Выборочное лазерное спекание (Selective Laser Sintering, SLS). SLS-печать или селективное лазерное спекание

Селективное лазерное спекание (SLS) – метод аддитивного производства, разработанный в конце 80-х Карлом Декардом в Техасском Университете Остина при поддержке DARPA. Технология использует лазер высокой мощности для спекания небольших частиц пластика, керамики, стекольной муки или металла в трехмерную структуру.

Лазерный луч выборочно сплавляет частицы порошка в рабочей зоне, получая данные о форме детали путем сверки с виртуальной моделью, сгенерированной компьютером. После завершения обработки слоя, деталь погружается в порошок и процесс повторяется. Примерно такой же способ используется в лазерной стереолитографии, где рабочим материалом выступает жидкий фотополимер, затвердевающий под лучом лазера.

Поскольку плотность детали зависит от мощности лазера, а не от продолжительности нагрева, SLS-принтеры используют импульсные лазеры (например, лазеры на диоксиде углерода). При этом исходный материал предварительно нагревается до состояния, близкого к температуре плавления, чтобы облегчить лазеру достижение пиковой точки. На выходе получается деталь с пористой и шероховатой поверхностью.

Печать металлом

Особый интерес технология представляет в плане возможности создавать изделия из металлов. По сути, с помощью этого метода можно создавать не прототипы, а полноценные рабочие детали. Правда, при работе с металлами технология имеет несколько ограничений. Для предотвращения окисления частиц металла, процесс спекания должен проходить в вакуумной или инертной среде, что невозможно осуществить в домашних условиях. Профессиональные SLS-принтеры оснащены специальными вакуумными камерами, имеют большие размеры и высокую стоимость.

В качестве материала для печати выступает особый порошок, состоящий из частиц металла, покрытых полимером. После завершения процесса спекания, деталь помещается в высокотемпературную печь, где пластик выгорает, а его место занимает легкоплавкая бронза.

Преимущества и недостатки

У технологии SLS есть несколько существенных плюсов:

  • Отсутствие необходимости в материалах поддержки. Деталь погружена в порошок, который и выполняет функцию поддержки нависающих деталей;
  • Большой выбор материалов, включая металлы;
  • Высокая скорость печати (до 35 мм/час).

Минусы:

  • Шероховатая структура моделей, требующая дальнейшей обработки;
  • Большое время подготовки принтера к работе (нагрев и стабилизация температуры);
  • Невозможность печати металлом в домашних условиях.

Технология SLS (Selective Laser Sintering) — селективное лазерное спекание, является одной из технологий производства изделий любой геометрии из порошкообразного материала. Свое развитие, как и другие подобные методы, технология начала в 70-х годах прошлого века.

Так, в 1971 году француз Пьер Сиро (Pierre Ciraud) подал заявку на патент, описывающая способ изготовления изделий из порошкового материала, основанный на отверждении и скреплении порошка под воздействием сфокусированного луча энергии.

Представленная технология имеет малое отношение к любой из сегодняшних коммерческих аддитивных технологий, но она стала предшественником более поздних разработок технологии лазерной обработки материалов.

А в 1979 году, изобретатель по имени Росс Хоушолдер (Ross F. Housholder) подал заявку на патент, с описанием системы и метода создания трехмерного изделия слой за слоем, имеющего сходство с будущими технологиями лазерного спекания. Но из-за чрезвычайно высокой стоимости лазеров в то время, Хоушолдер смог только частично протестировать свой метод.

Коммерчески успешная технологии селективного лазерного спекания была разработана и запатентована студентом Техасского Университета в Остине Карлом Декардом (Carl Deckard) и его научным руководителем, профессором машиностроения Джо Биманом (Joe Beaman) в середине 1980-х годов при поддержке агентства DARPA (агентство передовых оборонных исследовательских проектов) и агентства NSF (независимое агентство при правительстве США, отвечающее за развитие науки и технологий).

Суть технологии заключалась в применении метода производства трехмерного объекта из металлического порошка под воздействием луча лазера , когда частицы порошка нагреваются лишь до оплавления внешнего слоя, достаточного для их скрепления. Процесс необходимо проводить в герметической емкости, заполненной инертным газом, чтобы избежать возгорания порошка и утечки токсичных газов, выделяющихся при твердотельном синтезе.

К сведению: термин «спекание» относится к процессу, с помощью которого объекты создаются из порошков с использованием механизма диффузии атомов. Диффузия атомов происходит в любом материале при температуре выше абсолютного нуля, но процесс происходит гораздо быстрее при более высоких температурах, поэтому спекание вызывается нагреванием порошка при достаточно высоких температурах. Поскольку в первых устройствах для построения 3D-изделий применялся порошок ABS пластика, термин «спекание» наиболее технически-точно отражал происходящие процессы. Однако, когда в установках начали использовать кристаллические и полу-кристаллические материалы, такие как нейлон и металлы, которые растекаются в процессе построения изделий, название «селективное лазерное спекание» уже хорошо зарекомендовало себя и осталось, несмотря на то, что стало неправильным.

В технологии SLS применяются многокомпонентные порошки или порошковые смеси из разных химических материалов, в отличие от технологии DMLS (), где в основном используются однокомпонентные порошки.

В первом прототипе устройства получить готовое изделие не удалось, так как в нем использовался лазер мощностью всего 2 Ватта. Перепроверив математические расчеты, Карл Декард выяснил, что при переносе физической константы с одной страницы на другую, ошибся почти на 3 порядка. После чего, лазер был заменен на более мощный — 100 Bт твердотельный лазер, где качестве активной среды используется алюмо-иттриевый гранат. Позднее стали применяться лазеры на диоксиде углерода.

В конце 1986 года Декард совместно с заместителем декана, доктором Полом Ф. МакКлюром (Paul F. McClure) и бизнесменом Гарольдом Блэром (Harold Blair) основывают компанию Nova Automation, которая в феврале 1989 года была переименована в DTM corp.

Первые установки разработанные в DTM corp назывались Mod A и Mod B, а первая партия из 4 установок была выпущена под названием 125S. В 2001 году DTM corp была куплена компанией 3D Systems, создавшей конкурирующую технологию — .

Компания 3D Systems была и остается одним из лидеров аддитивного производства, а получение прав на технологию селективного лазерного спекания — важная веха для развития коммерческого применения аддитивных технологий. В настоящий момент компания 3D Systems является одним из лидеров на рынке 3D-печати, наряду с такими компаниями как EOS GmbH и Stratasys Inc.

Компания EOS, после продажи 3D Systems в 1997 году своего направления специализирующегося на выпуске SLA оборудования, сфокусировалась на разработке оборудования использующего технологию SLM (селективное лазерное плавление).

Материалы:

  • металлические порошки,
  • пластиковые порошки,
  • нейлон (чистый, стеклонаполненный или с другими наполнителями),
  • керамика,
  • стекло (кварцевый песок).

Основные области применения:

  • Готовые продукты, печатающиеся индивидуально или небольшими сериями
  • Прототипы деталей и частей машин и механизмов
  • Инструменты для производства
  • Преcс-формы

Отрасли применения:

  • Аэрокосмическая отрасль (производство титановых форсунок и лопастей для турбин)
  • Автомобильная отрасль и машиностроение
  • Нефтяная отрасль
  • Энергетика
  • Медицина (слуховые аппараты, стоматология)

Вконтакте

Одноклассники

3D печать – это выполнение ряда повторяющихся операций, связанных с созданием объёмных моделей путём нанесения на рабочий стол установки тонкого слоя расходных материалов , смещением рабочего стола вниз на высоту сформированного слоя и удалением с поверхности рабочего стола отработанных отходов. Циклы печати непрерывно следуют друг за другом: на предыдущий слой материалов наносится следующий слой, стол снова опускается и так повторяется до тех пор, пока на элеваторе (так называют рабочий стол, которым оснащён 3D принтер) не окажется готовая модель.

Существует несколько технологий 3D печати, которые отличаются друг от друга по типу прототипирующего материала и способам его нанесения. В настоящее время наибольшее распространение получили следующие технологии 3D печати: стереолитография, лазерное спекание порошковых материалов, технология струйного моделирования, послойная печать расплавленной полимерной нитью, технология склеивания порошков, ламинирование листовых материалов и УФ-облучение через фотомаску. Охарактеризуем перечисленные технологии подробнее.

Стереолитография

Стереолитография – она же Stereo Lithography Apparatus или сокращённо SLA благодаря низкой себестоимости готовых изделий получила наибольшее распространений среди технологий 3D печати.

Технология SLA состоит в следующем: сканирующая система направляет на фотополимер лазерный луч, под действием которого материал твердеет. В качестве фотополимера используется хрупкий и твёрдый полупрозрачный материал, который коробится под действием атмосферной влаги. Материал легко склеивается, обрабатывается и окрашивается. Рабочий стол находится в ёмкости с фотополимерной композицией. После прохождения лазерного луча и отверждения очередного слоя его рабочая поверхность смещается вниз на 0,025 мм – 0,3 мм.

SLA технология

Оборудование для SLA печати изготавливают компании F& S Stereolithographietechnik GmbH, 3DSystem, а также Институт проблем лазерных и информационных технологий РАН.

Ниже показаны шахматные фигуры, созданные методом SLA печати.

Шахматные фигуры, созданные методом SLA печати

Лазерное спекание порошковых материалов

Лазерное спекание порошковых материалов – оно же Selective Laser Sintering или просто SLS является единственной технологией 3D печати, которая может быть использована для изготовления металлических формообразующих для металлического и пластмассового литья. Пластмассовые прототипы обладают хорошими механическими свойствами, благодаря которым они моту быть использованы для изготовления полнофункциональных изделий.

В SLS печати используются материалы, близкие по своим свойствам к конструкционным маркам: металл, керамика, порошковый пластик. Порошковые материалы наносятся на поверхность рабочего стола и запекаются лазерным лучом в твёрдый слой, соответствующий сечению 3D модели и определяющий её геометрию.

SLS технология

Оборудование для SLS-печати изготавливают следующие заводы: 3D Systems, F& S Stereolithographietechnik GmbH, The ExOne Company / Prometal, EOS GmbH.

На рисунке представлена скульптурная модель «Так держать», изготовленная методом SLS печати.

Скульптурная модель «Так держать», изготовленная методом SLS печати, автор Лука Ионеску

Послойная печать расплавленной полимерной нитью

Послойная печать расплавленной полимерной нитью – она же Fused Deposition Modeling или просто FDM применяется для получения единичных изделий, приближенных по своим функциональным возможностям к серийным изделиям, а также для изготовления выплавляемых форм для литья металлов.

Технология FDM печати заключается в следующем: выдавливающая головка с контролируемой температурой разогревает до полужидкого состояния нити из ABC пластика, воска или поликарбоната, и с высокой точностью подаёт полученный термопластичный моделирующий материал тонкими слоями на рабочую поверхность 3D принтера. Слои наносятся друг на друга, соединяются между собой и отвердевают, постепенно формируя готовое изделие.

Технология FDM печати

В настоящее время 3D принтеры с технологией FDM печати изготавливаются компанией Stratasys Inc.

На картинке изображена модель, напечатанная 3D принтером с технологией FDM печати.

Модель, напечатанная 3D принтером с технологией FDM печати

Технология струйного моделирования

Технология моделирования или Ink Jet Modelling имеет следующие запатентованные подвиды: 3D Systems (Multi-Jet Modeling или MJM), PolyJet (Objet Geometries или PolyJet) и Solidscape (Drop-On-Demand-Jet или DODJet).

Перечисленные технологии функционируют по одному принципу, но каждая из них имеет свои особенности. Для печати используются поддерживающие и моделирующие материалы. К числу поддерживающих материалов чаще всего относят воск, а к числу моделирующих – широкий спектр материалов, близких по своим свойствам к конструкционным термопластам. Печатающая головка 3D принтера наносит поддерживающий и моделирующий материалы на рабочую поверхность, после чего производится их фотополимеризация и механическое выравнивание.

Технология струйного моделирования позволяет получить окрашенные и прозрачные модели с различными механическими свойствами, это могут быть как мягкие, резиноподобные изделия, так и твёрдые, похожие на пластики.

Технология струйного моделирования

Принтеры для 3D печати с использованием технологии струйного моделирования изготавливают следующие компании: Solidscape Inc, Objet Geometries Ltd, 3D Systems.

Технология склеивания порошков

– она же Binding powder by adhesives позволяет не просто создавать объёмные модели, но и раскрашивать их.

Принтеры с технологией binding powder by adhesives используют два вида материалов: крахмально-целлюлозный порошок, из которого формируется модель, и жидкий клей на водной основе, проклеивающий слои порошка. Клей поступает из печатающей головки 3D принтера, связывая между собой частицы порошка и формируя контур модели. После завершения печати излишки порошка удаляются. Чтобы придать модели дополнительную прочность, её пустоты заливаются жидким воском.

Технология склеивания порошков

Условные обозначения:

1-2 – ролик наносит тонкий слой порошка на рабочую поверхность; 3 – струйная печатающая головка печатает каплями связующей жидкости на слое пороша, локально укрепляя часть сплошного сечения; 4 – процесс 1-3 повторяется для каждого слоя до готовности модели, оставшийся порошок удаляется

В настоящее время 3D принтеры с технологией склеивания порошков изготавливаются компанией Z Corporation.

Ламинирование листовых материалов

Ламинирование листовых материалов – оно же Laminated Object Manufacturing или LOM предполагает изготовление 3D моделей из бумажных листов при помощи ламинирования. Контур очередного слоя будущей модели вырезается лазером, а ненужные обрезки режутся на небольшие квадратики, которые впоследствии удаляются из принтера. Структура готового изделия похожа на древесную, но боится влаги.

Технология ламинирования листовых материалов

До недавнего времени 3D принтеры для ламинирования листовых материалов производила компания Helisys Inc, но в настоящее время компания прекратила выпуск такого оборудования.

Объект, напечатанный на 3D принтере с технологией ламинирования листовых материалов, показан на фото ниже.

Модель, напечатанная 3D принтером с технологией LOM

Облучение ультрафиолетом через фотомаску

Облучение ультрафиолетом через фотомаску – оно же Solid Ground Curing или SGC предполагает создание готовых моделей из слоёв распыляемого на рабочую поверхность фоточувствительного пластика. После нанесения тонкого слоя пластика он через специальную фотомаску с изображением очередного сечения обрабатывается ультрафиолетовыми лучами. Неиспользованный материал удаляется при помощи вакуума, а оставшийся затвердевший материал повторно облучается жёстким ультрафиолетом. Полости готового изделия заполняются расплавленным воском, который служит для поддержки следующих слоёв. Перед нанесением последующего слоя фоточувствительного пластика предыдущий слой механически выравнивается.

Вконтакте

Принтер: EOSINT P395
Размер камеры: 340 х 340 х 620 мм
Толщина слоя: 120 мкм

Эта технология с одной стороны, кардинально отличается от метода послойного наплавления, с другой стороны, имеет много общего. Как и там, модель создается послойно на основе компьютерного описания. Однако ключевым принципом здесь является применение порошка, а не плавящейся нити. Порошок напыляется равномерным слоем по всей площади, после чего лазер запекает только те участки, которые соответствуют сечению модели на этом слое на этой высоте.

Метод был придуман группой студентов во главе с доктором Карлом Декартом в Университете Остина, штат Техас. Впервые он был запатентован в 1989 году фирмой DTM Corporation, которая в 2001 году была куплена компанией 3D Systems.

На сегодняшний день разнообразие материалов, применяемых в качестве порошка, поистине велико: частицы пластика, металла, керамики, стекла, нейлона.

Итак, технология состоит из двух параллельных процессов: вначале подготавливается ровный тонкий слой порошка по всей возможной площади. Здесь не обойтись без валика, подающего и разравнивающего порошок, как каток. После этого включается мощный лазер и запекает те области, который соответствуют срезу воображаемого объекта. Затем модель опускается вниз на расстояние, равное толщине слоя, и алгоритм повторяется, пока процесс не дойдет до самой верхней точки модели.

Как и следует ожидать, существует много вариантов на каждом этапе такого производства. Существует два алгоритма запекания: в одном случае плавят только те участки, которые соответствуют границе перехода, в другом — плавят по всей глубине модели. Кроме того, само запекание может варьироваться по силе, температуре и длительности.

Важная особенность выборочного (селективного) лазерного спекания — отсутствие необходимости в поддерживающих структурах, так как излишек окружающего порошка по всему объему не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта.

Последний этап — финишная обработка. Например, погружение в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если использовались порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются и, благодаря этому, этап финишной обработки минимизируется.





Метод Selective Laser Sintering или выборочное (селективное) лазерное спекание , был придуман доктором Карлом Декартом совместно с группой студентов в университете Остина, штат Техас. Впервые он был запатентован в 1989 году фирмой DTM Corporation, которая в 2001 году была куплена компанией 3D Systems.

Что такое лазерное спекание?

Технологический процесс состоит из двух этапов: вначале ровный тонкий слой порошка равномерно размещается по всей рабочей площадке, после чего включается лазер и запекает области, который соответствуют срезу воображаемого объекта. Затем модель опускается вниз на расстояние, равное толщине слоя, и алгоритм повторяется, пока процесс не дойдет до самой верхней точки модели.

На каждом этапе SLS-печати можно выбирать, как лучше действовать. Порошок может распыляться или наноситься валиком. Запекание может проводиться только на участке, который соответствует границе перехода, или плавят по всей глубине модели. Кроме того, само запекание может варьироваться по силе, температуре и длительности.

Важная особенность выборочного (селективного) лазерного спекания – отсутствие необходимости в поддерживающих структурах, так как излишек окружающего порошка по всему объему не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта.

Материалы

Перечень используемых материалов постепенно разрастается, на сегодняшний день могут применяться в качестве порошка частицы:

  • пластика;
  • металла;
  • керамики;
  • стекла;
  • нейлона.

Готовое изделие часто обрабатывают. Например, погружают в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если используют порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются, благодаря чему этап финишной обработки становится всё менее актуальным.

Основные производители SLS-принтеров – EOS (Германия) и 3D Systems (США). Они предлагают серийные установки для создания самых больших объектов: 730×380×580мм и 550×550×750мм соответственно. Однако в 2011 году в китайском университете Хуачжонг была построена самая большая в мире SLS-машина, способная синтезировать объекты размером 1200×1200мм.