Ультразвуковые методы исследования. Физические основы ультразвуковой диагностики. Ультразвуковая диагностика: что это такое

Ультразвуковые методы исследований


1. Понятие УЗ

Ультразвуковые волны - это упругие колебания среды с частотой, лежащей выше диапазона слышимых человеком звуков - выше 20 кГц. Верхним пределом ультразвуковых частот можно считать 1 – 10 ГГц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния вещества, в котором распространяются ультразвуковые волны. Они обладают высокой проникающей способностью и проходят через ткани организма, не пропускающие видимого света. Ультразвуковые волны относятся к числу неионизирующих излучений и в диапазоне, применяемом в диагностике, не вызывают существенных биологических эффектов. По средней интенсивности энергия их не превышает при использовании коротких импульсов 0,01 Вт/см 2 . Поэтому противопоказаний к исследованию не имеется. Сама процедура ультразвуковой диагностики непродолжительна, безболезненна, может многократно повторяться. Ультразвуковая установка занимает мало места, не требует никакой защиты. Она может быть использована для обследования как стационарных, так и амбулаторных больных.

Таким образом, ультразвуковой метод - это способ дистантного определения положения, формы, величины, структуры и движений органов и тканей, а также патологических очагов с помощью ультразвукового излучения. Он обеспечивает регистрацию даже незначительных изменений плотности биологических сред. В ближайшие годы он, по всей вероятности, станет основным способом визуализации в диагностической медицине. В силу своей простоты, безвредности и эффективности он, в большинстве случаев, должен применяться на ранних этапах диагностического процесса.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием электрического поля. Основной частью такого излучателя является пластина или стержень из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды. Если к электродам приложить, переменное электрическое напряжение от генератора, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса. Так, для пластин толщиной 1 мм резонанс возникает для кварца на частое 2,87 МГц, сегнетовой соли - 1,5 МГц и титаната бария - 2,75 МГц.

Приемник УЗ можно создать на основе пьезоэлектрического эффекта (прямой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла, которая приводит при пьезоэффекте к генерированию переменного электрического поля; соответствующее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмотрим этот вопрос.По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенноменьше длины звуковой волны. Дифракция волн существенно зависит от соотношения длины волн и размеров тел, на которых волна дифрагирует. "Непрозрачное" тело размером 1 м не будет препятстствием для звуковой волны с длиной 1,4 м, но станет преградой дляУЗ-волны с длиной 1,4 мм, возникнет "УЗ-тень". Это позволяет в некоторых случаях не учитывать дифракцию УЗ-волн,рассматривая при преломлении и отражении эти волны как лучианалогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений. Так, УЗ хорошо отражается на границах мышца - надкостница- кость, на поверхности полых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п.(УЗ-локация). При УЗ-локации используют как непрерывное, таки импульсное излучения. В первом-случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление (импеданс) биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом. Чтобы исключить воздушный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых воли и их поглощение существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных свойств вещества. Исследования такого рода являются предметом молекулярной акустики.

2. Источник и приемник ультразвукового излучения

Ультразвуковую диагностику осуществляют с помощью ультразвуковой установки. Она представляет собой сложное и вместе с тем достаточно портативное устройство, выполняется в виде стационарного или передвижного аппарата. Для генерирования УЗ используют устройства, называемые УЗ-излучателями. Источник и приемник (датчик) ультразвуковых волн в такой установке - пьезокерамическая пластинка (кристалл), размещенная в антенне (звуковом зонде). Эта пластинка - ультразвуковой преобразователь. Переменный электрический ток меняет размеры пластинки, возбуждая тем самым ультразвуковые колебания. Применяемые для диагностики колебания обладают малой длиной волны, что позволяет формировать из них узкий пучок, направляемый в исследуемую часть тела. Отраженные волны воспринимаются той же пластинкой и преобразуются в электрические сигналы. Последние поступают на высокочастотный усилитель и далее обрабатываются и выдаются пользователю в виде одномерного (в форме кривой) или двухмерного (в форме картинки) изображения. Первое называют эхограммой, а второе - ультрасонограммой (сонограммой) или ультразвуковой сканограммой.

Частоту ультразвуковых волн подбирают в зависимости от цели исследования. Для глубоких структур применяют более низкие частоты и наоборот. Например, для изучения сердца используют волны с частотой 2,25-5 МГц, в гинекологии - 3,5-5 МГц, для эхографии глаза - 10-15 МГц. На современных установках эхо- и сонограммы подвергают компьютерному анализу по стандартным программам. Распечатка информации производится в буквенной и цифровой форме, возможна запись на видеоленте, в том числе в цвете.

Все ультразвуковые установки, кроме основанных на эффекте Допплера, работают в режиме импульсной эхолокации: излучается короткий импульс и воспринимается отраженный сигнал. В зависимости от задач исследования употребляют различные виды датчиков. Часть из них предназначена для сканирования с поверхности тела. Другие датчики соединены с эндоскопическим зондом, их используют при внутриполостном исследовании, в том числе в комбинации с эндоскопией (эндосонография). Эти датчики, а также зонды, созданные для ультразвуковой локации на операционном столе, допускают стерилизацию.

По принципу действия все ультразвуковые приборы делят на две группы: эхоимпульсные и допплеровские. Приборы первой группы служат для определения анатомических структур, их визуализации и измерения. Приборы второй группы позволяют получать кинематическую характеристику быстро протекающих процессов - кровотока в сосудах, сокращений сердца. Однако такое деление условно. Существуют установки, которые дают возможность одновременно изучать как анатомические, так и функциональные параметры.

3. Объектультразвуковогоисследования

Благодаря своей безвредности и простоте ультразвуковой метод может широко применяться при обследовании населения во время диспансеризации. Он незаменим при исследовании детей и беременных. В клинике он используется для выявления патологических изменений у больных людей. Для исследования головного мозга, глаза, щитовидной и слюнных желез, молочной железы, сердца, почек, беременных со сроком более 20 нед. специальной подготовки не требуется.

Больного исследуют при разном положении тела и разном положении ручного зонда (датчика). При этом врач обычно не ограничивается стандартными позициями. Меняя положение датчика, он стремится получить возможно полную информацию о состоянии органов. Кожу над исследуемой частью тела смазывают хорошо пропускающим ультразвук средством для лучшего контакта (вазелином или специальным гелем).

Ослабление ультразвука определяется ультразвуковым сопротивлением. Величина его зависит от плотности среды и скорости распространения в ней ультразвуковой волны. Достигнув границы двух сред с разным импедансом, пучок этих волн претерпевает изменение: часть его продолжает распространяться в новой среде, а часть отражается. Коэффициент отражения зависит от разности импеданса соприкасающихся сред. Чем выше различие в импедансе, тем больше отражается волн. Кроме того, степень отражения связана с углом падения волн на граничащую плоскость. Наибольшее отражение возникает при прямом угле падения. Из-за почти полного отражения ультразвуковых волн на границе некоторых сред, при ультразвуковом исследовании приходится сталкиваться со "слепыми" зонами: это - наполненные воздухом легкие, кишечник (при наличии в нем газа), участки тканей, расположенные за костями. На границе мышечной ткани и кости отражается до 40% волн, а на границе мягких тканей и газа - практически 100%, поскольку газ не проводит ультразвуковых волн.

4. Методы ультразвукового исследования

Наибольшее распространение в клинической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сканирование, сонография) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов.

Доктора часто направляют пациента на проведение ультразвуковой диагностики. Это является рутинным и вспомогательным диагностическим методом исследования внутренних органов. Чтобы понять, как проводится УЗИ и для чего необходима процедура, стоит рассмотреть, что это такое и из чего состоит.

Как получается и проводится ультразвук

Пьезоэлектрический эффект – основа для создания уникального ультразвука. Благодаря воздействию электрического напряжения изменяется конфигурация кристаллов и керамики датчика. Образуются механические колебания, посылаемые внутреннему органу, тот отражает сигнал, который воспринимается пьезоэлектрическим материалом.

Для достижения высокой точности исследования необходима соединяющая среда, ею выступает УЗ-гель. Чтобы получить полную картину о состоянии внутреннего органа необходимо настроить длину волны. Чем меньше глубина проникновения, тем точнее результат. Волна должна охватывать весь исследуемый объект.

Для фокусирования УЗ-луча применяется «акустическая линза» — часть датчика, которая непосредственно контактирует с кожными покровами. Она создает правильную геометрию луча.

Что такое ультразвуковое исследование

УЗ-исследование – малоинвазивный метод обследования внутренних органов человека, состояния кровеносных сосудов и их проходимости. В медицинской практике широко используется ввиду своей доступности и информативности.

Виды УЗИ диагностики:

  1. желчный пузырь и желчевыводящие протоки;
  2. поджелудочная железа;
  3. селезенка;
  • УЗИ забрюшинного пространства: , патологическое накопление жидкости.
  • УЗИ органов малого таза:
    1. у женщин: матка, яичники, маточные трубы, шейка матки;
    2. у мужчин: предстательная железа, ;
    3. мочевой пузырь;
    4. мочеточники;
  • УЗИ гемососудов конечностей и туловища (допплерография).
  • УЗИ суставов.
  • (Эхо-кардиоскопия).
  • УЗ в педиатрии: исследование головного мозга при незакрытом родничке и прочее.
  • В силу особенностей ультразвуковой волны можно исследовать органы для скрининга онкологических патологий, диффузных изменений в тканях, наличие конкрементов в желчном, мочевом пузыре, а также почках, врожденные и приобретенные аномалии строения, накопление патологической жидкости.

    Ограничением для исследования служат органы с наличием газа внутри них, таких как желудок, кишечник.

    Преимущества УЗ-диагностики

    Главным плюсом обследования служит безопасность УЗ-луча. Преимущества:

    • высокая точность и информативность;
    • диагностика развития заболеваний в начальной стадии;
    • нет ограничений по количеству манипуляций, поэтому появляется возможность отслеживать состояние органа в динамике после консервативного или оперативного лечения;
    • отсутствие лучевой нагрузки, благодаря чему можно назначать новорожденным детям.

    Как выполняется УЗИ

    Больного укладывают на кушетку, просят освободить от одежды предполагаемое место исследования. В зависимости от того, какая область требует осмотра, существует несколько методик проведения процедуры:

    1. Трансабдоминальная – пациенту на кожные покровы наносят специальный гель, подносят датчик, прикладывают к коже и водят по поверхности.
    2. Трансвагинальная – удлиненный датчик погружают в презерватив, наносят немного геля и вводят женщине во влагалище. Такая методика наиболее информативна, поскольку наиболее плотно прилегает к исследуемым структурам.
    3. Трансректальная – на удлиненный датчик одевается презерватив, наносится гель и вводится в прямую кишку. Обычно проводится мужчинам для детального осмотра предстательной железы.

    Ультразвуковое исследование – информативный метод диагностики, однако не стоит самостоятельно интерпретировать полученный результат. Разобраться в этом может квалифицированный доктор.

    Ультразвуковое исследование (УЗИ ), сонография - неинвазивное исследование организма человека или животного с помощью ультразвуковых волн .

    Энциклопедичный YouTube

      1 / 5

      ✪ Ультразвуковое исследование

      ✪ Ультразвуковое исследование предстательной железы (эхосемиотика структурных изменений).

      ✪ Порядок выполнения: ультразвуковое исследование желчного пузыря, часть 1 - введение

      ✪ ультразвуковое исследование брюшной полости - исследование аорты на конкретном примере

      ✪ Эхографическая анатомия и техника проведения исследования печени

      Субтитры

    Физические основы

    Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается . Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше интенсивность зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

    В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей , а также разницу в плотностях, образующих границу.

    Ультразвуковые колебания при распространении подчиняются законам геометрической оптики . В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

    Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

    Особый интерес в диагностике вызывает использование эффекта Допплера . Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

    При наложении первичных и отраженных сигналов возникают биения , которые прослушиваются с помощью наушников или громкоговорителя.

    Составляющие системы ультразвуковой диагностики

    Генератор ультразвуковых волн

    Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

    Ультразвуковой датчик

    В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

    Виды датчиков

    Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путём. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

    Линейные датчики

    В клинической практике методика используется в двух направлениях.

    Динамическая эхоконтрастная ангиография

    Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

    Тканевое эхоконтрастирование

    Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

    Применение в медицине

    Эхоэнцефалография

    Эхоэнцефалография, как и допплерография, встречается в двух технических решениях: A-режим (в строгом смысле не считается ультразвуковым исследованием, а выполняется в составе функциональной диагностики) и B-режим, получивший неофициальное название «нейросонография». Так как ультразвук не может эффективно проникать сквозь костную ткань, в том числе кости черепа, нейросонография выполняется в основном грудным детям через большой родничок) и не применяется для диагностики головного мозга у взрослых. Однако уже разработаны материалы , которые помогут ультразвуку проникать через кости организма.

    Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

    Офтальмология

    Также, как и эхоэнцефалография, существует в двух технических решениях(разные приборы): A-режим (обычно не считается УЗИ) и В-режим.

    Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

    Внутренние болезни

    Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

    • брюшная полость и забрюшинное пространство
      • жёлчный пузырь и желчевыводящие пути
    • органы малого таза

    Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах.

    В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

    Печень

    Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

    Жёлчный пузырь и жёлчные протоки

    Кроме самой печени оценивается состояние жёлчного пузыря и жёлчных протоков - исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

    Поджелудочная железа

    Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА -принципу.

    Отчёт 875 Всемирной организации здравоохранения за 1998 год поддерживает мнение, что ультразвук безвреден . Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

    Аппарат ультразвуковой диагностики

    Аппарат ультразвуковой диагностики (УЗ-сканер) - прибор, предназначенный для получения информации о расположении, форме, размере, структуре, кровоснабжении органов и тканей человека и животных.

    По форм-фактору УЗ-сканеры можно разделить на стационарные и портативные (переносные), к середине 2010-х годов получили распространение мобильные УЗ-сканеры на основе смартфонов и планшетов .

    Устаревшая классификация аппаратов УЗИ

    В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

    • ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);
    • ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца);
    • ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);
    • ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

    В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

    • С - статические;
    • Д - динамические;
    • К - комбинированные.

    Классификации аппаратов

    Официально аппараты для УЗИ можно разделить по наличию тех или иных режимов сканирования, программ измерений (пакеты, например, кардиопакет - программа для эхокардиографических измерений), высокоплотных датчиков (датчики с большим количеством пьезоэлементов, каналов и соответственно более высокой поперечной разрешающей способностью), дополнительных опций (3D, 4D, 5D, эластография и других).

    Под термином «ультразвуковое исследование» в строгом смысле может подразумеваться исследование в B-режиме, в частности, в России это стандартизовано и исследование в A-режиме не считается УЗИ. Приборы старого поколения без B-режима считаются морально устаревшими, но пока используются в рамках функциональной диагностики.

    Коммерческая классификация аппаратов УЗИ в основном не имеет чётких критериев и определяется фирмами-производителями и их дилерскими сетями самостоятельно, характерные классы оборудования:

    • Начальный класс (В-режим)
    • Средний класс (ЦДК)
    • Высокий класс
    • Премиум-класс
    • Экспертный класс

    Термины, понятия, сокращения

    • Advanced 3D - расширенная программа трёхмерной реконструкции.
    • ATO - автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.
    • B-Flow - визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.
    • Coded Contrast Imaging Option - режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.
    • CodeScan - технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путём создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.
    • Color doppler (CFM или CFA) - цветовой допплер (Color Doppler) - выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика - синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии - цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • DICOM - возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.
    • Easy 3D - режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.
    • M-mode (M-режим) - одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.
    • MPEGvue - быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.
    • Power doppler - энергетический допплер - качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток - отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • Smart Stress - расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.
    • Tissue Harmonic Imaging (THI) - технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) - специализированный инструмент для диагностики и оценки сердечных дисфункций.
    • Tissue Velocity Imaging , Tissue Doppler Imaging (TDI) - тканевой допплер - картирование движения тканей, применяется в режимах ТСД и ТЦДК (тканевой спектральной и цветной допплерографии) в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.
    • TruAccess - подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.
    • TruSpeed - уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.
    • Virtual Convex - расширенное конвексное изображение при использовании линейных и секторных датчиков.
    • VScan - визуализация и квантификация движения миокарда.
    • Импульсный допплер (PW, HFPW) - импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) - ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW - high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.
    • Постоянно-волновой допплер - постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести расчеты давления в полостях сердца и магистральных сосудах в ту или иную фазу сердечного цикла, рассчитать степень значимости стеноза и т. д. Основным уравнением CW является уравнение Бернулли, позволяющее рассчитать разницу давления или градиент давления. С помощью уравнения можно измерить разницу давления между камерами в норме и при наличии патологического, высокоскоростного кровотока.

    Медицине известно множество способов различных обследований. Это может быть обычный осмотр, лабораторная диагностика, и ультразвуковое обследование. Именно о последнем методе и пойдет речь в данной статье. Вы узнаете, какие виды имеет ультразвуковое обследование. Также сможете выяснить, каким образом проводится тот или иной вид диагностики.

    Ультразвуковое обследование

    Для начала стоит сказать, что это за диагностика. Во время исследования используется специальный датчик, который присоединен к аппаратуре. Прибор посылает сквозь ткани человека звуковые волны. Они не могут быть слышны простому уху. Звук отражается от тканей и внутренних органов, а специалист вследствие данного процесса видит изображение на экране. Стоит отметить, что такой контакт происходит очень быстро. Изображение исследуемой области появляется сразу после того, как датчик будет приложен к телу.

    Виды ультразвуковой диагностики

    Ультразвуковое обследование может быть разное. Такая диагностика подразделяется на виды. Стоит отметить, что в каждом отдельном случае используется специальный датчик. Их на может быть от двух и более. Итак, ультразвуковая диагностика может быть следующей:

    • дуплексное сканирование состояния сосудов;
    • эхокардиографическое исследование;
    • эхоэнцефалографическая диагностика;
    • соноэластография;
    • трансвагинальная диагностика;
    • трансабдоминальный вид ультразвука.

    В зависимости от нужного метода исследования может понадобиться предварительная подготовка пациента. Рассмотрим наиболее популярные виды ультразвукового обследования.

    и придатков

    Данный вид исследования проводится при помощи При этом необходимо учитывать возраст пациентки, день цикла и регулярность половой жизни.

    Ультразвуковое обследование беременной женщины проводится трансабдоминальным способом. Исключение составляют лишь те представительницы прекрасного пола, у которых срок беременности очень мал.

    Особой подготовки такие обследования не требуют. Необходимо лишь провести гигиенические общепринятые процедуры перед диагностикой.

    УЗИ вен нижних конечностей человека

    Ультразвуковое обследование сосудов проводится во время При этом оценивается проходимость вен и наличие тромбов и расширений. Также во время исследования обращается большое внимание на кровоток и состояние верхних клапанов.

    Подготовка к такому обследованию не нужна. Однако будьте готовы к тому, что вам придется полностью оголить ноги. Предпочтите использование свободной и быстро снимающейся одежды.

    Органы брюшины

    Ультразвуковое обследование брюшной полости позволяет выявить проблемы пищеварительного тракта и соседних органов. При этой диагностике нужно заранее подготовиться к процедуре.

    Если нужно осмотреть желудок, то стоит воздержаться от приема пищи до обследования. При диагностике кишечника стоит воспользоваться слабительным средством или поставить клизму. Осмотр печени, почек и желчного пузыря может быть проведен без предварительной подготовки.

    Как осуществляется диагностика?

    Для каждого вида обследования выбирается индивидуальный датчик. При этом всегда используется специальный гель, который облегчает скольжение прибора по телу и улучшает проходимость тканей.

    В большинстве случаев диагностика проводится в лежачем положении. При этом кушетка должна быть твердой, а в кабинете необходимо создать эффект полумрака. Исключение может составлять дуплексное сканирование и УЗИ почек. Эти обследования могут проводиться в вертикальном положении пациента.

    Заключение

    Ультразвуковая диагностика является одной из наиболее точных. При помощи такого осмотра врач может четко увидеть состояние внутренних органов и оценить степень риска. Также диагностика ультразвуком помогает правильно поставить диагноз и назначить соответствующее лечение.

    Регулярно проводите подобные осмотры. Метод УЗИ является абсолютно безопасным и не несет никакой угрозы вашему здоровью.

    В настоящее время в клинической практике применяют эхографический метод, основанный на регистрации волн, отраженных от границ раздела сред с различным акустическим сопротивлением, и метод, основанный на эффекте Допплера, т.е. регистрации изменения частоты ультразвуковой волны, отраженной от движущихся границ между средами. Последняя методика позволяет получить информацию о гемодинамике органов и систем и применяется в основном для исследования сердца и сосудов.

    При исследовании органов мочеполовой системы используется главным образом эхографический метод регистрации ультразвука, который по характеру воспроизведения разделяется на:

    1) одномерную эхографию (А-метод), который позволяет получить информацию об объекте лишь в одном направлении (одном измерении) и, таким образом, не дает полного представления о форме и величине исследуемого объекта;
    2) двухмерную эхографию (ультразвуковое сканирование, В-метод), который в отличие от одномерной позволяет получить двухмерное плоскостное изображение объекта в виде эхотомографического среза (скан);
    3) УЗИ в режиме «М» (motion - движение), при котором движение отраженных ультразвуковых волн разворачивается во времени, что дает ложное двухмерное изображение, когда по горизонтали регистрируется истинный размер органа по пути распространения ультразвуковой волны, а по вертикали — время. Скорость развертки во времени и масштаб изображения на экране меняются произвольно.

    Количество и качество отраженных волн обусловлено физическими процессами, протекающими при прохождении ультразвука через среду. Чем больше разница в акустическом сопротивлении сред, тем больше ультразвуковых волн отражается на границе их раздела. Поскольку акустическое сопротивление среды является функцией плотности среды, количество и качество отраженных ультразвуковых волн объективно передают детали строения внутренних органов и тканей в зависимости от их плотности.

    С одной стороны, ввиду чрезвычайно большой разности в акустическом сопротивлении тканей и воздуха на границе раздела этих сред ультразвук практически весь отражается обратно, и поэтому получить информацию о тканях, лежащих за прослойкой воздуха, часто не представляется возможным. С другой стороны, наилучшие условия распространения ультразвука создают жидкости любого химического состава, и образования, наполненные жидкостью, визуализируются особенно легко.

    При проведении УЗИ необходимо помнить о реверберации — появлении добавочного изображения на расстоянии, вдвое больше от истинного. В основе этого феномена лежит повторное отражение части воспринимаемых волн от поверхности датчика иди от границы полого органа, в результате чего ультразвуковая волна повторно совершает свой путь, что вызывает мнимое отражение. Недооценка этого феномена может привести к серьезным диагностическим ошибкам.

    Частота ультразвука, применяемого с диагностической целью, находится в пределах 0,8—7 МГц, причем существует следующая закономерность: чем выше частота ультразвука, тем больше разрешающая способность; усиливается поглощение ультразвука тканями и соответственно падает проникающая способность. С уменьшением частоты ультразвука наблюдается обратная закономерность, поэтому для исследования близко расположенных объектов применяют более высокочастотные датчики (5—7 МГц), а для глубоко расположенных и больших по размерам органов приходится использовать низкочастотные датчики (2,5—3,5 МГц).

    УЗИ проводят в затемненной комнате, так как при ярком освещении глаз человека не воспринимает серые тона на телевизионном экране. В зависимости от задач исследования выбирается тот или иной режим работы прибора. Для исключения прослойки воздуха между датчиком и телом больного кожу в области исследования покрывают иммерсионной средой.