Уравнение шредингера. Уравнение шредингера для стационарных состояний

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
  • § 219. Движение свободной частицы
  • § 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
  • § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
  • § 222. Линейный гармонический осциллятор квантовой механике
  • Глава 29
  • § 223. Атом водорода в квантовой механике
  • 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функцииопределяемые тремя
  • § 225. Спин электрона. Спиновое квантовое число
  • § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
  • § 227. Принцип Паули. Распределение электронов в атома по состояниям
  • § 228. Периодическая система элементов Менделеева
  • § 229. Рентгеновские спектры
  • § 230. Молекулы: химические связи, понятие об энергетических уровнях
  • § 231. Молекулярные спектры. Комбинационное рассеяние света
  • § 232. Поглощение. Спонтанное и вынужденное излучения
  • § 233. Оптические квантовые генераторы (лазеры) .
  • Глава 30 Элементы квантовой статистики
  • § 234. Квантовая статистика. Фазовое пространство. Функция распределения
  • § 235. Понятие о квантовой статистика Бозе - Эйнштейна и Ферми - Дирака
  • § 236. Вырожденный электронный газ в металлах
  • § 237. Понятие о квантовой теории теплоемкости. Фононы
  • § 238. Выводы квантовой теории электропроводности металлов
  • § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
  • Глава 31 Элементы физики твердого тела
  • § 240. Понятие о зонной теории твердых тел
  • § 241. Металлы, диэлектрики и полупроводники по зонной теории
  • § 242. Собственная проводимость полупроводников
  • § 243. Примесная проводимость полупроводников
  • § 244. Фотопроводимость полупроводников
  • § 245. Люминесценция твердых тел
  • § 246. Контакт двух металлов по зонной теории
  • 1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.
  • § 247.. Термоэлектрические явления и их применение
  • § 248. Выпрямление на контакте металл - полупроводник
  • § 249. Контакт электронного и дырочного полупроводников
  • § 250. Полупроводниковые диоды и триоды (транзисторы)
  • 7 Элементы физики атомного ядра и элементарных частиц
  • Глава 32 Элементы физики атомного ядра
  • § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
  • § 252. Дефект массы и энергия связи ядра
  • § 253. Спин ядра и его магнитный момент
  • § 254. Ядерные силы. Модели ядра
  • 1) Ядерные силы являются силами притяжения;
  • § 255. Радиоактивное излучение и его виды
  • § 256. Закон радиоактивного распада. Правила смещения
  • § 257. Закономерности а-раепада
  • § 258.-Распад. Нейтрино
  • § 259. Гамма-излучение и его свойства
  • § 260. Резонансное поглощение-излучения (эффект Мeссбауэра**)
  • § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
  • § 262. Ядерные реакции и их основные типы
  • 1) По роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов,частиц); реакции под действием-квантов;
  • §263. Позитрон.,-Распад. Электронный захват "-
  • § 264. Открытие нейтрона. Ядерные реакции под действием
  • § 265. Реакция деления ядра
  • § 266. Цепная реакция деления
  • § 267. Понятие о ядерной энергетике
  • § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
  • 1) Протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 к):
  • 2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких тем­ператур (примерно 2 107 к):
  • Глава 33 Элементы физики элементарных частиц
  • § 269. Космическое излучение
  • § 270. Мюоны и их свойства
  • § 271. Мезоны и их свойства
  • § 272. Типы взаимодействий элементарных частиц
  • § 273. Частицы и античастицы
  • § 274. Гипероны. Странность и четность элементарных частиц
  • § 275. Классификация элементарных частиц. Кварки
  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн да Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z , t ), так как именно она, или, точнее, величина, определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами x и x + dx . y и y + dy . zuz + dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

    (217.1)

    где, т - масса частицы,- оператор Лапласа,

    - мнимая единица, V {х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) произ­водныедолжны быть непрерывны; 3) функциядолжна быть

    интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записиСледовательно, плоская

    волна де Бройля имеет вид

    (217.2)

    (учтено, чтоВ квантовой механике показатель экспоненты берут со знаком минус,

    но поскольку физический смысл имеет только, то это (см. (217.2)) несущественно. Тогда

    откуда

    Используя взаимосвязь между энергией Е и импульсоми подставляя выражения

    (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то

    полная энергия Е складывается из типич еской и потенциальной энергий. Проводя аналогичные

    рассуждения и используя взаимосвязь между Е и р (для данного случаяпридем

    ° к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шреди-нгера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является обкщим уравнением Шредингера. Его также называют уравнением Шреднягера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множительи соответствующих преобразований

    придем к уравнению, определяющему функцию

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиНо регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствев-нымн. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непре-

    рывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    § 218. Принцип причинности ■ квантовой механике

    Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинно­сти - принципу классического детермизма, по известному состоянию системы в неко­торый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика ос­новывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причи­на, а ее состояние в последующий момент - следствие.

    С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соот­ношением неопределенностей (215.1)), поэтому и делается вывод о том, что в началь­ный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

    Однако никакого нарушения принципа причинности применительно к микрообъ­ектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъ­екта приобретает совершенно иной смысл, чем в классической механике. В кванто­вой механике состояние микрообъекта полностью определяется волновой функцией (х,у, z , t ), квадрат модуля которой(х,у, z , t )\ 2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z .

    В свою очередь, волновая функция(х,у, z , t ) удовлетворяет уравнению Шредин-гера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции(для момента времениt 0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние

    Есть причина, а состояниев последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функциипредопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшест­вующего состояния, как того требует принцип причинности.

    Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z, t), так как именно она, или, точнее, величина || 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х +d х, у и y+dy, z и z+dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

    где h =h/(2 ), m - масса частицы -

    оператор Лапласа (=д 2 / д x 2 2 / д y 2

    +д 2 /д z 2), i - мнимая единица, U (х, у, z, t)

    Потенциальная функция частицы в силовом поле, в котором она движется,

    (х, у, z, t) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д /д x, д /д y, д /д z, д /д t должны быть непрерывны;

    3) функция || 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

    (x,t)=Acos(t-kx), или в комплексной записи

    (х, t) =Aе i ( t-kx) .

    Следовательно, плоская волна де Бройля имеет вид

    =Ae -(i/h)(Et-px) (217.2)

    (учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только| | 2 , то это (см. (217.2)) несущественно. Тогда

    Используя взаимосвязь между энергией Е и импульсом р(Е=р 2 /(2 m )) и подставляя выраже-

    ния (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р для данного случая р 2 /(2 m )=Е -U, придем к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

    Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (х, у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем е - i  t =е -i(E/h0t , так что

    (х, у, z , t) =(х, у, z) e -i(E/h)t ,

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множитель e -i(E/h)t и соответствующих преобразований придем к уравнению, определяющему функцию :

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

    В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

    Общее уравнение Шредингера имеет вид:

    где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

    Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

    Оно дополняется условиями , накладываемыми на волновую функцию:

    1) волновая функция должна быть конечной, однозначной и непрерывной;

    2) производные должны быть непрерывны;

    3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

    Уравнение (1) называют уравнением Шредингера, зависящим от времени.

    Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

    . (2)

    Уравнение (2) называется уравнением Шредингера для стационарных состояний.

    В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


    Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

    Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

    где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

    Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

    . (1)

    По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

    Следовательно, граничные условия в данном случае имеют вид:

    Ψ (0) = Ψ (l ) = 0. (2)

    В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

    или . (3)

    где k 2 = 2mE / ? 2 . (4)

    Общее решение дифференциального уравнения (3):

    Ψ (x ) = A sin kx + B cos kx .

    Так как по (2) Ψ (0) = 0, то В = 0. Тогда

    Ψ (x ) = A sin kx . (5)

    Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

    k = nπ / l . (6)

    Из выражений (4) и (6) следует, что:

    (n = 1, 2, 3,…), (7)

    т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

    Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

    Подставив в (5) значение k из (6), найдем собственные функции:

    .

    Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

    .

    В результате интегрирования получим , а собственные функции будут иметь вид:

    (n = 1, 2, 3,…). (8)

    Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

    Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

    Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

    Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

    Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

    Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

    Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

    Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.

    Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: где постоянная называется массой частицы (см. I, § 4). В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса - одновременно измеримых сохраняющихся (для свободной частицы) величин.

    Но для того чтобы соотношение имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:

    Подставив сюда (15,2), получим гамильтониан свободно движущейся частицы в виде

    где - оператор Лапласа.

    Гамильтониан системы невзаимодействующих частиц равен сумме гамильтонианов каждой из них:

    где индекс а нумерует частицы; - оператор Лапласа, в котором дифференцирование производится по координатам частицы.

    В классической (нерелятивистской) механике взаимодействие частиц описывается аддитивным членом в функции Гамильтона - потенциальной энергией взаимодействия являющейся функцией координат частиц.

    Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие частиц в квантовой механике:

    первый член можно рассматривать как оператор кинетической энергии, а второй - как оператор потенциальной энергии. В частности, гамильтониан для одной частицы, находящейся во внешнем поле,

    где U(х, у, z) - потенциальная энергия частицы во внешнем поле.

    Подстановка выражений (17,2)-(17,5) в общее уравнение (8,1) дает волновые уравнения для соответствующих систем. Выпишем здесь волновое уравнение для частицы во внешнем поле

    Уравнение же (10,2), определяющее стационарные состояния, принимает вид

    Уравнения (17,6), (17,7) были установлены Шредингером в 1926 г. и называются уравнениями Шредингера.

    Для свободной частицы уравнение (17,7) имеет вид

    Это уравнение имеет конечные во всем пространстве решения при любом положительном значении энергии Е. Для состояний с определенными направлениями движения этими решениями являются собственные функции оператора импульса, причем . Полные (зависящие от времени) волновые функции таких стационарных состояний имеют вид

    (17,9)

    Каждая такая функция - плоская волна - описывает состояние, в котором частица обладает определенными энергией Е и импульсом . Частота этой волны равна а ее волновой вектор соответствующую длину волны называют де-бройлевской длиной волны частицы.

    Энергетический спектр свободно движущейся частицы оказывается, таким образом, непрерывным, простираясь от нуля до Каждое из этих собственных значений (за исключением только значения вырождено, причем вырождение - бесконечной кратности. Действительно, каждому отличному от нуля значению Е соответствует бесконечное множество собственных функций (17,9), отличающихся направлениями вектора при одинаковой его абсолютной величине.

    Проследим, каким образом происходит в уравнении Шредингера предельный переход к классической механике, рассматривая для простоты всего одну частицу во внешнем поле. Подставив в уравнение Шредингера (17,6) предельное выражение (6,1) волновой функции получим, произведя дифференцирования,

    В этом уравнении имеются чисто вещественные и чисто мнимые члены (напомним, что S и а вещественны); приравнивая те и другие в отдельности нулю, получим два уравнения:

    Пренебрегая в первом из этих уравнений членом, содержащим получим

    (17,10)

    т. е., как и следовало, классическое уравнение Гамильтона - Якоби для действия S частицы. Мы видим, кстати, что при классическая механика справедлива с точностью до величин первого (а не нулевого) порядка по включительно.

    Второе из полученных уравнений после умножения на 2а может быть переписано в виде

    Это уравнение имеет наглядный физический смысл: есть плотность вероятности нахождения частицы в том или ином месте пространства есть классическая скорость v частицы. Поэтому уравнение (17,11) есть не что иное, как уравнение непрерывности, показывающее, что плотность вероятности «перемещается» по законам классической механики с классической скоростью v в каждой точке.

    Задача

    Найти закон преобразования волновой функции при преобразовании Галилея.

    Решение. Произведем преобразование над волновой функцией свободного движения частицы (плоской волной). Поскольку всякая функция может быть разложена по плоским волнам, то тем самым будет найден закон преобразования и для произвольной волновой функции.

    Плоские волны в системах отсчета К и К" (К" движется относительно К со скоростью V):

    причем а импульсы и энергии частицы в обеих системах связаны друг с другом формулами

    (см. I, § 8), Подставив эти выражения в получим

    В таком виде эта формула уже не содержит величин, характеризующих свободное движение частицы, и устанавливает искомый общий закон преобразования волновой функции произвольного состояния частицы. Для системы частиц в показателе экспоненты в (1) должна стоять сумма по частицам.