отторжение иммунной системой. Поэтому идея выращивания искусственных органов с энтузиазмом была подхвачена учеными медиками всего мира.

Методика замещения поврежденных тканей искусственным клеточным продуктом, введенным извне, или путем активизирования собственных клеток основывается на жизнеспособности БМКТ и способности постоянно находиться в организме пациента. Это дает большие возможности для результативного лечения болезней и спасения многих жизней.

На сегодняшний день применение биоинженерных технологий в медицине достигло значительных результатов. Уже апробированы методики выращивания некоторых органов непосредственно в организме человека, так и вне тела. Есть возможность вырастить орган из клеток того человека, которому он впоследствии будет вживлен.

Применение искусственно созданных простых тканей уже имеют место в клинической практике. По словам Юрия Суханова, исполнительного директора Объединения экспертов по биомедицинским клеточным технологиям и регенеративной медицине, российскими учеными подготовлены к испытаниям ряд важных и необходимых продуктов.

«Это противораковые вакцины на основе живых клеток человека, препараты для лечения диабета с помощью инсулинпродуцирующих клеток, которые будут имплантироваться пациенту. Разумеется кожа – ожоги, раны, диабетическая стопа. Выращивание из клеток хряща, кожи, роговицы, уретры. И, конечно, клеточные вакцины – самое интересное и эффективное, что сейчас есть» — отметил Юрий Суханов.

Российские ученые создали искусственную печень и провели доклинические испытания продукта на животных, которые показали очень хорошие результаты. Элемент выращенного органа был имплантирован в поврежденные ткани печени животных.

В результате клетки искусственной печени способствовали регенерации тканей, и через время поврежденный орган полностью восстановился. При этом не произошло отрицательного влияния на продолжительность жизни подопытного животного.

Регенеративная медицина — это наше будущее, которое закладывается уже сегодня. Возможности у нее колоссальные. Тем более что традиционная медицина достигла определенного уровня, и сейчас не может предложить результативных методов лечения многих опасных болезней, уносящих миллионы жизней.

Медицинской науке необходима революция, мощный прорыв, которым станет приход клеточных технологий. Победить неизлечимые заболевания, снизить продолжительность и стоимость лечения, сделать доступным замену утраченного или нежизнеспособного органа и таким образом спасти и продлить жизнь — все это нам дает новая перспективная отрасль медицинской науки — тканевая инженерия.

Закон «О биомедицинских клеточных продуктах» принятый в 2017 году, начал полноценно работать. И теперь ученые имеют гораздо больше возможностей для новых исследований и открытий в области клеточных технологий и выращивания искусственных органов в России.

Ученые впервые создали химеру человека и свиньи – статья, рассказывающая об этом эксперименте, была опубликована 26 января в научном журнале Cell. Международная команда ученых под руководством Хуана Карлоса Исписуа Бельмонте, профессора Института биологических исследований Солка (США), на протяжении 28 дней выращивала в организме свиньи эмбрионы, содержащие стволовые клетки человека. Из двух тысяч гибридных зародышей 186 развились в организмы, в которых человеческая часть составляла одну на десять тысяч клеток.

Химеры – организмы, прозванные в честь монстра из греческих мифов, соединяющего в себе козу, льва и змею, – получаются в результате соединения генетического материала двух животных, но без рекомбинации ДНК (то есть обмена генетической информацией, который происходит при зачатии ребенка). В результате у химер два набора генетически разнородных клеток, но функционируют они как целый организм. В ходе эксперимента, о котором пишет Cell, ученые вынули из беременной свиноматки эмбрионы и подсадили в них индуцированные человеческие стволовые клетки, после чего эмбрионы отправили обратно развиваться в теле свиньи. Появиться на свет химерам не позволили – от них избавились еще на ранней стадии беременности самки.

Зачем ученым нужны гибридные организмы?

Ниша для органов


Одна из ⁠главных ⁠целей эксперимента – выращивание человеческих органов ⁠в организме животных. Часть пациентов ⁠годами ждет очереди на трансплантацию, и создание биологического материала ⁠таким путем могло бы спасти тысячи жизней. «Мы еще далеки от этого, но первый и важный шаг сделан», – говорит Исписуа Бельмонте. Человеческий орган, выращенный в химере из собственных клеток больного, решил бы проблему отторжения трансплантата организмом больного, так как был бы выращен из его собственных клеток.
Развить человеческие органы в теле животного ученые собираются с помощью генного редактирования (а именно инновационным способом CRISPR-Cas9). Первоначально ДНК эмбриона животного будут изменять так, чтобы в нем не развился необходимый орган, например сердце или печень. Такую «нишу» будут заполнять человеческие стволовые клетки.

Эксперименты показывают, что в химере можно создать практически любой орган – даже тот, который у подопытного животного не предусмотрен. Другой эксперимент этой же группы ученых показал, что подсадка в организм мыши стволовых крысиных клеток позволяет вырастить желчный пузырь, хотя у мышей этого органа эволюционно нет.

Еще в 2010 году японские ученые таким же образом создали для крысы поджелудочную железу. Команда Исписуа Бельмонте смогла вырастить в организме мыши также крысиное сердце и глаза. Двадцать пятого января один из его коллег сообщил в статье в журнале Nature, что его группе удалось провести обратный эксперимент – вырастить в крысе поджелудочную железу для мыши и успешно ее пересадить. Орган исправно функционировал больше года.

Важное условие для успеха экспериментов с химерами – правильное соотношение размеров соединяемых организмов. Например, ранее ученые пытались создать химеры свиней и крыс, но эксперимент оказался безуспешным. Гораздо более совместимыми являются люди, коровы и свиньи. Команда Исписуа Бельмонте предпочла использовать для создания химеры с человеком свинью просто потому, что использовать последних дешевле, чем коров.

Гибриды среди нас


История знала случаи пересадки людям некоторых частей тела от животных, в том числе и свиней, и раньше. Еще в XIX веке американский доктор Ричард Киссам успешно пересадил юноше роговицу глаза, которую взял у шестимесячного поросенка. Но полноценное создание химер началось в 1960-е годы, когда американская ученая Беатрис Минц получила лабораторным путем первый гибридный организм, соединив клетки двух разных видов мышей – белой и черной. Чуть позже другая ученая – француженка Николь ле Дуарен соединила зародышевые слои куриного и перепелиного эмбриона и в 1973 году выпустила работу о развитии гибридного организма. В 1988 году Ирвинг Вейсман из Стэнфордского университета создал мышь с человеческой иммунной системой (для исследований СПИДа), а впоследствии вживлял человеческие стволовые клетки в мышиный мозг для исследований по нейробиологии. В 2012 году на свет появились первые химеры-приматы: в Национальном центре исследования приматов в Орегоне ученые создалимакак, содержащих шесть различных ДНК.

Более того, история уже знает и случаи людей-химер, хотя общество их таковыми не называет, да и сами они могут об этом не догадываться. В 2002 году жительница Бостона Карен Киган прошла генетический тест, чтобы определить, можно ли ей пересаживать почку одного из ее родственников. Анализы показали невозможное: ДНК пациентки не соответствовала ДНК ее биологических сыновей. Оказалось, что у Киган был врожденный химеризм, который развивается у эмбриона в результате сбоя в процессе оплодотворения: ее организм содержал два генетических набора, один у клеток крови, другой – у клеток в тканях ее тела.

Формально химерой можно назвать и человека, которому пересадили чужой костный мозг, – например, при лечении лейкемии. В некоторых случаях в крови такого пациента можно найти клетки и с его исходной ДНК, и с ДНК донора. Еще один пример – так называемый микрохимеризм. В теле беременной женщины может наблюдаться перемещение стволовых клеток плода, несущих его геном, в органы будущей матери – почки, печень, легкие, сердце и даже мозг. Ученые предполагают, что это может случаться чуть ли не при каждой беременности, а такие клетки могут оставаться на новом месте в течение всей жизни женщины.

Но во всех этих случаях химеры образуются (естественно или нет) от двух человек. Другое дело – совмещение человека с животным. Трансплантация тканей от животных человеку может сделать его уязвимым для новых болезней, к чему наша иммунная система не готова. Многих также пугает возможность наделения зверей людскими качествами, вплоть до повышения уровня сознания. Ученые пытаются заверить общество и власти в том, что подобные эксперименты будут жестко контролироваться лабораториями и использоваться лишь во благо. Национальные институты здоровья США (NIH) никогда не финансировали такие разработки, ссылаясь на их неэтичность. Но в августе 2016 года представители NIH заявили, что могут пересмотреть мораторий (решение пока не принято).

В отличие от NIH американская армия щедро финансирует подобные эксперименты. По словам кардиолога из Миннесотского университета Дэниела Гэрри, его проект по созданию химер, в рамках которого была получена свинья с сердцем от другой особи, недавно получил от военных грант $1,4 млн на эксперименты по выращиванию в свинье человеческого сердца.