Значение стохастический процесс в современном толковом словаре, бсэ. Временной ряд и его структура

Обнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов - и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника.

Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях,

они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций.

Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего - ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса.

Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени лежит в интервале между есть

где функция плотности вероятности переменной х. Под этим мы понимаем в применении к вышеприведенному

примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на достаточно малой длине интервала). Во многих случаях не будет зависеть от момента времени, в который производятся измерения. Функция плотности вероятности является основой статистического описания стохастического процесса, но сама по себе она недостаточна, так как ничего не говорит о том, как связано значение х, измеренное в один момент времени, со значениями, измеренными в другие моменты времени.

Обозначим значения временной последовательности измеренные в последовательные моменты времени через Функция плотности совместного распределения вероятностей

определяется утверждением, что вероятность выполнения неравенств

равна Для полного описания непрерывного стохастического процесса требуется задание функций распределения для всех возможных выборов моментов времени для всех положительных целых Все эти функции нормированы так, что выполняется соотношение

в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по

интервалу изменения "лишней" переменной. Например,

Любые переменных для которых выполняется равенство

называются статистически независимыми.

Функция плотности совместного распределения операционно определяется с помощью относительных частот осуществления различных комбинаций значений для и рассматриваемых моментов времени. Но, очевидно, определить полную систему функций распределения таким образом невозможно. Вместо этого для получения гипотетических распределений строится теория процессов птем применения законов физики к ситуациям, возникающим в таких областях науки, как статистическая механика или термодинамика. С помощью теории стохастических процессов вычисляются некоторые средние значения, доступные для наблюдения, и вычисленные значения сравниваются с найденными из опыта. Когда ситуация слишком сложна для такого анализа, как, например, в экономике и, вероятно, даже в метеорологии, для стохастического процесса предлагается простая статистическая "модель". Эта модель дает функцию распределения, содержащую несколько неизвестных параметров, значения которых оцениваются на основе доступных данных. Затем строятся логические заключения и, если возможно, производится сравнение с результатами дальнейших наблюдений. К счастью, существует большая теоретическая база, позволяющая рассматривать электрические шумовые процессы, с которыми приходится встречаться в задачах обнаружения сигналов. Некоторые физические основы будут изложены ниже, в разд. 3. Но сначала мы должны обсудить некоторые понятия, которые будут применяться при анализе стохастических процессов.

Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной,

на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей зависит только от интервалов между измерениями, а не от самих моментов времени Такие стохастические процессы называют стационарными. Если не будет сделано других утверждений, будем считать, что изучаемые временные последовательности обладают этим свойством временной инвариантности или стационарности.

Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими.

Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством

где функция плотности распределения вероятностей одиночного наблюдения. Это среднее значение х не зависит от времени. С другой стороны, среднее по времени х можно определить формулой

Из-за условия стационарности это среднее по времени не зависит от момента времени в который начинается усреднение. Если, кроме того, стохастический процесс эргодический, То же самое справедливо для математического ожидания других функций аргумента х.

Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса.

В уравнении (17.2) первое слагаемое описывает детерминированный процесс - тренд, а второе - стохастический процесс. На рис. 17.3 представлено некоторое (произвольное) изменение средней цены на товар во времени.  


Поскольку уравнение (17.2) описывает стохастический процесс, то его решение представляет собой распределение плотности вероятностей. Уравнение (17.5) отображает тот факт, что каждой цене на товар в некоторый момент т соответствует своя плотность вероятности р.  

Гносеологическая необходимость в опыте для объективизации оценок подтверждается их вероятностным (стохастическим) характером. Рост числа соглашений или фактов оценки позволяет рассматривать их уже в качестве не детерминированных, а именно стохастических величин, не зависящих друг от друга и от воздействия на них методов измерения . Стохастическими оценки становятся еще и потому, что их расчеты отделяются друг от друга и не корреспондируют между собой. В самом деле, при единичном соглашении об оценке методы покупателя и продавца или нескольких экспертов согласуются или по крайней мере сопоставляются их результаты. При множественности, территориальной и временной разъединенности сделок методы оценок не сравниваются между собой и появляется возможность трактовки оценок как стохастического процесса, в результате которого в качестве объективной оценки принимается ее математическое ожидание.  

Сбор, обработка и сводка информации представляют собой составную часть общего информационно-аналитического процесса маркетинга . Получение информации подчинено задачам управления и имеет целью обеспечить оценку и анализ рыночных процессов для принятия правильных маркетинговых решений . Процесс управления неосуществим без осмысления ретроспективы развития фирмы, оценки ее настоящего и прогноза будущего . Регулирование некоторых рыночных процессов также требует информации о самом этом процессе и факторах, влияющих на него. Информация - средство уменьшения неопределенности, свойственной стохастическим процессам рынка. По словам отца кибернетики Н. Винера, управление фирмой есть процесс преобразования информации в действия. Информация -инструмент маркетинг -менеджмента.  

Стохастические процессы в системах управления запасами . Обычно невозможно указать точно характеристику спроса. Детерминированное описание является только приближенным. Задержки в поставках, потери при транспортировке можно описать с помощью вероятностных параметров. Время поставки меняется из-за непостоянства времени выполнения заказа, оформления сопровождающей документации.  

Рассмотрим теперь модель поведения потенциального вкладчика, то есть вкладчика, еще не открывшего своего счета к моменту времени to-В этой модели предполагается, что счет открывается в некоторый случайный момент времени т > 0 под влиянием обстоятельств, появление которых во времени описывается пуассоновским стохастическим процессом k+(t) с параметром интенсивности Я.+. Таким образом, случайное число + (0, t) = k+ (t) - k (t0) появлений за промежуток времени обстоятельств, способствующих открытию счета потенциальным вкладчиком, имеет распределение Пуассона k+(t0,t)e Pn(k (t-tf>)). Для упрощения модели предполагается, что потенциальный вкладчик не может многократно открывать и закрывать свой счет на промежутке времени .  

Для экономических исследований большое значение имеет также анализ стохастических процессов, в т.ч. "марковских процессов".  

Точно так же можно воссоздать искусственную картину работы самого магазина здесь распределение времени подхода покупателей будет взаимодействовать с распределением времени обслуживания отдельного покупателя. Получаются опять два стохастических процесса. Их взаимодействие даст "очередь" с примерно такими же характеристиками (напр., средней длиной очереди или средним временем ожидания), какими обладает реальная очередь.  

Случайные (стохастические) процессы 294  

Города, особенно крупные, заключают в своих административно-территориальных границах сложнейший комплекс непрерывно протекающих стохастических процессов взаимодействия многочисленных хозяйствующих субъектов друг с другом и с внешними контрагентами.  

Розенблат-Рот М. Энтропия стохастических процессов //ДАН СССР, 1957.  

СТОХАСТИЧЕСКИЕ ПРОЦЕССЫ - события, процессы, на протекание которых оказывают значительное влияние случайные факторы.  

До недавнего времени вопросам определения норм сбытовых запасов в натуральном выражении не уделялось достаточного внимания. Были разработаны вопросы нормирования запасов только для двух видов материальных ресурсов - цемента в и угля в . Кроме того, в настоящее время действует Типовая инструкция , в одном из разделов которой регламентированы вопросы определения норм оборотных средств , авансированных в запасы готовой продукции . В экономической литературе нормированию сбытовых запасов посвящены только две работы - , . Рекомендуемые в них методические подходы к определению норм и алгоритмы приведены в табл. 3.3, из которой видно, что они значительно разнятся между собой. Например, если в Инструкции расчет основан на предположении, что условия формирования сбытового запаса угля являются стохастическим процессом, и применена вероятностная обработка вариаций значений нормообразующих факторов, то в других работах использован детерминированный подход к расчету. Различаются у авторов также взгляды и на структуру самой исчисляемой нормы, т.е. экономическое содержание ее составляющих. Н. Фасоляк в предлагает при расчете нормы определять ее через такие же составляющие, как и в случае производственных запасов , но не раскрывает их физического содержания. Другие авторы все нормообразующие факторы учитывают вместе, не подразделяя их по группам.  

СТОХАСТИЧЕСКИЙ ПРОЦЕСС - см Случайный процесс  

Настоящая книга посвящена изложению гипотезы фрактального рынка , как альтернативе гипотезы эффективного рынка . Фракталы, как следствие геометрии Демиурга присутствуют повсеместно в нашем мире и играют существенную роль, в том числе, и в структуре финансовых рынков , которые локально случайны, но глобально детерминированы, по мнению автора. В книге будут рассмотрены методы фрактального анализа рынков акций, облигаций и валют, методы различения независимого процесса, нелинейного стохастического процесса и нелинейного детерминированного процесса и исследовано влияние этих различий на пользовательские инвестиционные стратегии и способности моделирования. Такие стратегии и способности моделирования тесно связаны с типом активов и инвестиционным горизонтом пользователя.  

Рисунки 2.5 и 2.6 показывают подобные распределения для валютного курса иена/доллар (1971-1990 гг.) и 20-летних доходов по американским казначейским облигациям (1979-1992 гг.) соответственно. Толстые хвосты - не только явление фондового рынка . Другие рынки капитала показывают схожие характеристики. Такие распределения с толстыми хвостами часто являются доказательством системы с долговременной памятью, произведенной нелинейным стохастическим процессом.  

Самое популярное объяснение ограниченности заключается в том, что прибыли являются возвратными к среднему. Стохастический процесс, возвратный к среднему, может произвести ограниченное множество , но не увеличивающийся коэффициент Шарпа . Возвратный к среднему процесс подразумевает игру с нулевой суммой. Исключительно высокие доходы в одном периоде нейтрализуются доходами ниже среднего в более позднем периоде. Коэффициент Шарпа остался бы постоянным, потому что прибыли также были бы ограничены. Таким образом, средняя реверсия в прибылях не является полностью удовлетворительным объяснением ограниченности изменчивости. Независимо от этого процесс, который производит наблюдаемую временную структуру волатильности , явно не гауссов, при этом он недостаточно хорошо описывается нормальным распределением.  

Почему акции и облигации являются ограниченными множествами Возможным объяснением ограниченности является возвратный к среднему стохастический процесс, но он не объясняет растущее быстрее стандартное отклонение . Ограничения и быстро растущие стандартные отклонения обычно вызываются детерминистическими системами с периодическими или непериодическими циклами.  

В данный момент мы можем видеть свидетельство того, что акции, облигации, и валюта являются возможными нелинейными стохастическими процессами в краткосрочной перспективе, что подтверждается их частотными распределениями и временными структурами волатильности . Однако акции и облигации имеют признаки долгосрочного детерминизма. И снова мы видим локальную случайность и глобальный детерминизм.  

В этой книге мы рассмотрим методы различения независимого процесса, нелинейного стохастического процесса и нелинейного детерминированного процесса и исследуем, как эти различия влияют на наши инвестиционные стратегии и наши способности моделирования. Такие стратегии и способности моделирования тесно связаны с типом актива и нашим инвестиционным горизонтом.  

В следующем разделе исследуется R/S-анализ различных типов временных рядов , которые часто используются в моделировании финансовой экономики, а также других видов стохастических процессов. Особое внимание будет уделяться возможности ошибки второго рода (классификация процесса как имеющего долговременную память, тогда как в действительности, процесс имеет кратковременную память).  

Они являются семейством нелинейных стохастических процессов, в  

Авторегрессионный (AR) процесс. Стационарный стохастический процесс, где текущая величина временного ряда соотносится с прошлыми величинами р (р - некоторое целое число), называется AR(p) процессом. Когда текущая величина связана с двумя предыдущими величинами, мы имеем AR(2) процесс. AR(1) процесс имеет бесконечную память.  

Достаточно сказать, кроме формулы для FastK (RAW), все эти Стохастические функции, а следовательно, их производные индикаторы, не соответствуют опубликованному определению Стохастического Процесса Джорджа Лэйна, представляя собой модификации первоначальной формулы. Не забудьте проверить списки этих функций, используя PowerEditor в TradeStaton , чтобы узнать, что именно вы применяете, прежде чем будете принимать основанные на этих индикаторах торговые решения.  

Стохастика (от греч. Sto hasis - догадка) - вероятность событий , обусловленных случайным сочетанием факторов. Стохастическая (возможная, вероятная) совокупность образуется в результате реализации стохастического процесса и представляет собой совокупность возможных комбинаций отбираемых единиц.  

СТОХАСТИЧЕСКИЙ ПРОЦЕСС - процесс называется стохастическим, если он описывается случайными переменными , значения которых меняются во времени. Подробнее см. Случайный процесс.  

СЛУЧАЙНЫЙ ПРОЦЕСС , вероятностный процесс , стохастический процесс (sto hasti pro ess) - случайная ф-ция X(t) от действительного параметра времени teT, значения которой для любого t являются случайными величинами Область определения С п является либо последовательностью, либо конечным или бесконечным интервалом, в первом случае С п называется процессом с дискретным временем, во втором - процессом с непрерывным временем Приме ром С п является поток  

Определение

X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

где T {\displaystyle T} произвольное множество , называется случайной функцией .

Терминология

Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

Классификация

  • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
  • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
  • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
  • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
  • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
  • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
  • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
  • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
  • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
  • Среди случайных процессов выделяют импульсные случайные процессы .

Траектория случайного процесса

Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

Материал из synset

Эти материалы являются сокращённой электронной версией книги "Стохастический мир". После конвертации из LaTex появились неизбежные артефакты, которые будут постепенно устраняться. Об ошибках или опечатках, найденных в последней версии убедительная просьба сообщать, например, в закладке "обсуждение" вверху на этой странице или почтой mathсайт. Вы этим очень поможете в улучшении книги. Приветствуются также комментарии общего плана: что понравилось, а что нет. Для чтения книги в web-браузере стоит прочитать совет по настройке браузера для более комфортного просмотра формул.

С уважением, Степанов Сергей Сергеевич.

Случайные события

Стохастические уравнения

Средние значения стохастических процессов

Вероятности стохастических процессов

Стохастические интегралы

Системы уравнений

Стохастическая природа

Стохастическое общество

Краткое содержание

Случайные события

Абсолютно детерминированных событий и процессов не бывает. Вселенная разговаривает с нами на языке теории вероятностей. Предполагается, что Читатель хорошо знаком с ней, поэтому напоминаются только факты, необходимые для дальнейшего изучения предмета.

Первый раздел является вводным, он подводит к необходимости использования стохастических дифференциальных уравнений при исследовании различных систем. Затем обсуждается понятие плотности вероятностей, позволяющей вычислять наблюдаемые в среднем величины. Гауссова вероятность лежит в основе шума, воздействующего на детерминированную динамику. Стохастическая связь между случайными величинами и, наоборот, их независимость важны при обнаружении закономерностей между различными объектами и их характеристиками. Ключевым разделом главы является Модель аддитивного блуждания . Именно обобщение этой простой модели приведёт нас в следующей главе к стохастическим дифференциальным уравнениям. Последний раздел Мартингалы и бесплатный сыр содержит ряд формальных определений, которые при желании можно опустить.

Стохастические уравнения

Эта глава является ключевой. В ней вводится основной математический объект нашего интереса -- стохастические дифференциальные уравнения. Мы будем использовать максимально неформальный, интуитивный путь, считая, что получение конкретных практических результатов важнее, чем математически строгое их обоснование.

Стохастические уравнения представляют собой достаточно естественный непрерывный по времени предел дискретных случайных процессов, рассмотренных в предыдущей главе. Даже решая непрерывное уравнение, мы будем постоянно возвращаться к его дискретному аналогу, как для получения общих аналитических результатов, так и для численного моделирования. Исключительно важным результатом главы является лемма Ито, при помощи которой мы научимся находить точные решения уравнений в некоторых простых, но важных для практических приложений задачах. Затем обсуждаются способы вычисления автокорреляционной функции случайного процесса и его спектральные свойства. В заключение мы затронем тему систем уравнений, к которой более последовательно вернёмся в шестой главе.

Средние значения

Дифференциальное уравнение для случайной функции x(t) - это лишь один из возможных языков описания стохастического процесса. В ситуации, когда система эволюционирует со временем, средние значения также изменяются и подчиняются определённым дифференциальным уравнениям. Фактически, их решение является наиболее прямым способом получения практически полезных результатов.

Мы начнём эту главу с вывода динамического уравнения для средних. С его помощью будет получено простое выражение для плотности вероятности в ситуации, когда система имеет стационарный режим. Затем мы подробно проанализируем две стохастические задачи: уравнение Феллера и логистическое уравнение. В заключение будут рассмотрены метод разложения средних величин в степенной ряд по времени и квазидетерминированное приближение.

Вероятности

Ещё одним способом получения информации о поведении стохастического процесса является решение уравнений для условной плотности вероятности которым посвящена эта глава.

На простых примерах будут продемонстрированы методы решения подобных уравнений. Затем мы рассмотрим вопрос о граничных условиях, которые наиболее естественным образом учитываются при помощи уравнения Фоккера-Планка. Будет вычислено среднее время достижения границы и построен простой метод решения уравнения Фоккера-Планка при наличии граничных условий. Решения уравнений x(t) мы часто записываем при помощи гауссовой случайной переменной.

Стохастические интегралы

Как и в обычном анализе, если определено стохастическое дифференцирование, то естественно ввести и стохастическое интегрирование. Соответствующая техника даст нам ещё один инструмент получения соотношений для иногда достаточно общих случайных процессов. Это очень красивый раздел стохастической математики, который к тому же активно используется в учебной и научной литературе.

В дифференциальных уравнениях присутствуют два бесконечно малых изменения -- снос, пропорциональный dt, и волатильность шума. Соответственно, возможно два вида интегралов. В первом разделе мы рассмотрим стохастические интегралы по dt, изучим их основные свойства и найдём представление некоторых интегралов через обычные случайные величины. Во втором разделе рассматривается интеграл Ито по . Далее будут получены условия, при которых решение стохастического дифференциального уравнения единственно, и рассмотрен итерационный метод построения этого решения.

Системы уравнений

Одномерные стохастические уравнения позволяют описывать только сравнительно простые системы. Даже для обычного физического осциллятора необходимо решать систему из двух уравнений первого порядка. Реальность в общем случае -- многомерна. Она даёт нам множество примеров достаточно сложных, но исключительно интересных случайных процессов.

Как и в одномерном случае, мы начнём с дискретных процессов, обобщение которых на непрерывный случай приведёт нас к системе стохастических дифференциальных уравнений. Фактически, эта глава повторяет большинство результатов предыдущих глав. Для тех, кто уверенно владеет тензорной и матричной алгеброй, соответствующие обобщения служат лишь способом повторения уже известного материала. После вывода основных многомерных уравнений будут рассмотрены решения некоторых задач.

Стохастическая природа

В этой главе приведены примеры природных систем, которые естественным образом описываются при помощи стохастических дифференциальных уравнений. Эти системы охватывают широкий спектр приложений от физики до биологии, однако не требуют глубоких познаний в соответствующих областях. Большинство разделов не связаны друг с другом и могут быть прочитаны в любом порядке, независимо друг от друга. Первое стохастическое дифференциальное уравнение в 1908 году записал Поль Ланжевен (Paul Langevin). Именно с него начинается эта глава.

Стохастическое общество

В этой главе собраны некоторые примеры применения стохастических методов к финансовым рынкам и экономике. Волатильный характер цен и экономических индикаторов приводит к тому, что динамика соответствующих систем является существенно стохастической, и член в уравнениях Ито играет ведущую роль.

Сначала мы сделаем небольшой экскурс в финансовые рынки и эмпирические свойства цен финансовых инструментов. Затем рассмотрим теорию диверсификации и бета - коэффициенты. Стохастические методы оказываются очень полезными при изучении сложных финансовых инструментов. Примером такого инструмента является опцион. Мы рассмотрим основные его свойства и двумя различными способами выведем формулу Блэка-Шоулза. После этого будет рассмотрена простая однофакторная модель кривой доходности.

Не может быть определен по изначальному состоянию системы.

  • В математике стохастическая матрица - это матрица , в которой все столбцы и/или строки - ряды неотрицательных действительных чисел, дающих в сумме.
  • В физике, стохастический резонанс - это проявление эффекта допорогового периодического сигнала, из-за добавления беспорядочного (шумового) воздействия, имеющего определённую оптимальную амплитуду, при которой проявление наиболее сильно́.
  • В музыке. Стохастическая музыка - по Хиллеру - это название такого вида композиционной техники, при котором законы теории вероятности определяют факт появления тех или иных элементов композиции при заранее обусловленных общих формальных предпосылках. В 1956 году, Янис Ксенакис ввел свой термин «стохастическая музыка», для описания музыки, основанной на законах вероятностей и законах больших чисел.
  • Стохастические системы - это системы, изменение в которых носит случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    Стохастический: Определение процесса, определяемого рядом наблюдений.

    См. также


    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Стохастический" в других словарях:

      - [гр. stochastikos умеющий угадывать] случайный, вероятностный, беспорядочный, непредсказуемый. Словарь иностранных слов. Комлев Н.Г., 2006. стохастический (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс процесс, характер… … Словарь иностранных слов русского языка

      Вероятностный, случайный; непредсказуемый. Ant. закономерный, обязательный Словарь русских синонимов. стохастический прил., кол во синонимов: 4 беспорядочный (44) … Словарь синонимов

      Большой Энциклопедический словарь

      Управляемый законами теории вероятностей, случайный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

      Англ. stochastic; нем. stochastisch. В статистике случайный или вероятный; напр., С. процесс процесс, характер изменения к рого во времени точно предсказать невозможно. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      стохастический - ая, ое. stochastique, нем. stochastisch <гр. stochasis догадка. мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С.процесс. Стохастичность и, ж. Крысин 1998. Лекс. БСЭ 2: стохасти/ческий … Исторический словарь галлицизмов русского языка

      стохастический - tikimybinis statusas T sritis automatika atitikmenys: angl. stochastic vok. stochastisch rus. стохастический pranc. stochastique ryšiai: sinonimas – stochastinis … Automatikos terminų žodynas

      Ая, ое [греч. stochasis догадка] Книжн. Случайный, вероятностный, возможный. С ие изменения в экономике. С. процесс эволюции природы. * * * стохастический (от греч. stochastikós умеющий угадывать), случайный, вероятностный … Энциклопедический словарь

      Стохастический - то есть случайный, не имеющий очевидной закономерной причины … Физическая Антропология. Иллюстрированный толковый словарь.

      Стохастический - (от греч. stochastikos умеющий угадывать) случайный, вероятностный … Начала современного естествознания

    Книги

    • , Ф. С. Насыров. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…
    • Локальные времена, симметричные интегралы и стохастический анализ , Насыров Ф.С.. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…