Типы измерительных шкал. Измерение. Шкалы измерений

Измерение – это совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах величин.

В более широком понимании измерение представляет собой процедуру количественной или качественной оценки того или иного свойства. Измерение становится возможным, если удается сформировать шкалу рассматриваемого свойства с учетом множества его различных проявлений. Слово «шкала» происходит от латинского «scala – лестница», и означает ряд последовательных значений измеряемой величины в восходящем или нисходящем порядке, которые приняты для измерения.

Свойство рассматривают как некую систему, между элементами которой действуют различные отношения: отношения эквивалентности (равенства), отношения порядка (больше, меньше), отношения аддитивности (суммирования).

В теории измерений рассматривают 5 различных типов шкал:

- шкалы наименований ;

- шкалы интервалов (шкалы разностей);

- шкалы отношений ;

- шкалы порядка (шкалы рангов);

- абсолютные шкалы .

Шкалы наименований – это качественные шкалы, которые соответствуют свойствам только с отношениями эквивалентности . К этим свойствам нельзя применить термин «размер», но они могут быть определены и идентифицированы. Например, наименование или обозначение цвета по атласу цветов.

Шкалы порядка – соответствуют свойствам, для которых могут быть установлены отношения эквивалентности и отношения порядка по возрастанию или уменьшению количественного проявления свойства, но единицы измерения ввести нельзя. Это шкалы с балльной оценкой (сила землетрясения, сила ветра, твердость минералов и металлов).

Шкалы интервалов – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы интервалов имеют условный ноль, заданные значения интервалов и единицу измерения.

Например, шкала времени имеет условный ноль и установленные интервалы. Единица измерения воспроизводится непосредственно как интервал времени – с, мин, час, сутки и т.д. К шкале интервалов относится температурные шкалы Цельсия и Фаренгейта. Шкала Цельсия имеет условный ноль (температуру замерзания воды или таяния льда) и заданный интервал (100 градусов Цельсия – температура кипения воды). В шкале Фаренгейта началом отсчета является температура смеси льда, поваренной соли и нашатыря. В качестве второй опорной точки выбрана температура тела человека. Единица температуры по Фаренгейту – градус Фаренгейта, определяется как одна девяносто шестая часть полученного интервала. Температура таяния льда по Фаренгейту равна 32 градусам, температура кипения воды – 212 градусов.



Шкалы отношений – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы отношений считаются наиболее совершенными, так как имеют естественный ноль и единицы измерения, которые принимают по согласованию. Например, температурная шкала Кельвина имеет физически определенный ноль (абсолютный ноль – наиболее низкая возможная температура). Кельвин является одной из основных единиц СИ (до 1968 г. называлась градус Кельвина). 1 К = 1 градусу Цельсия (по определению Кельвин – это единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, то есть точки сосуществования трех агрегатных состояний воды – жидкого, твердого и газообразного. Тройная точка воды соответствует 0,01 градуса Цельсия. Шкалами отношений также являются шкалы многих физических величин – массы, длины, силы электрического тока и др. С помощью шкал отношений возможны все арифметические операции с измеряемыми величинами: сложение, вычитание, умножение и деление.

Шкалы порядка – соответствуют свойствам с отношениями эквивалентности и порядка (по возрастанию или уменьшению количественного проявления свойства), но единицы измерения ввести нельзя. Эти величины не измеряют, а оценивают. Шкалы порядка имеют балльную оценку. Например, шкала силы землетрясения, шкалы твердости минералов и металлов, шкалы серых и синих эталонов оценки устойчивости окраски и др.

Абсолютные шкалы - соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности , имеющие естественное однозначное определение единицы измерения. Например, шкала измерения плоских углов в радианах (радиан – это центральный угол, соответствующий дуге, длина которой равна ее радиусу).



Измерения классифицируют по нескольким классификационным признакам.

По числу выполненных наблюдений или снятых показаний измерения делят на однократные и многократные .

Однократным называют измерение, выполненное один раз. Например, снятие размерных признаков тела человека.

Многократным называют измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений). Многократное измерение выполняют с целью снижения погрешности. Например, определение Рр и Ер ткани по стандартной методике предусматривает использование 3 проб по основе и 4 проб по утку.

В зависимости от способа получения результата измерения делят на прямые, косвенные, совместные и совокупные.

Прямыми называют измерения, в которых искомое значение находят непосредственно из опытных данных. Например, измерение длины, массы и т.д.

Косвенными называют измерения, в которых искомое значение находят по результатам прямых измерений других величин, которые связаны с искомой определенной зависимостью. Например, определение линейной плотности нитей:

Т=m/L, текс.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин для установления функциональной зависимости между ними. Например, одновременное определение Р и l для построения кривой «деформация – усилие» и нахождения зависимости Р=f(l).

Совокупными называют измерения, в которых значения измеряемых величин находят решением системы уравнений, составленной по данным измерений нескольких одноименных величин . Примером является определение масс отдельных гирь в наборе по известной массе одной из них и по результатам определения масс различных сочетаний гирь.

По характеру зависимости измеряемой величины от времени измерения подразделяют на статические и динамические .

Статическими называют измерения, при которых измеряемая величина принимается за неизменную на время проведения измерения. Например, измерение Рр и Ер является статическим.

Динамическими называют измерения, при которых измеряемая величина изменяется со скоростью, превышающей возможности средства измерений отслеживать ее изменения. В этом случае возникает дополнительная динамическая составляющая погрешности, обусловленная инерционными свойствами измерительного прибора. Например, измерение дискретных значений Р и Е при растяжении пробы; измерение нарастающей влажности воздуха в корпусе установки при определении паропроницаемости материалов.

По уровню точности измерения делят на измерения максимально возможной точности, контрольные и технические (рабочие).

Измерения максимально возможной точности выполняют в метрологических центрах при создании и эксплуатации эталонов, а также в научных исследованиях по определению значений констант, стандартных справочных данных и т.д.

Контрольные измерения выполняют при поверке и калибровке средств измерений. Погрешность таких измерений не должна превышать некоторое заданное контрольное значение.

Технические (рабочие) измерения выполняют в промышленности с помощью рабочих средств измерений.

По особенностям обработки результатов измерения делят на равноточные и неравноточные .

Равноточными называют измерения, выполненные одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточными называют измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях.

Системы единиц

Система единиц – совокупность основных (независимых) и производных единиц величин.

Впервые принцип построения такой системы разработал немецкий ученый Гаусс в 1832 г. Разработанная им система получила название абсолютной и включала три основные единицы – миллиметр, миллиграмм и секунду. Абсолютная система не получила широкого распространения, но принцип ее построения используется до настоящего времени.

Принцип построения систем единиц заключается в том, что выбираются независимые друг от друга основные физические величины. Их единицы измерения называются основнымиединицами величин . Остальные величины называются производными, их единицы измерений - производными единицами величин . Производные единицы величин устанавливают через основные с использованием известных физических законов и соотношений. Эти соотношения в метрологии называют уравнениями связи между величинами.

Международная система единиц СИ разработана по решению ГКМВ и первоначально (в 1960 г.) включала шесть основных единиц. Позднее была добавлена седьмая основная единица – количество вещества – моль, а затем две дополнительные единицы – радиан и стерадиан. Система СИ нашла свое отражение в международных стандартах ИСО и государственном стандарте РФ.

Основные единицы СИ:

- метр (м) – единица длины (L) , равная пути, пройденному в вакууме светом за интервал времени 1/299 792 458 с;

- килограмм (кг) – единица массы (М) , равная массе международного прототипа килограмма (прототип килограмма представляет собой гирю в виде прямого цилиндра диаметром и высотой 39 мм из сплава платины и иридия);

- секунда (с) – единица времени (Т) , равная 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

- ампер (А) – единица силы электрического тока (I) . Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2*10 -7 Н;

- кельвин (К) – единица термодинамической температуры – греч, тэта) , равная 1/273,16 части термодинамической температуры тройной точки воды (то есть точки сосуществования льда, воды и пара, которая соответствует 0,01 градуса Цельсия или 273,16 К);

- кандела (кд) – единица силы света (J) . Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540,10 12 Гц, электрическая сила света которого в этом направлении составляет 1/683 Вт/ср (Ватт на стерадиан);

- моль (моль) – единица количества вещества (N) . Моль – это количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Дополнительные единицы :

- радиан (рад) – единица измерения плоского угла, равная внутреннему углу между двумя радиусами окружности, длина дуги между которыми равна радиусу;

- стерадиан (ср) – единица измерения телесного угла. Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности этой сферы площадь, равной площади квадрата со стороной, равной радиусу.

Одновременно с принятием системы СИ ГКМВ приняла десятичные кратные и дольные приставки к единицам. Приставка означает, что единица умножена на десять в целой положительной или отрицательной степени. Новая единица называется кратной или дольной (кратно превышающей или составляющей долю от исходной единицы). Из многообразия кратных и дольных единиц выбирают единицу, позволяющую получать числовые значения, удобные для применения на практике – в диапазоне от 0,1 до 1000.

Множители и приставки для образования десятичных кратных и дольных единиц, и их наименования

Примеры: МПа, кН, гПа, даН, дм, см, мм, мкм, нм.

ГКМВ признало использование некоторых внесистемных единиц наравне с единицами СИ из-за их практической важности – минута (мин), час (ч), литр (л) и некоторые другие.

На практике для удобства применяются не только системные и допущенные внесистемные единицы величин. Например, значение атмосферного давления и кровяное давление человека привычно указывают в миллиметрах ртутного столба, а не в Па; мощность двигателей автомобилей - в лошадиных силах, а не в киловаттах и т.д.

Вопросы для самоконтроля

1. С помощью каких шкал можно выполнить наибольшее количество действий:

- шкал наименований ;

- шкал интервалов ;

- шкал отношений ;

- шкал порядка ;

- абсолютных шкалы .

2. Физической величиной, на множестве значений которой возможно выполнение операций, подобных сложению и вычитанию, является:

- сила электрического тока;

- коэффициент линейного расширения;

- твердость минералов;

- сила ветра.

3. Измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях, называются:

- однократными ;

- многократными;

- прямыми;

- косвенными;

- неравноточными.

4. Измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений):

- многократное;

- прямое;

- косвенное;

- совместное;

- совокупное.

5. Из приведенных единиц измерения основнымиединицами величин являются:

- метр, м

- килограмм, кг

- джоуль, Дж

- ампер, А

- градус, град

- кельвин, К

- секунда, с

- моль

- кандела, кд

Средства измерений

Средство измерений – техническое средство, которое предназначено для измерений и имеет нормированные метрологические характеристики. К метрологическим характеристикам относят характеристики средства измерений, которые влияют на результат измерений и его погрешность.

Средства измерений выполняют одну из двух функций:

Воспроизводят величину заданного размера (гири, линейки);

Вырабатывают сигнал (показание), несущий информацию о значении измеряемой величины.

Показания средства измерений могут непосредственно восприниматься органами чувств человека (например, показания стрелочного или цифрового прибора), либо преобразуются другими техническими средствами в сигнал, удобный для восприятия (например, записывающими устройствами).

Средства измерений подразделяют на меры, измерительные преобразователи (датчики), измерительные приборы, измерительные установки, измерительные системы .

Мера – средство измерений, предназначенное для воспроизведения и/или хранения величины одного или нескольких размеров, значения которых выражены в установленных единицах с необходимой точностью. Например, гиря воспроизводит один размер, штриховая мера длины – линейка – воспроизводит несколько размеров.

Измерительный преобразователь (датчик) – это средство измерений, предназначенное для преобразования сигналов измерительной информации в форму, удобную для восприятия или дальнейшего преобразования. Например, температурные полоски, тензометрические датчики.

Измерительный прибор – это средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне и выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия. По форме представления измерительной информации различают показывающие и регистрирующие приборы . Показывающие приборы позволяют производить отсчет или считывание показаний. Например, стрелочные или цифровые приборы. Регистрирующие приборы записывают информацию на каком-либо носителе. Например, гигрограф записывает кривую изменения влажности воздуха на специальной бумаге в течение суток.

По форме преобразования измерительных сигналов приборы подразделяют на аналоговые и цифровые . Аналоговые приборы имеют показания в виде непрерывной функции изменения измеряемой величины. Например, к аналоговым относятся разрывные машины с маятниковым силоизмерителем, стрелочные тонометры и др. Цифровые приборы автоматически преобразуют результаты измерения непрерывной величины в дискретные сигналы, которые отображаются в виде чисел на цифровом индикаторе (в силу этого существуют отличия в определении и нормировании метрологических характеристик цифровых приборов по сравнению с аналоговыми). Например, разрывные машины с цифровой индикацией, цифровые тонометры и др.

Измерительная установка – это совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте. Например, установка с эксикаторами для определения паропроницаемости.

Измерительная система - это совокупность функционально объединенных средств измерений и вспомогательных устройств, размещенных в разных точках контролируемого объекта и соединенных между собой каналами связи, предназначенная для измерения одной или нескольких величин.

Вопросы для самоконтроля

1. Совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте – это средство измерений, которое называется:

- мера,

- измерительный преобразователь (датчик),

- измерительный прибор,

- измерительная установка,

- измерительная система

2. Разрывная машина Р-50, которая имеет цифровые табло для отображения значений нагрузки и деформации проб и самописец для построения кривой «нагрузка-деформация» относится к:

- показывающим измерительным приборам,

- регистрирующим измерительным приборам ,

- аналоговым измерительным приборам,

- цифровым измерительным прибором.

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.


Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная.

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

  • разы;
  • проценты;
  • доли;
  • полные углы.

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

В исследованиях применяются три основных типа шкал: номинальные, ранговые (порядковые) и интервальные. Их становление тесно связано с развитием измерения в практике.

На заре человеческой истории единственным инструментом измерения выступала способность людей качественно различать (дифференцировать) пред­меты и явления по их наиболее общим признакам и свойствам. В ходе такого различения человек присваивал им определенные наименования. Он, скажем, не мог знать конкретную величину температуры, а мог сделать лишь альтернативный вывод: тепло или холодно. Этот вывод безотносителен к конкретной величине температуры. Так происходило измерение по номинальной шкале . С развитием наблюдательности человек научился использовать для измерения объективные явления природы, обладающие постоянными, периодически повторяющимися в строгой последовательности свой­ствами. Для измерения температуры внешней среды он использовал уже такое явление, как изменение агрегатного состояния воды в природе: лед - вода - пар. В зависимости от того, в каком состоянии вода находилась, он делал вывод: "холодно", "тепло " или "горячо". Здесь уже имело место упорядочен­ное (ранжированное) измерение. Оно осуществлялось по ранговой шкале .

В дальнейшем людьми были сконструированы искусственные эталоны. Для измерения температу­ры, в частности, была создана шкала с начальной (условно-нулевой) точкой при замерзании воды и с конечной - при ее кипении. Расстояние между этими точками разделили на 100 равных интервалов. Появилась возможность выражать величину температуры при помощи чисел по интервальной шкале. Такие шкалы измерения условно можно назвать конвенциальными, так как в качестве эталонной нулевой точки при их конструировании может быть принято любое устойчивое явление природы, как это делается в физике. Если удается найти "абсолютно" устойчивое явление, наподобие скорости света, или точки замерзания по шкале Кельвина (примерно минус 273 градуса по шкале Цельсия), тогда можно построить шкалу пропорций , используемую в естественных науках, однако не применимую для построения гносеологических моделей в современной социологии.

Проиллюстрируем на нескольких примерах особенности использования в социологических исследованиях различных типов шкал.

Номинальная шкала

При ее помощи измеряют преимущественно объективные признаки респондентов (пол, семейное положение, профессия и др.). Приведем пример номинальной шкалы, измеряющей структуру досуга респондента:

Укажите, пожалуйста, какими видами досуга наполнены обычно ваши выходные дни :

- посещаю парк

- занимаюсь с животными

- езжу на рыбалку

- хожу в кино

- играю в шахматы

- смотрю телевизор

- нечто другое

Ранговая (порядковая) шкала

Для большинства свойств и признаков социальных явлений трудно найти объективные индикаторы. Не принятые в НГУ абитуриенты из-за малого количества набранных баллов на вступительных экзаменах нередко с успехом заканчивали НЭТИ и НИНХ, причем после окончания вуза нередко защищали диссертации быстрее выпускников НГУ. Это объясняется разными шкалами, применяемыми в разных школах, поскольку объективно устанавливаемых индикаторов для оценок успеваемости, как и уровней диссертаций в разных науках, не существует. Если бы для будущих экономистов были установлены такие индикаторы, какие Л.Д. Ландау устанавливал для физиков, то основная масса экономических вузов оказалась бы без студентов. Поэтому измерение в социологии основано большей частью на субъективных индикаторах, выражающих отношение респондентов к кому-либо, чему-либо. Позиции ранговой шкалы располагаются в строгом по­рядке от наиболее к наименее значимой либо наоборот.

Например, мы проранжировали содержание труда по степени его технологической сложности и решили осуществить группировку работников путем самоидентификации содержания выполня­емой ими работы при помощи сконструированной нами шкалы:

Укажите, пожалуйста, характер выполняемого вами труда:

1 - труд физический, ручной, без применения техники и инструментов

2 - труд ручной с применением инструментов

3 - труд с применением техники, полуавтоматов

4 - труд на автоматических линиях

5 - труд связан с техническим творчеством, проектированием, либо управлением

Номера вариантов ответов могут представлять собой ранги . Так, с позиций интеллектуального содержания труда цифра 1 означает, что первая позиция менее предпочтительна, чем вторая, а вторая - чем третья (но только согласно принятому нами принципу порядковой дифференциации позиций шкалы!). Однако при этом никоим образом нельзя делать такие утверждения, как, напри­мер: "труд, выполняемый на автоматических линиях, ровно в два раза более насыщенный тех­нологически и интеллектуально, чем труд ручной с применением инструментов". Такие строгие числовые соотношения при помощи ранговой шкалы невыполнимы. Вычисление "средних уровней политической культуры" или "усредненных" величин иных свойств и признаков, измеренных по ранговой шкале, может привести к грубым ошибкам.

Интервальная шкала

При помощи ее в прикладной социологии измеримо весьма небольшое число свойств и признаков: в основном те, значение которых можно выразить числом. Таковыми могут быть: возраст, стаж работы, учебы, число членов семьи и др. Позиции в такой шкале расположены по равным или неравным интервалам, в зависимости от значений индикатора, используемого для конструирова­ния шкалы.

Шкала с неравными интервалами имеет такой вид:

- менее года

- от 1 до 3 лет включительно

- свыше 3 до 5 лет включительно

- свыше 5 до 10 лет включительно

- свыше 10 лет.

Шкала с равными интервалами имеет вид:

"Сколько лет Вы работаете на данном предприятии?"

- от 1 года до 3 лет включительно

- свыше 3 до 6 лет включительно

- свыше 6 до 9 лет включительно

- свыше 9 до 12 лет включительно

Очень важно следить за тем, чтобы варианты ответа на вопрос соотносились между собой по всем правилам построения соответствующей шкалы.

Например, методически неверно оценивать респондентов в ответе на вопрос: "Как часто Вы смотрите телепередачи Российского телевидения?" - по следующим вариантам ответов:

- часто

- ежедневно

- раз в 2-3 дня

- раз в неделю

- редко

Первая и последняя позиции составляют ранговую, средние три - интервальную шкалу. По­этому на этапе обработки данных применение единых математических операций для обобщения всех ответов на такой вопрос неправомерно. Возможна только автономная обработка информации по первой и последней позициям отдельно, а по трем средним - также отдельно, в соответствии с представляемыми ими шкалами.

Существует еще ряд правил и требований измерения в прикладной социологии.

Здесь же уместно упомянуть еще несколько требований к шкале, которые необходимо соблюдать при ее конструировании: валидность , полноту и чувствительность.

Валидность (пригодность) шкалы измерения зависит от правильности выбора индикатора и выражается в том, что используемая шкала измеряет именно то свойство или качество изучаемого явления, которое исследователь намерен измерить.

Так, желая выяснить степень электоральной активности тех или иных групп населения, можно сформулировать вопрос: "Как Вы относитесь к участию в выборах президента страны?". Шкала измерения для сформулированного таким образом вопроса будет содержать следующие позиции: положительно; отрицательно; нейтрально. Естественно, такая шкала измерит отношение респон­дента к самому факту выборов президента, но ничего не "скажет" о его личном возможном элек­торальном поведении.

Более правильным будет выбор шкалы в форме ответов на вопрос: "Будете ли Вы участвовать в выборах президента страны, в случае их проведения?": да, непременно; еще не задумывался над этим; определенно нет.

Полнота шкалы измерения предполагает, что в вариантах ответа на вопрос учтены все значения индикатора. Например, построена шкала, включающая в качестве ответов на вопрос: "Из каких источников Вы чаще всего узнаете об актуальных политических событиях?" - варианты:

- из сообщений радио

- из сообщений прессы

- из передач телевидения

Она неполная, так как наряду с первичными существуют и вторичные источники, к примеру, родители, друзья, коллеги по работе и др.

Чувствительность шкалы - это ее способность выявить отношение респондентов к изучаемому явлению с той или иной степенью дифференциации. Она неотъемлемая характеристика шкалы построенной на субъективных индикаторах. Число ее позиций, прежде всего для ранговых шкал определяется самим исследователем. Чем больше их, тем шкала чувствительней.

Например, варианты ответов на вопрос: "Удовлетворены ли Вы прослушанной лекцией? " - могут иметь в шкале три позиции и пять.

Шкала с тремя позициями:

- удовлетворен

-

- не удовлетворен

Шкала с пятью позициями:

- полностью удовлетворен

- удовлетворен в основном

- не могу высказать определенного мнения

- в основном неудовлетворен

- лекция произвела на меня крайне отрицательное впечатление

В социологической практике, как правило, используют ранговые шкалы с тремя или пятью позициями. Оценивать явления по более чувствительной шкале, как показывает опыт, респонден­ты затрудняются. Естественно, это не исключает применение более чувствительных шкал, напри­мер, с семью, одиннадцатью, а то и ста позициями (наподобие термометра).

Позиции ранговых шкал, используемых для оценок, располагаются симметрично. Это означа­ет, что число позиций с положительным значением равно числу позиций с отрицательным, а между ними располагается позиция с нейтральным (нулевым) значением.

Как отмечалось ранее, различные типы шкал позволяют проанализировать полученную ин­формацию с различной глубиной. Насколько строгим является такое свойство шкал? Нельзя ли, получив информацию по шкале низшего порядка, каким-то путем сделать на ее основе более глубокие выводы. Оказывается, нет.

Дело в том, что все шкалы высшего порядка сводимы только к шкалам низшего порядка, но не наоборот. Действительно, предположим, что мы получили ответы по интервальной шкале на воп­рос о частоте просмотра респондентом телепередач:

Смотрит ежедневно

Смотрит 2-3 раза в неделю

Смотрит раз в неделю

Не смотрит телепередачи

Результаты опроса по данной (интервальной) шкале мы легко можем перегруппировать в соот­ветствии с ранговой (если отметивших первую позицию оценивать как "смотрит часто ", вторую и третью позиции в совокупности - как "смотрит редко ", а последнюю - "не смотрит ") либо в соответствии с номинальной шкалой (если отметивших первые три позиции характеризовать в совокупности как "смотрит телепередачи ", а последнюю позицию соответственно - как "не смотрит телепередачи"). Вполне очевидно, что в обратном порядке осуществление подобной процедуры невозможно. То есть, если мы предусмотрели только варианты ответов по шкале с позициями "смотрит" - "не смотрит" телепередачи, то получить более подробную информацию на основа­нии такой шкалы не удастся.

При конструировании шкал в прикладной социологии соблюдают еще такие требования, как точность и надежность.

Точность шкалы - характеристика результата измерения, которая зависит прежде всего от степени совпадения полученных в ходе социологического исследования числовых данных о свойствах, сторонах изучаемого явления (процесса) с их истинной величиной.

Надежность шкалы - ее устойчивость по отношению к изменению характеристик объекта исследования во времени. Она предполагает получение достаточно точных и сравнимых числовых данных об изучаемом явлении (процессе) при многократном (повторном) измерении.

Таким образом, выбор индикаторов и построение на их основе шкал позволяют начать разра­ботку инструментария для непосредственного измерения сторон и свойств изучаемого явления.

Измерение и сравнение

Большинство научных экспериментов и наблюдений вклю­чает в себя проведение разнообразных измерений. Измерение - это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

Огромное значение измерений для науки отмечали многие видные ученые. Д. И. Менделеев подчеркивал, что «наука начинается с тех пор, как начинают измерять».

В основе операции измерения лежит сравнение объектов, заключающемся в установлении различия и сходства предметов по каким-либо сходным свой­ствам или сторонам. Чтобы осуществить сравнение, необхо­димо иметь определенные единицы измерения, наличие которых дает возможность выразить изучаемые свойства со стороны их ко­личественных характеристик. В свою очередь, это позволяет ши­роко использовать в науке математические средства и создает пред­посылки для математического выражения эмпирических зависи­мостей. Сравнение используется не только в связи с измерением. В науке сравнение выступает как сравнительный или сравни­тельно-исторический метод. Первоначально возникший в филоло­гии, литературоведении, он затем стал успешно применяться в пра­воведении, социологии, истории, биологии, психологии, истории ре­лигии, этнографии и других областях знания. Возникли целые отрасли знания, пользующиеся этим методом: сравнительная анатомия, срав­нительная физиология, сравнительная психология и т.п. Так, в срав­нительной психологии изучение психики осуществляется на основе сравнения психики взрослого человека с развитием психики у ребен­ка, а также животных. В ходе научного сравнения сопоставляются не произвольно выбранные свойства и связи, а существенные.

Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, ис­пользующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие-то явления, которые положены в основу измерений (например, измерение температуры с использованием термоэлектрическо­го эффекта).

Существует несколько видов измерений. Исходя из характе­ра зависимости измеряемой величины от времени, измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается посто­янной во времени (измерение размеров тел, постоянного давле­ния и т. п.). К динамическим относятся такие измерения, в про­цессе которых измеряемая величина меняется во времени (из­мерение вибрации, пульсирующих давлений и т. п.).

По способу получения результатов различают измерения пря­мые и косвенные. В прямых измерениях искомое значение из­меряемой величины получается путем непосредственного срав­нения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и пло­щади поперечного сечения). Косвенные измерения широко ис­пользуются в тех случаях, когда искомую величину невозмож­но или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат.

Всегда надо помнить, что никакое измерение не является абсолютно точным. Точности измерения характеризуется его погрешностью - разностью между истинным и измеренным значениями изучаемой величины. Погрешности разделяют на систематические и случайные .

Систематическая погрешность - постоянное по величине и знаку отклонение измеряемой величины от истинного значения.

Систематические ошибки довольно часто могут быть устранены, их обычно довольно легко обнаружить и учесть.

Случайные погрешности – погрешности, вызываемые разнообразными разнонаправ­ленными процессами, которые в разных измерениях отклоняют изме­ренное значение от истинного в разных направлениях и на разную вели­чину.

Оценить и учесть случайные погрешности можно только в среднем, проведя несколько повторных изме­рений одной и той же величины.

После получения результатов экспериментальных воздействий на исследуемый объект необходимо их интерпретировать. С этой целью необходимо тщательно продумать, какие изменения в объекте могло вызвать внешнее воздействие и по каким взаимосвязям оно могло изме­нять реакцию объекта. Это один из самых сложный этапов исследования, ибо легко можно упус­тить из вида какую-нибудь существенную взаимосвязь хотя бы потому, что она не ожидаема и не измерена.

На сегодняшний день различают четыре основных типа шкал измерений: номинальная, порядковая, интервальная и относительная. Каждый тип шкалы обладает определенными признаками, которые рассматриваются ниже; сейчас же рассмотрим какую роль играет техника измерений в процессе классификации.

Часто при классификации исследователь не имеет возможности численно измерить исследуемый параметр. Например, отношение человека к чему-либо, степень его предпочтения и т.д. Способы измерения в данном случае отличаются от традиционных способов. Измерением в данном случае будет считаться любой способ приписывания числовых значений символам, которые отражают качественные характеристики объектов. При этом должны существовать устойчивые взаимосвязи между символами и качествами, которые они отражают. Иными словами, для осуществления кластеризации объекта с качественными характеристиками необходимо использовать приемы техники шкалирования.

В процессе использования техники шкал традиционно выделяют ряд стадий, качество выполнения которых оказывает непосредственное влияние на результат выделения кластеров. На первом этапе необходимо дать четкое определение тому, что собираются измерять. Далее следует указать, как измерение будет осуществлено на практике или что/кто конкретно подлежит измерению. После чего выбирают тип шкалы измерения, который предопределяет метод сбора информации. Любые измерения связаны с ошибками, но поскольку измерение в данном случае имеет специфику, то исследователь может самостоятельно оценить некоторые случайные отклонения исследуемого параметра и исключить его из кластера. Традиционно объекты наблюдения могут быть представлены в следующих типах шкал.

1 тип: номинальная или шкала наименований

Этот базовый и самый примитивный тип шкалы. При его использовании каждому объекту присваивается только идентификационный номер, как, например, номера игроков в спортивной команде, номера телефонов и т.д.

Операции в данной шкале:

Title="(A=~B)~,~(A~B)">

2 тип: порядковая шкала

Этот тип шкалы определяет порядок или ранг объектов наблюдения. Расстояния между объектами, которые следуют друг за другом (по убыванию или по возрастанию) не являются равными. На основании результата ранжирования нельзя сказать, что расстояние между свойствами объектов и равны расстоянию между свойствами объектов и . Часто данный тип шкалы еще называют шкалой восприятия . Например, оценка качества вина по десятибалльной шкале – наиболее понравившееся качество 10 баллов, наименее – 1 балл.

Операции в данной шкале:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

3 тип: интервальная шкала

В отличие от порядковой шкалы, здесь имеет значение не только порядок следования величин, но и величина интервала между ними. Пример для данного типа шкалы: температура воды в море утром – 18 градусов, вечером – 24, т.е. вечерняя на 5 градусов выше, но нельзя сказать, что она в 1.33 раз выше.

Операции, которые можно выполнять на базе этой шкалы:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

4 тип: относительная или шкала отношений

В отличие от интервальной шкалы может отражать то, во сколько один показатель больше другого. Относительная шкала имеет нулевую точку, которая характеризует отсутствие измеряемого качества. Например: цена на товар. Здесь за точку отсчета можно взять «ноль» рублей. Отметим, что на практике не часто удается привести измерения к данному типу шкалы.

Операции для данной шкалы:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

В системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих. Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

Оценка сложных систем может проводиться для разных целей:

4) для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы;

5) для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях;

6) для принятия решений по управлению системой.

Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание . Т.е. с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.

Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. Выделяют два типа целей: качественные и количественные, достижение которых выражаются в соответствующих шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

2.1.1. Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов , j , Y>, где Х - реальный объект, Y - шкала, j - гомоморфное отображение X на Y .

В современной теории измерений определено:

X= {x 1 , х 2 ,…x i ,…, х п , R x } - эмпирическая система с отношением, включающая множество свойств x i , на которых в соответствии с целями измерения задано некоторое отношение R x . В процессе измерения необходимо каждому свойству х i ÎX поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы х i рассматриваются как альтернативы, а отношение R x позволяет сравнивать эти альтернативы; Y ={j (x 1),…, j(х п), R y } знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе; j Î Ф - гомоморфное отображение X на Y , устанавливающее соответствие между X и Y так, что {j (x 1),…, j(х п), R y R y только тогда, когда (х 1 ,..., х п, ) Î R x .

Тип шкалы определяется по множеству допустимых преобразований Ф.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением R x состоит в определении знаковой системы Y с отношением R , соответствующей измеряемой системе. Предпочтения R x на множестве Х ´Х в результате измерения переводятся в знаковые (в том числе и количественные) соотношения R y на множестве Y ´Y.

2.1.2. Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований , классификационная шкала ), по которой объектам или их неразличимым группам дается некоторый признак. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.2.1 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С. Здесь эмпирическую систему представляют четыре элемента: а ÎA, b ÎВ, {с, d} ÎС. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1, 2,..., n и сохраняющей отношение равенства. Гомоморфное отображение φ ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Номинальные шкалы имеют две особенности:

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

2.1.3. Шкалы порядка

Шкала называется ранговой (шкалой порядка ), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование φ (х ), которое удовлетворяет условию: если х 1 > х 2 , то и φ (х 1) > φ (х 2) для любых шкальных значений из области определения. Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам.

Ситуации для применения ранговой шкалы:

Необходимо упорядочить объекты во времени или пространстве. При этом интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением объектов;

Нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;

Какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примеры шкал порядка: шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе; шкалы силы ветра, силы землетрясения, сортности товаров в торговле, социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

2.1.4. Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов . Этот тип содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида φ (х ) = ах + b, где х ÎY Y; а > 0; b - любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Примеры применения шкал интервалов:

1) Шкалы температур. Переход от одной шкалы к эквивалентной, например от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:
t °F = 1,8 t °С + 32.

2) Измерение признака «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари - две конкретизации шкал интервалов.

При переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись означает, что расстояние между х 1 и х 2 в K раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными.

Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта приводит к неверным результатам.

2.1.5. Шкалы отношений

Шкалой отношений (подобия) называется шкала, если Ф состоит из преобразований подобия j(х) = ах, а >0, где х Î Y- шкальные значения из области определения Y; а - действительные числа. В шкалах отношений остаются неизменными отношения численных оценок объектов: .

Примерами измерений в шкалах отношений являются измерения массы и длины объектов. При установлении массы используется большое разнообразие численных оценок: производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b : b = 0. Это соответствует заданию нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

2.1.6. Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х ) = х + b, где х ÎY шкальные значения из области определения Y; b - вещественные числа. Т.е. при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств: φ (х 1) - φ (х 2) = х 1 - х 2 .

Примеры измерений в шкалах разностей:

3) Измерение прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым;

4) Увеличение численности учреждений, количество приобретенной техники за год и т. д.

5) Летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а : (а = 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной. Шкалы разностей сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

2.1.7. Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования: φ (х ) = {е }, где е(х) = х.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и вещественные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, например, степенная шкала φ(х) = ах b ; а >0, b >0, а ¹1, b ¹1, и ее разновидность логарифмическая шкала φ(х) = х b ; b >0, b ¹1.



Изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис.2.2). Стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ(х) . Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.