Свойства экстремума функции. Экстремум функции

Определения:

Экстремумом называют максимальное или минимальное значение функции на заданном множестве.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Точка максимума – это точка, в которой достигается максимальное значение функции.

Точка минимума – это точка, в которой достигается минимальное значение функции.

Пояснение.

На рисунке в окрестности точки х = 3 функция достигает максимального значения (то есть в окрестности именно этой точки нет точки выше). В окрестности х = 8 она опять же имеет максимальное значение (снова уточним: именно в этой окрестности нет точки выше). В этих точках возрастание сменяется убыванием. Они являются точками максимума:

x max = 3, x max = 8.

В окрестности точки х = 5 достигается минимальное значение функции (то есть в окрестности х=5 точки ниже нет). В этой точке убывание сменяется возрастанием. Она является точкой минимума:

Точки максимума и минимума являются точками экстремума функции , а значения функции в этих точках – ее экстремумами .

Критические и стационарные точки функции:

Необходимое условие экстремума:

Достаточное условие экстремума:

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Алгоритм исследования непрерывной функции y = f (x ) на монотонность и экстремумы:

Один из типов задач математического анализа: исследовать функцию одной переменной на минимум и (или) максимум. Иногда экстремум (собирательное название для минимума и максимума) функции требуется найти на некотором интервале. Задачи подобного плана попадаются также в курсе средней школы и среди заданий Единого Государственного Экзамена.
Постановка задачи 1:

Дана функция , определенная на некотором промежутке. Требуется найти точки максимумов (минимумов) функции.
Теоретические основы.
Определение: Говорят, что функция имеет в точке максимум, рис. а) (или минимум, рис. б)) , если существует некоторая окрестность в промежутке, где функция определена, что для всех точек этой окрестности выполняется неравенство
().
Замечание:
Extremum- (латынь) крайнее.
Maximum – (латынь) наибольшее.
Minimum – (латынь) наименьшее.

Необходимое условие экстремума (Теорема Ферма):

Пусть функция определена на некотором промежутке и во внутренней точке с этого промежутка принимает наибольшее (наименьшее) значение. Если существует двусторонняя конечная производная , то необходимо .
Определение: Если выполняется равенство , то точку будем называть стационарной точкой .
Определение: Стационарные точки и точки, в которых не существует двусторонней конечной производной, будем называть точками, подозрительными на экстремум.
Иллюстрация некоторых случаев, кроме представленных выше двух:

1) Экстремума нет, первая производная равна нулю.
2) Точка максимума, первая производная слева и справа бесконечна.
3) Экстремума нет, первая производная слева и справа бесконечна.
4) Точка минимума, первая производная слева не равна первой производной справа.
5) Экстремума нет, первая производная слева не равна первой производной справа.

Замечание (Геометрический смысл производной):

Производная функции в точке численно равна угловому коэффициенту касательной к графику функции , проведенной в точке .
Пример 1:

Рассмотрим функцию .
Вычислим производную этой функции:

Итак, точки, подозрительные на экстремум:
Построим график этой функции.

На графики видно, что функция имеет максимум при , минимумы при . При функция экстремума не имеет.

Из этого примера видно, что равенство нулю производной в точке является обязательным условием экстремума функции в этой точке, но не является достаточным условием.
Теорема (условие монотонности функции):

Пусть функция определена и непрерывна в непрерывна в некотором промежутке и внутри него имеет конечную производную . Для того, чтобы была на этом промежутке монотонно возрастающей (убывающей) в широком смысле, необходимо и достаточно условие

Достаточное условие экстремума:

Предположим, что в некоторой окрестности стационарной точки существует конечная производная и как слева от ,так и справа от (в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая:

1) при и при (производная при переходе через точку меняет свой знак с плюса на минус). Т.е. при функция возрастает, а при — убывает. Значит, значение будет наибольшим в промежутке . Другими словами, в точке функция имеет максимум.

Пояснение: Сверху от числовой оси указывается знак производной на соответствующем интервале, снизу от числовой оси обозначается поведение функции на соответствующем интервале (убывание или возрастание).
2) при и при (производная при переходе через точку меняет свой знак с минуса на плюс). Т.е. при функция убывает, а при — возрастает. Значит, значение будет наименьшим в промежутке . Другими словами, в точке функция имеет минимум.

3) при и при ( при и при )(производная при переходе через точку не меняет свой знак). Т.е. функция в промежутке убывает (возрастает). Другими словами, в точке функция не имеет экстремума.

Пример 2:

Рассмотрим вновь функцию .
Производная этой функции имеет вид:

Точки, подозрительные на экстремум: . Выясним знаки производной на соответствующих интервалах (решим методом интервалов неравенства и ):

Из рисунка видно, что в точке производная меняет свой знак с минуса на плюс, т.е. при функция имеет минимум.

В точке производная меняет свой знак с плюса на минус, т.е. при функция имеет максимум.
В точке производная меняет свой знак с минуса на плюс, т.е. при функция имеет минимум.
В точке производная своего знака не меняет, т.е. экстремума там нет.
Полученные данные полностью подтверждаются графиком функции.

Алгоритм решения задачи 1.

1) Найти производную функции .

2) Найти стационарные точки (точки, подозрительные на экстремум), решив уравнение .Обратить внимание на точки, в которых не существует двусторонней конечной производной.

3) Выяснить, меняет ли производная свой знак в точках, подозрительных на экстремум.. Если она меняет знак с минуса на плюс, то в этой точке функция имеет свой минимум. Если с плюса на минус, то максимум, а если знак производной не меняется, то экстремума в этой точке нет.

4) Найти значение функции в точках минимума (максимума).

Дополнение:

Исследование знака первой производной функции по разные стороны от стационарной точки (достаточное условие экстремума) можно заменить исследованием знака второй производной в этой стационарной точке (при условии её существования).
1) если , то функция имеет в этой точке минимум.
2) если , то функция имеет в этой точке максимум.
3) если , то вопрос о существовании экстремума в этой точке остается открытым. Решим неравенство

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке.

Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близкихк точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е. Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

Примеры .

  1. y =|x |.

    Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

  2. Функция не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум.

    Функция не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

    Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

    Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

    Например . .

    Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

    Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .


    Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

    Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

    Таким образом, если

    Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

    1. Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

      f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

    2. Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

    Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

    Аналогично доказывается вторая часть теоремы о минимуме.

    Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

    f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

    Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

    Аналогично можно рассматривать точки x 2 и x 3 .


    Схематически все вышесказанное можно изобразить на картинке:

    Правило исследования функции y=f(x) на экстремум

    1. Найти область определения функции f(x).
    2. Найти первую производную функции f "(x) .
    3. Определить критические точки, для этого:
      1. найти действительные корни уравнения f "(x) =0;
      2. найти все значения x при которых производная f "(x) не существует.
    4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.
    5. Вычислить значение функции в точках экстремума.

    Примеры . Исследовать функции на минимум и максимум.


    НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ

    Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.

    Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b ]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.

    Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b ] :

    1. Найти все критические точки функции в интервале (a, b ) и вычислить значения функции в этих точках.
    2. Вычислить значения функции на концах отрезка при x = a, x = b .
    3. Из всех полученных значений выбрать наибольшее и наименьшее.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Кто такой Геракл
Геракл в древнегреческой мифологии — величайший герой, сын бога Зевса и Алкмены — жены фиванского царя Амфитриона. При рождении был назван Алкидом. Неоднократно упомянут уже в «Илиаде» (II 658 и др.).Среди многочисленных мифов о Геракле наиболее известен цикл сказаний о 12 подвигах, совершенных

Как называются деньги Нигерии
Название страны Название - денег/разменной монеты Австралия Австралийский доллар/цент Австрия Австрийский шиллинг/грош — евро Азербайджан Манат Албания Лек/киндарка Алжир Алжирский динар/сантимо Аргентина Аргентинский аустраль/сентаво Афганистан Афгани/пул Бангладеш Така/пайс Бельгия Бельгийский франк/сантимо — евро Болгария Лев/стотинка

Что такое желтая лихорадка
Вся информация предоставляется исключительно в ознакомительных целях. Поставить правильный диагноз и назначить соответствующее лечение может только врач! Желтая лихорадка (амариллез) — острое геморрагическое трансмиссивное заболевание вирусной этиологии, тропический зооантропоноз Африки и Южной Америки. Передаётся с укусом комаров. Симптомы Инкуб

Какие песни играют в 12 серии 6 сезона сериала «Тайны Смолвиля»
В 6 сезоне сериала «Тайны Смолвиля» двадцать серий. Promo Music: APM Music — Dark Bells (1:55); Bloc Party — The Prayer (3:44). Серия № 3: Wither (Угасание): T

Что такое премия ФИФА имени Ференца Пушкаша
Премия ФИФА имени Ференца Пушкаша (англ. FIFA Puskas Award) — награда, учреждённая ФИФА 20 октября 2009 года. Награда вручается игроку (независимо от пола), забившему самый красивый гол года. Премия названа в честь капитана великой венгерской Золотой команды 50-х годов Ференца Пушкаша. Первая церемония

Почему каменный век называется «каменным»
В начальный период истории человечества преимущественное употребление имели каменные орудия, поэтому он называется каменным веком. Согласно современной классификации каменный век делится на: древнекаменный, или палеолит, датируемый с момента появления человека (более 2,5 миллионов лет до н. э.) и приблизительно до 10 тысячелетия до н. э.; среднекаменный, мезолит: 10 тысячелетие


1. Узнать данные владельца (фамилию, имя, отчество) по номеру мобильного телефона, можно обратившись за помощью к сотрудникам спецслужб или в государственные органы. Сотрудники спецслужб могут воспользоваться данными мобильного оператора в случае поимки преступника или раскрытия террористического акта. 2. Можно нанять частного детектива. Частные детективы обычно «

Какие препараты относятся к допинговым средствам
Само название - допинг происходит от английского слова dope - что означает давать наркотик. Согласно определению Медицинской комиссии Международного Олимпийского Комитета, допингом считается введение в организм спортсменов любым путем (в виде уколов, таблеток, при вдыхании и т.д.) фармакологических препаратов, искусственно повышающих работоспособность и спортивный результат. Кроме

Когда и кем была открыта самая большая в мире пещера
Самая большая в мире пещера Шондонг находится во вьетнамском национальном парке Фонгня-Кебанг, который расположен в 500 км южнее столицы страны Ханоя. Протяженность пещеры составляет около 9 км. При этом высота ее достигает 200 м, а ширина — 150 м. Объем пещеры оценивается в 38,5 млн м3. Пещера была впервые исследована в а

Почему считается, что Вселенная расширяется
Прежде всего, необходимо подчеркнуть, что использование термина «Вселенная», а также обсуждение её наблюдаемых свойств имеет смысл только начиная с масштабов пространства, превышающих 100 мегапарсек, поскольку до расстояний в сотни мегапарсек ещё прослеживаются такие космические структуры, как скопления галактик (1 парсек = 3,085&middo

Какой грамматический словарь русского языка считается в Российской Федерации официальным
Список грамматик, словарей и справочников, содержащих нормы современного русского литературного языка при его использовании в качестве государственного языка Российской Федерации: 1. Орфографический словарь русского языка. Букчина Б.З., Сазонова И.К., Чельцова Л.К. — М.: «АСТ-ПРЕСС», 2008. — 128

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \}