Углеводы и жиры, их роль в организме. Жиры (липиды)

>>>> Зачем нужны белки, жиры и углеводы?

Зачем нужны белки, жиры и углеводы?

Когда речь заходит о правильном питании, диетологи говорят о том, что питание должно быть сбалансированным. Но что именно в питании должно быть сбалансировано?

Живой организм черпает полезные вещества для поддержания работоспособности всех систем и органов из внешней среды: он потребляет кислород из воздуха, которым дышит и необходимые для проведения биохимических реакций химические вещества из продуктов и жидкостей, которые пригодны для питания. В процессе пищеварения вся потребленная пища разбивается на отдельные соединения, имеющие как простые, так и достаточно сложные химические формулы, которые затем принимают участие в различных химических процессах, становятся участниками синтеза новых соединений, комбинируются, модифицируются и в итоге приводятся к такому виду, в котором могут быть использованы различными клетками организма в их структурных и обменных процессах.

Неиспользуемые организмом вещества выводятся за его пределы, но некоторые из них склонны накапливаться в различных органах, нарушать их функции, отравлять организм процессами распада.

Организму для построения клеточных структур и процессов метаболизма нужны белки, жиры и углеводы . Углеводы и жиры – это энергетики организма. Самое интересное, что углеводы и жиры могут конкурировать между собой за первенство в усвоении их организмом. Жиры являются источником некоторых жизненно важных витаминов. Ко всему прочему жиры выступают как элементы строения клеточной мембраны, формируют жировую ткань не только с целью энергетических запасов, но и как амортизирующую структуру, выполняющую роль защиты органов от травм. Белки – это строительный материал, из которого складываются различные ткани живого организма (кожа, мышечная ткань, волосы, ногти, ткани органов), а также участники различных биохимических обменных процессов. Структурные составляющие белка – это аминокислоты, третья часть из которых не может быть синтезирована из исходных веществ самим организмом и требует поступления из внешней среды. Углеводы наряду с жирами и белками поддерживают иммунную систему, эндокринные процессы, нервную систему.

В среднем оптимальное соотношение белков, жиров и углеводов можно представить в виде пропорции (1:1:4). Эти цифры меняются в зависимости от того, каким видом деятельности занят человек, насколько он физически или умственно активен. Для людей преимущественно интеллектуального труда формула выглядит приблизительно так (1:0.8:3), и чем серьезней задействован в работе мозг, тем больше требуется человеку углеводов. Спортсменам и людям, занимающимся тяжелым физическим трудом белки и углеводы необходимы в еще большей степени (2:1:5). Для жизни в условиях низких температур крайне важно количество белков и жиров, поступающих ежедневно в организм. Соответственно формула будет меняться в сторону увеличения белков и жиров (2:2:4) или (2:2:3).

Белки, жиры и углеводы нужны в строго определенных количествах. Недостаток или избыток этих компонентов очень быстро меняет состояние организма в худшую сторону:

  • вызывает слабость и сонливость,
  • тормозит мыслительные процессы и ухудшает память,
  • снижает массу мышечной ткани и вызывает мышечную слабость,
  • портит состояние кожи и волос,
  • меняет структуру хрящевой и костной ткани,
  • снижает скорость иммунных реакций,
  • провоцирует сбои в синтезе гормонов,
  • нарушает ферментативную деятельность,
  • бьет по сердечно – сосудистой системе,
  • ставит под угрозу все обменные процессы в организме,
  • вызывает токсические поражения органов и тканей.

По этой причине, какая бы диета не была выбрана в качестве лечения или сброса (набора) веса, в рационе всегда должны присутствовать продукты питания, содержащие все три компонента (белки, жиры, углеводы). Вопрос выбора диеты стоит лишь в разнице комбинаций этих веществ, но ни как не в отказе от какого-либо из них.

Когда жиры попадают в кишечник, начинается процесс их расщепления до глицерина и жирных кислот. Потом эти вещества проникают сквозь стенку кишечника и вновь преобразуются в жиры, которые всасываются в кровь. Она транспортирует жиры в ткани, и там они используются в качестве энергетического и строительного материала.

Липиды входят в состав клеточных структур, поэтому они необходимы для образования новых клеток. Избыточное количество жира откладывается в виде запасов жировой ткани. Следует отметить, что нормальное количество жира у спортсмена в среднем составляет 10-12% от массы тела. В процессе окисления из 1 г жира высвобождается 9,3 ккал энергии.

Калорийность пищи определяется по наличию в продуктах жиров и углеводов. В организме жиры образуются из жиров, белков и углеводов, которые поступают с пищей.

Жиры играют важную роль в регулировании обмена веществ и способствуют нормальному функционированию организма. Следует отметить, что растительные масла должны составлять не менее 1 / 3 рациона спортсмена.

Недостаток жиров в рационе приводит к заболеваниям кожи, авитаминозам и другим болезням.

Углеводы

В диетологии углеводы разделяются на простые (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами (это фруктоза и глюкоза). Моносахариды быстро растворяются в воде, это способствует их поступлению из кишечника в кровь. Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся все разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и гликоген. Гликоген является важнейшим элементом для развития выносливости у спортсменов, относится к полисахаридам, вырабатывается в организме животными. Хранится в печени и мышечной ткани, в мясе гликоген почти не содержится, так как после смерти живых организмов он распадается. Организм усваивает углеводы за достаточно короткое время. Глюкоза, попадая в кровь, сразу становится источником энергии, воспринимаемым всеми тканями организма. Глюкоза необходима для нормального функционирования мозга и нервной системы.

Часть углеводов содержится в организме в виде гликогена, который в большом количестве способен превращаться в жир. Во избежание этого следует рассчитывать калорийность потребляемой пищи и поддерживать баланс расходуемых и получаемых калорий.

Углеводами богаты ржаной и пшеничный хлеб, сухари, крупы (пшеничная, гречневая, перловая, манная, овсяная, ячневая, кукурузная, рисовая), отруби и мед.

Минеральные вещества

Эти вещества входят в состав тканей и участвуют в их нормальном функционировании, поддерживают необходимое осмотическое давление в биологических жидкостях и постоянство кислотно-щелочного баланса в организме.

Рассмотрим основные минеральные вещества.

Калий входит в состав клеток, а натрий содержится в межклеточной жидкости. Для нормальной жизнедеятельности организма необходимо строго определенное соотношение натрия и калия. Оно обеспечивает нормальную возбудимость мышечной и нервной тканей. Натрий участвует в поддержании постоянного осмотического давления, а калий влияет на сократительную функцию сердца.

Как избыток, так и недостаток калия в организме может привести к нарушениям в работе сердечно-сосудистой системы.

Калий присутствует в разной концентрации во всех жидкостях тела, помогает поддерживать водно-солевой баланс.

Богатыми натуральными источниками калия являются бананы, абрикосы, авокадо, картофель, молочные продукты, цитрусовые.

Кальций входит в состав костей. Его ионы участвуют в нормальной деятельности скелетных мышц и мозга. Наличие кальция в организме способствует свертыванию крови. Избыточное количество кальция повышает частоту сокращений сердечной мышцы, а в очень больших концентрациях может вызвать остановку сердца. Лучшим источником кальция являются молочные продукты, кальцием также богата капуста брокколи и лососевые виды рыбы.

Фосфор входит в состав клеток и межклеточных тканей. Он участвует в процессе обмене жиров, белков, углеводов и витаминов. Соли фосфора играют важную роль в поддержании кислотно-щелочного баланса крови, укреплении мышц, костей и зубов. Фосфором богаты бобовые культуры, миндаль, птица и в особенности рыба.

Хлор входит в состав соляной кислоты желудочного сока и находится в организме в соединении с натрием. Хлор необходим для жизнедеятельности всех клеток организма.

Железо является составной частью некоторых ферментов и гемоглобина. Оно участвует в распределении кислорода и способствует окислительным процессам. Достаточное количество железа в организме предотвращает развитие анемии и снижение иммунитета, ухудшение работоспособности головного мозга. Натуральным источником железа являются зеленые яблоки, жирная рыба, абрикосы, горох, чечевица, инжир, морепродукты, мясо, птица.

Бром содержится в крови и других жидких сферах организма. Он усиливает процессы торможения в коре головного мозга и этим способствует нормальному соотношению между тормозными и возбудительными процессами.

Йод входит в состав гормонов, вырабатываемых щитовидной железой. Недостаток йода может вызывать нарушение многих функций организма. Источником йода являются йодированная соль, морская рыба, водоросли и другие морепродукты.

Сера входит в состав белков. Она содержится в гормонах, ферментах, витаминах и других соединениях, которые участвуют в обменных процессах. Серная кислота нейтрализует вредные вещества в печени. Достаточное присутствие серы в организме понижает уровень холестерина, предотвращает развитие опухолевых клеток. Серой богаты луковые культуры, зеленый чай, гранаты, яблоки, различные виды ягод.

Для нормального функционирования организма важны цинк, магний, алюминий, кобальт и марганец. Они входят в состав клеток в незначительных количествах, поэтому их называют микроэлементами.

Магний – металл, участвующий в биохимических реакциях. Он необходим для сокращения мышц и работы ферментов. Этот микроэлемент укрепляет костную ткань, регулирует сердечный ритм. Источником магния являются авокадо, коричневый рис, пророщенная пшеница, семена подсолнечника, амарант.

Марганец – микроэлемент, необходимый для образования костных и соединительных тканей, работы ферментов, участвующих в углеводном обмене. Марганцем богаты ананасы, ежевика, малина.

Моносахариды (простые сахара) состоят из одной молекулы, содержащей от 3 до 6 атомов углерода. Дисахариды - соединения, образованные из двух моносахаридов. Полисахариды являются высокомолекулярными веществами, состоящими из большого числа (от нескольких десятков до нескольких десятков тысяч) моносахаридов.

Разнообразные углеводы в больших количествах содержатся в организмах. Их основные функции:

  1. Энергетическая: именно углеводы служат основным источником энергии для организма. Среди моносахаридов это фруктоза, широко встречающаяся в растениях (прежде всего в плодах), и особенно глюкоза (при расщеплении одного ее грамма выделяется 17,6 кДж энергии). Глюкоза содержится в плодах и других частях растений, в крови, лимфе, тканях животных. Из дисахаридов необходимо выделить сахарозу (тростниковый или свекловичный сахар), состоящую из глюкозы и фруктозы, и лактозу (молочный сахар), образованную соединением глюкозы и галактозы. Сахароза содержится в растениях (в основном в плодах), а лактоза - в молоке. Они играют важнейшую роль в питании животных и человека. Большое значение в энергетических процессах имеют такие полисахариды, как крахмал и гликоген, мономером которых выступает глюкоза. Они представляют собой резервные вещества растений и животных соответственно. При наличии в организме большого количества глюкозы она используется для синтеза этих веществ, которые накапливаются в клетках тканей и органов. Так, крахмал в больших количествах содержится в плодах, семенах, клубнях картофеля; гликоген - в печени, мышцах. По мере необходимости данные вещества расщепляются, поставляя глюкозу в различные органы и ткани организма.
  2. Структурная: например, такие моносахариды, как дезоксирибоза и рибоза, участвуют в формировании нуклеотидов. Различные углеводы входят в состав клеточных стенок (целлюлоза у растений, хитин у грибов).

Липиды (жиры) - органические вещества, нерастворимые в воде (гидрофобные), но хорошо растворяющиеся в органических растворителях (хлороформе, бензине и др.). Их молекула состоит из глицерина и жирных кислот. Разнообразие последних и обусловливает многообразие липидов. В мембранах клеток широко встречаются фосфолипиды (содержащие, кроме жирных, остаток фосфорной кислоты) и гликолипиды (соединения липидов и сахаридов).

Функции липидов - структурная, энергетическая и защитная.

Структурной основой клеточной мембраны выступает бимолекулярный (образованный из двух слоев молекул) слой липидов, в который встроены молекулы разнообразных белков.

При расщеплении 1 г жиров выделяется 38,9 кДж энергии, что примерно вдвое больше, чем при расщеплении 1 г углеводов или белков. Жиры могут накапливаться в клетках разных тканей и органов (печени, подкожной клетчатке у животных, семенах у растений), в больших количествах образуя значительный запас «топлива» в организме.

Обладая плохой теплопроводностью, жиры играют важную роль в защите от переохлаждения (например, слои подкожного жира у китов и ластоногих).

АТФ (аденозинтрифосфат). Он служит в клетках универсальным энергоносителем. Энергия, выделяющаяся при расщеплении органических веществ (жиры, углеводы, белки и т. д.), не может использоваться непосредственно для выполнения какой-либо работы, а запасается первоначально в форме АТФ.

Аденозинтрифосфат состоит из азотистого основания аденина, рибозы и трех молекул (а точнее, остатков) фосфорной кислоты (рис. 1).

Рис. 1. Состав молекулы АТФ

При отщеплении одного остатка фосфорной кислоты образуется АДФ (аденозиндифосфат) и высвобождается около 30 кДж энергии, которая расходуется на выполнение какой-либо работы в клетке (например, сокращение мышечной клетки, процессы синтеза органических веществ и т. д.):

Так как запас АТФ в клетке ограничен, он постоянно восстанавливается за счет энергии, выделяющейся при расщеплении других органических веществ; восстановление АТФ происходит путем присоединения молекулы фосфорной кислоты к АДФ:

Таким образом, в биологическом преобразовании энергии можно выделить два основных этапа:

1) синтез АТФ - запасание энергии в клетке;

2)высвобождение запасенной энергии (в процессе расщепления АТФ) для совершения работы в клетке.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Белки, жиры, углеводы и все остальные нутриенты мы будем рассматривать с точки зрения питания человека, ведущего активный образ жизни, т.е. регулярно тренирующегося. Нам бы хотелось донести до вас что-то новое, а не заниматься перечислением и так всем известных истин. Но какие-то базовые вещи мы не можем опустить ибо будет не понятно, что откуда берётся. И начинаем наш рассказ о белке - самом противоречивом и недооценённом нутриенте.

Белок

Со школьной скамьи нам известна фраза, что "жизнь есть способ существования белковых тел". Т.е. мы с вами и есть те самые белковые тела. Наши волосы, ногти, кожа, внутренние органы и мышцы - всё из белка. Таким образом, белок -главный строительный материал нашего организма. В отличие от жиров и углеводов он не образуются из других веществ и не накапливается в организме. Но белок не только строительный материал клеток, тканей и органов. Он служит основой для создания ферментов, гормонов и других соединений. Особенно необходимо отметить такой фермент, как глутатион, обладающий детоксицирующим действием и являющимся самым распостраненным антиоксидантом в человеческом организме и, возможно, наиболее важным. Не только глюкоза, но и белки- это пища для мозга. Они снабжают аминокислотами нейромедиаторы, которые проводят нервные импульсы в головной мозг человека. Т.е. значение белка для организма человека трудно переценить.

Аминокислоты

Наш организм не может использовать чужеродный белок для строительства собственных клеток. В процессе усвоения белки расщепляются до составляющих их аминокислот, которые используются затем для синтеза белков человека. Все аминокислоты делятся на заменимые, т.е. которые могут быть синтезированы самим организмом, и незаменимые, которые не образуются в организме и обязательно должны поступать с пищей. Идеальным с точки зрения содержания и соотношения аминокислот служит белок яйца и молока. Далеки от идеального растительные белки, имеющие дефицит незаменимых аминокислот. Исключение составляет соевые бобы. Поэтому для вегетарианцев очень важно правильно составлять смесь белков из разных растительных источников, имеющих дефицит различных аминокислот, чтобы составить относительно "здоровую" диету.

Сколько нужно?

Это самый главный вопрос. Хроническая недостаточность белка в пищевом рационе приводит к мышечной дистрофии, малокровию, снижению иммунитета. А избыток- вреден, т.к. ведет к перегрузке печени и почек продуктами распада (пуринами и кетонами). Так сколько же нужно? Ответ на этот вопрос будет таким: потребление белка должно быть АДЕКВАТНО вашему полу, возрасту, физической активности и вашим целям. Например, молодая женщина, ставящая своей целью построение красивой фигуры и избавления от излишнего жира, должна потреблять от 1,6 до 2,2 гр белка на кг. собственного веса. Естественно, такое количество белка должно быть вызвано тренировочным процессом, а не одним желанием "похудеть к лету".Тогда практически весь белок будет утилизироваться в работающих мышцах, т.к. увеличится скорость его преобразования. И его токсическое действие будет нейтрализовано. К тому же организм легко адаптируется к увеличению введения белка.

Вывод

Здоровое питание тренирующегося человека подразумевает включение белка в каждый приём пищи. А приёмов этих должно быть не менее 5-6. Источником белка должны служить постная говядина, куриные грудки (без кожицы), индейка, рыба, яйца, обезжиренные молоко и молочные продукты, сыр 17%, бобовые, соя (особенно для женщин за 45), протеиновые коктейли.

Углеводы

Если белки это строительный материал, "кирпичики", из которых строится наше тело, то это те строители, которые всё возводят. Углеводы главный поставщик энергии в наш организм, причём в самой легкодоступной форме. В комплексе с белками они образуют некоторые гормоны и ферменты, а также биологически важные соединения. Углеводы подразделяются на простые и сложные, усваиваемые и неусваиваемые. К простым углеводам относятся моносахариды (глюкоза, галактоза, фруктоза), состоящие из одного вида сахара; и дисахариды (сахароза, мальтоза, лактоза), содержащие в своём составе 2 вида сахаров. А к сложным углеводам относятся полисахариды (крахмал, гликоген, клетчатка и пектин), состоящие более чем из двух сахаров. Для нас важным является тот факт, что простые углеводы, не требующие долгого усваивания, быстро впитываются в кровь и пополняют потребности организма в энергии. Но если же этих потребностей в организме нет, то более 30% углеводов способно переходить в жиры, в качестве резервного топлива. Именно поэтому простые углеводы надо употреблять перед тренировкой и сразу после. Тогда их энергия пойдет на восполнение затрат организма и не создаст никакой угрозы для талии. И ни в коем случае не употребляйте простые углеводы совместно с жиром (например торт) и особенно на ночь, когда потребности в энергии минимальны. Дело в том, что впитываясь, простые углеводы повышают уровень сахара в крови, на что поджелудочная железа реагирует выбросом инсулина- транспортным гормоном, который прямиком завезёт жир и избыточные сахара в жировые депо. Оно нам надо? Другое дело сложные углеводы. Они долго перевариваются, а значит не провоцируют мгновенный выброс инсулина. Напротив, медленно подпитывают энергией весь организм. Поэтому сложные углеводы - наш выбор. Найти мы их можем в кашах, коричневом рисе, макаронах из твёрдых сортов пшеницы, зерновом хлебе, овощах и бобовых, вареном молодом картофеле.

Жиры

Жиры являются концентратами энергии (они более чем вдвое превосходят белки и углеводы по калорийности). В организме жиры служат для хранения энергии, теплоизоляции, участвуют в водном обмене, обеспечивают перенос жирорастворимых витаминов А, Е, Д, К, входят в состав клеток и используются организмом для построения клеточных мембран. Все делятся на две большие группы- насыщенные и ненасыщенные. Насыщенные это твёрдые животные жиры. При температуре тела насыщенные жиры размягчаются, но не плавятся, и поэтому могут скапливаться на внутренней стенке сосудов, приводя к образованию атеросклеротических бляшек. Ненасыщенные жиры в свою очередь разделяются на две подгруппы- мононенасыщенные и полиненасыщенные. Мононенасыщенные жиры содержаться преимущественно в оливковом масле, авокадо, маслинах. А в полиненасыщенных жирах следует ещё различать Омега-6 (подсолнечное, кукурузное, соевое масла, орехи и семечки) и Омега-3 (рыба, рыбий жир, льняное масло, масло грецкого ореха, масло зародышей пшеницы). Важно отметить, что Омега-3 жирные кислоты относятся к незаменимым, т.е. они организмом не синтезируются (аналогично незаменимым аминокислотам) и должны регулярно поступать в организм с пищей. Ещё существуют жиры, полученные из растительных жиров путём гидрирования, так называемые трансжиры. Гидрогенизированные масла, маргарины, а также кондитерские изделия на их основе (печенье, торты, вафли, чипсы и т.д.) влияют на жировой обмен. В результате повышается уровень "плохого" холестерина и понижается содержание "хорошего". Накапливаются данные о том, что трансжиры оказывают вредное воздействие на рост плода и новорожденных, ухудшают качество грудного молока у кормящих матерей, отрицательно влияют на иммунитет.

Вывод

Здоровое питание подразумевает полный отказ от трансжиров и почти полный отказ от прямого потребления насыщенных (животных) жиров. Их мы в достаточном количестве получаем в скрытой форме (в том же самом оливковом или подсолнечном маслах, а также в молочных и мясных продуктах). Обязательно ежедневное потребление незаменимых Омега-3 жиров в виде рыбьего жира и льняного масла. И тогда вы станете стройными, а ваши кожа и волосы скажут вам спасибо.


16.04.2019 15:56:00
6 способов убрать жир на животе
Многие люди мечтают убрать жир на животе. Почему именно там? Потому что лишние килограммы оседают в первую очередь на животе, портят вид тела и создают опасность для здоровья. Но следующие способы помогут исправить ситуацию!

16.04.2019 15:35:00
12 привычек, которые сокращают жизнь
Многие люди старшего возраста ведут себя как подростки. Они считают себя неуязвимыми и принимают решения, которые вредны для их здоровья. Но какие именно привычки сокращают жизнь? Давайте узнаем вместе!

15.04.2019 22:22:00
Похудеть на 10 кг за 30 дней: 3 правила
Всем хочется похудеть как можно быстрее и как можно больше. Если Вы тоже мечтаете об этом, то предлагаем ознакомиться с 3 правилами, которые позволят похудеть на 10 кг за 30 дней.

15.04.2019 22:10:00
Этот простой коктейль поможет стать стройнее
Скоро лето - нужно готовиться к пляжному сезону. И в этом Вам поможет модный напиток на основе яблочного уксуса. Давайте узнаем, насколько он эффективен и как его нужно пить.

13.04.2019 11:55:00
Быстрое похудение: лучшие советы и способы
Конечно, здоровая потеря веса требует терпения и дисциплины, а жесткие диеты не приносят долговременных результатов. Но иногда нет времени на длительную программу. Чтобы похудение произошло как можно скорее, но без голода, нужно следовать советам и способам в нашей статье!

13.04.2019 11:43:00
ТОП-10 продуктов против целлюлита
Полное отсутствие целлюлита для многих женщин остается несбыточной мечтой. Но это не значит, что надо опустить руки. Следующие 10 продуктов стягивают и укрепляют соединительную ткань – ешь их как можно чаще!