Биологические вещества примеры. Биологически активные вещества лекарственных растений, их функции. Другие варианты классификации

Когда заходит речь о составе косметических кремов, употребляется словосочетание «биологические активные вещества». Что собой представляют эти вещества и в чем их сила? Как ведут себя биологически активные вещества (БАВ) в косметической композиции и насколько оправдано их привнесение в косметический препарат? На эти и другие вопросы мы ответим ниже.

Биологически активные вещества – это группа химических веществ, которые обладают высокой физиологической активностью в небольших концентрациях.

Жизнедеятельность живого организма обуславливается двумя процессами: ассимиляцией и диссимиляцией, в основе которых лежит обмен веществ между внутренней (внутри организма) и внешней средой. Обменные процессы, происходящие в организме, должны поддерживаться постоянством химического состава и физико-химических свойств внутренней среды организма. Это постоянство зависит от совокупности нескольких факторов, среди которых важную роль играют биологически активные вещества, поступающие в организм вместе с пищей и образующие гармоническую взаимосвязь всех биологических процессов в организме. Помимо регуляции всех биохимических процессов в организме, БАВ оказывают в случае необходимости и терапевтический эффект на организм.

Биологические активные вещества в косметической композиции

Следует сразу развеять заблуждение, которое широко тиражируется маркетологами и рекламодателями: настоящих биологически активных веществ в косметических препаратах нет и быть не может. И вот почему: согласно международному законодательству, все косметические средства, сертифицирующиеся как косметика, а не как лекарственные препараты, воздействуют только на поверхностный слой кожи. То есть вещества, входящие в состав крема, не должны достигать глубокие слои кожи.

Если бы косметические кремы достигали живые слои кожи, пришлось бы изъять многие косметические препараты из продажи или изменить их фармакологическое предназначение. Но производители щедро раздают обещания, обещая то, что в принципе невозможно.

Важно! Абсолютно все кремы способны воздействовать только на верхний слой эпидермиса. Биологически активные вещества, входящие в состав крема, не способны проходить сквозь роговой слой эпидермиса.

Как способны воздействовать активные вещества в креме?

Однако биологически активные вещества в косметике способны благоприятно воздействовать и значительно улучшить поверхностный слой эпидермиса. И это совсем немаловажно. Так как все приятные ощущение (увлажнение, эластичность и красота кожи) в большой мере зависят от состояния эпидермиса. Что способны улучшать биологически активные вещества, находящиеся в креме?

Во-первых, защищать кожу от УФ-излучения. Первые морщины появляются не от старости, а от ультрафиолетового излучения. Проникая глубоко в кожу, ультрафиолет воздействует на коллаген и эластин, разрушая их молекулы и вызывая мутации в ДНК.


Во-вторых, биологически активные вещества способны эффективно увлажнять кожу благодаря созданию на ее поверхности гигроскопической пленки, которая связывает и удерживает влагу, не отдавая ее наружу.

В-третьих, БАВ способны активизировать кровообращения определенными веществами, которые входят в состав кремов, масок, сывороток.

В-четвертых, улучшать кожные характеристики по типу кожи: увлажнять обезвоженную кожу, матировать жирную кожу, снимать раздражение, которое свойственно чувствительной, проблемной коже.

Существуют ли биологически активные вещества, способные омолаживать кожу?

Это очень актуальный вопрос для женщин, активно пользующихся косметикой анти-эйдж. Ведь покупают антивозрастные кремы с надеждой на то, что они будут эффективно устранять возрастные дефекты кожи. Но так ли это на самом деле? Антивозрастные кремы должны иметь в своем составе вещества, способные проникать в базальный слой эпидермиса и влиять на обменные процессы в клетках.

Но сравнительно недавно стали говорить о способности активных веществ запускать в роговой слой импульсы, способные координировать работу клеток в базальном слое эпидермиса. При этом нет необходимости в проникновении самих активных веществ через защитный слой. То есть активные вещества из крема работают дистанционно, не проникая глубже эпидермиса. Однако вызывает большое сомнение такое свойство активных веществ. Хотя бы потому, что в этом случае они должны позиционироваться как лекарственные препараты.

Cкажем так: биологически активные вещества омолаживающие кожу существуют, но находясь в косметической композиции, они не способны миновать роговой слой эпидермиса. Следовательно, не могут благоприятно влиять на процессы, происходящие в клетках.


Многочисленные тестирования антивозрастных кремов показали, что определенным положительным эффектом они обладают, но эффектом весьма незначительным. В первую очередь разглаживаются мелкие морщины, которые возникли в результате недостаточного увлажнения верхнего слоя эпидермиса. Но состояние глубоких морщин, которые возникают в результате естественного увядания кожи, остаются без видимых изменений.

К сожалению, невозможно повлиять на состояние глубоких морщин. Косметические препараты с этим не способны справиться.

Даже самые революционные косметические средства, в состав которых входят биологически активные вещества, не способны омолодить кожу и повернуть процесс старения вспять. Это прерогатива инъекционных методик и лишь инновационные регенеративные технологии способны «разбудить» аутологичные фибробласты и побудить их к синтезу коллагена и эластина, а значит, способствуют омоложению кожи.

Какие препараты считаются биологически активными?

Неограниченным источником биологически активных веществ является богатый растительный мир. Каждый год появляются все новые экзотические вещества, которые экстрагируются из растений и которые обладают эффективными регенеративными возможностями.

Большое количество активных веществ синтезируются биохимическим путем. Например, пептиды, керамиды, гиалуроновая кислота, коллаген, эластин создаются по аутологическому образцу кожных веществ.

Биологически активными препаратами считаются натуральные жиры и масла, которые в обязательном порядке входят в состав косметической композиции:

  • ланолин –животный жир (из овечьей шерсти);
  • масло макадамия –хорошее увлажняющее и питательное масло ореха макадамия;
  • кунжутное масло – богатое витаминами, эффективно против свободных радикалов;
  • миндальное масло – очень эффективно для сухой и чувствительной кожи;
  • масло жожоба –жидкий воск из плодов пустынного кустарника.


В состав косметических средств также входят вещества, связывающие влагу, которые не отдают влагу из кожи. Они бывают как природного, так и синтетического происхождения:

  • коллаген – белок, отвечающий за упругость кожи. Его добывают из шкур крупного рогатого скота или морских животных;
  • гиалуроновая кислота – самый мощный увлажнитель, который получают путем биотехнологий;
  • алоэ – растение, обладающее лечебным действием, является хорошим увлажнителем;
  • экстракт огурца – хорошо увлажняет кожу, делает ее гладкой, улучшает цвет лица;
  • морские водоросли – богатые минералами, поддерживают водный баланс.

Необходимыми компонентами любого косметического средства являются тонизирующие, улучшающие кровообращение вещества:

  • аллантоин – натуральное вещество, которое получается при окислении мочевой кислоты, хорошо успокаивает раздраженную кожу;
  • экстракт календулы – всем хорошо известное средство, используемое при угревой болезни;
  • перечная мята – хорошее тонизирующее средство;
  • гинкго билоба – растение, которое за свои уникальные качества называют живым ископаемым, улучшает микроциркуляцию кожи.
  • бисаболол – снимает раздражение и покраснение кожи, оказывает успокаивающее действие на кожу.

Подводя итог

Когда простой потребитель слышит о биологически активных веществах, то сразу подразумевает некие революционные вещества, способные творить чудеса. Но это не так по нескольким причинам.

  1. Вещества, входящие в косметические препараты не проходят сквозь роговой слой эпидермиса.
  2. По вышеназванной причине косметические препараты не являются лекарственными средствами и призваны оказывать воздействие только на верхний слой эпидермиса. Они не вмешиваются в глубинные процессы, происходящие в клетках.
  3. Когда речь заходит о биологически активных веществах, то это не только революционные средства против морщин, но и любое вещество с более чем общим активным действием.
  4. Даже самые революционные косметические препараты, в состав которых входят биологически активные вещества, не способны омолодить кожу и повернуть процесс старения вспять.
  5. Биологически активные вещества, омолаживающие кожу, действительно существуют, но эффективны они только тогда, когда попадают в организм при помощи инъекций.
  6. Биологически активные вещества оказывают минимальное воздействие на кожу, но нельзя сказать, что они совсем бесполезны. Женщина, ухаживающая за собой в течение всей жизни, всегда выделяется среди своих сверстниц, которые этого никогда не делали.

Поэтому, дорогие женщины, начинайте ухаживать за собой смолоду, и кожа отблагодарит вас красотой и свежестью даже в позднем возрасте.

Биологически активные вещества

К биологически активным веществам относятся ферменты, гормоны, антибиотики, витамины.

Ферменты (энзимы) – специфические белки, выполняющие в организме функции биологических катализаторов. Известно около 1000 ферментов, катализирующих соответствующее число индивидуальных реакций. Ферменты имеют высокую специфичность действия, интенсивность, действуют в «мягких» условиях (температура 30-35ºС, нормальное давление, рН~7). Процесс катализа строго ограничен в пространстве и времени. Часто, вещества, образующиеся под действием одного фермента, являются субстратом для другого фермента. Ферменты имеют все уровни белковой структуры (первичная, вторичная, третичная; четвертичная – особенно для регуляторных ферментов). Структурная часть молекулы, принимающая непосредственное участие в катализе наз. Каталитическим участком. Контактная площадка – место на поверхности фермента, к которому прикрепляется вещество. Каталитический центр и контактная площадка образуют активный центр (в молекуле их обычно несколько). Группы ферментов:

1. Не имеющие небелковых компонентов;

2. Имеющие белковый компонент – апофермент и требующие для проявления активности определенные органические вещества – коферменты.

Иногда в состав фермента входят различные ионы, в том числе и ионы металлов. Ионный компонент называется ионным кофактором. Ингибиторы – вещества угнетающие активность ферментов, образуют с ними инертные соединения. Такими веществами иногда являются сами субстраты или продукты реакции (в зависимости от концентрации). Изоферменты – генетически детерминированные формы фермента в одном и том же организме, характеризующиеся сходной субстратной спецификой.

Классификация ферментов

Ферменты классифицируются по типу реакции, которую они катализируют. Классы:

1. Оксидоредутазы – катализируют реакции окисления.

2. Трансферазы – перенос функциональных групп.

3. Гидролазы – гидролитический распад.

4. Лиазы – негидролитическое отщепление определенных групп атомовс образованием двойной связи.

5. Изомеразы – пространственная перестройка в пределах одной молекулы.

6. Лигазы – реакции синтеза, сопряженные с распадом догатых энергией связей.

Гормоны химические вещества, обладающие чрезвычайно высокой биологической активностью, образованы специфической тканью (железами внутренней секреции). Гормоны контролируют обмен веществ, клеточную активность, проницаемость клеточных мембран, обеспечивают гомеостаз, др. специфические функции. Обладают дистантным действием (разносятся кровью во все ткани). Образование гормонов контролируется по принципу обратной связи: не только регулятор влияет на процесс, но и состояние процесса влияет на интенсивность образования регулятора.

Классификация гормонов

Есть несколько классификаций гормонов: связанная с происхождением гормона, с его химическим составом и др. По химической природе гормоны делятся на (химическая классификация):

1. Стероидные – производные стеролов с укороченными боковыми цепями.

Эстрон, эстрадиол, эстриол – яичники; вызывают образование женских вторичных половых признаков.

Кетоны и оксикетоны:

Тестостерон (XVI) – семенники; вызывает образование мужских вторичных половых признаков.

Кортизон, кортизол, кортикостерон (XVII), 11-дегидрокортикостерон,17-оксикортикостерон – кора надпочечников; регулируют обмен углеводов и белков.

11-дезоксикортикостерон, альдостерон – кора надпочечников; регулируют обмен электролитов воды.

2. Пептидные.

Циклические октапептиды.

Окситоцин, вазопрессин – гормоны задней доли гипофиза.

Полипептиды.

Интермедин, хроматотропин – гормоны промежуточной доли гипофиза; вызывает расширение меланофор в хроматофорах кожи.

Адренокортикотропный гормон – гормон передней доли гипофиза; стимулирует функцию коры надпочечников.

Инсулин – гормон поджелудочной железы; регулирует обмен углеводов.

Секретин – гормон слизистых желез кишечника; стимулирует выделение панкреатического сока.

Глюкагон – гормон островков Лангеранса поджелудочной железы; повышает концентрацию сахара в крови.

Белковые вещества

Лютеотропин – передняя доля гипофиза; поддерживает функцию желтого тела и лактацию.

Паратиреокрин – околощитовидная железа; поддерживает концентацию кальция и фосфора в крови.

Соматотропин – передняя доля гипофиза; стимулирует рост, регулирует анаболизм белков.

Ваготонин – поджелудочная железа; стимулирует парасимпатическую нервную систему.

Центропнеин – поджелудочная железа; стимулирует дыхание.

Гликопротеины

Фолликулостимулирующий (гонадотропный) гормон – передняя доля гипофиза; стимулирует рост фолликул, яичников и сперматогенез.

Лютеинизирующий гормон – передняя доля гипофиза; стимулирует образование эстрогенов и андрогенов.

Тиреотропин – передняя доля гипофиза; стимулирует деятельность щтовиной железы.

3. Родственные тирозину.

Фенилалкиламины

Адреналин (XVIII), норадреналин (медиатор нервного возбуждения) – гормоны мозгового слоя надпочечников; повышают кровяное давление, вызывают гликогенолиз, гипергликемию.

Иодированые тиронины.

Тироксин, 3,5,3-трииодотиронин – гормоны щитовидной железы; стимулируют основной обмен.

Антибиотики – вещества, образованные микроорганизмами или получаемые из других источников, обладающие антибактериальным, антивирусным, противоопухолевым действием. Выделено и описано св. 400 антибиотиков, которые принадлежат к различным классам химических соединений. Среди них есть пептиды, полиеновые соединения, полициклические вещества.

Для них характерно избирательное действие на определенные виды микроорганизмов; характеризуются специфическим антимикробным спектром действия. Подавляют некоторые болезнетворные микроорганизмы, не повреждая при этом растительных и животных тканей. Антибиотики действуют встраиваясь в обмен веществ.

Классификация антибиотиков

Есть несколько классификаций антибиотиков. По происхождению:

1. Грибкового происхождения

2. Бактериального происхождения

3. Животного происхождения

По спектру действия:

1. С узким спектром действия – действующие на грамположительные микробы(различные кокки). Это: пенициллин, стрептомицин.

2. С широким спектром действия – действующие как на грамположительные так и на грамотрицательные микроорганизмы(различные палочки). Это: тетракциклины, неомицин.

(Грамположительные и грамотрицательные антибиотики отличаются по отношению к определенным красителям. Грамположительные образуют с крастелем окрашенный комплекс, который не обесцвечивается с спирте; грамотрицательные не окрашиваются).

3. Действующие на грибки – группа полиеновых антибиотиков. Это: нистатин, кандицидин

4. Действующие как на микроорганизмы так и на опухолевые клетки животных. Это: актиномицины, митомицин…

По типу противомикробной активности:

1. Бактерицидные.

2. Бактериостатические.

Витамины – группа дополнительных веществ еды, которые не синтезируются в организме человека. Витамины являются биологическими катализаторами химических реакций или реагентами фотохимических процессов в организме. Участвуют в обмене веществ в составе ферментных систем. В организмы человека и животных попадают из внешней среды. Некоторые производные витаминов с замещенными функциональными группировками оказывают противоположное по сравнению с витаминами действие, и называются антивитаминами. Становятся витаминами. Провитамины – вещества, которые после ряда превращений в организме

Классификация витаминов

Классификация по отношению к человеческому организму:

1. Повышающие общую активность организма – регулируют функциональное состояние центральной нервной системы (B1, B2, PP, A, C).

2. Антигеморрагические – обеспечивающие нормальную проницаемость и эластичность кровеносных сосудов (C, P, K).

3. Антианемические – регулируют кроветворение (B12, Bc, C).

4. Антиинфекционные – повышающие устойчивость организма к инфекциям (C, A).

5. Регулирующие зрение – усиливающие остроту зрения.(A, B2, C).

Также различают:

1. Водорастворимые (витамины С, В1, В2, В6, В12, РР, пантотеновая кислота, биотин, мезоинозит, холин, п-аминбензойная кислота, фолиевая кислота).

2. Жирорастворимые (витамины А, А2, D2, D3, Е, К1, К2).

Витамин А (ретинол) – влияет на зрение, рост (V).

Витамин В1 (тиамин) – участвует в обмене углеводов (VI).

Витамин В2 (рибофлавин) – участвует в обмене углеродов, жиров, белков; влияет на рост, зрение, центральную нервную систему (VII).

Витамин РР (никотиновая кислота) –участвует в клеточном дыхании (VIII).

Витамин В6 (пиридоксин)– участвует в усвоении белков, жиров; азотистый обмен (IX).

Витамин В9 (фолиевая кислота) – участвует в обмене веществ, синтезе нуклеиновых кислот, кроветворении (X).

Витамин В12 (цианокобаламин) – участвует в кроветворении (XI).

Витамин С (аскорбиновая кислота) – участвует в усвоении белков, восстановлении тканей (XII).

Витамин D (кальциферол) – участвует в обмене минеральных веществ (XIII).

Витамин Е (токоферол) – мышцы (XIV).

Витамин К (филлохиноны) – влияет на сворачиваемость крови (XV).

Вещества (сокращено - БАВ) - это особые химические вещества, которые обладают при небольшой концентрации высокой активностью к определенным группам организмов (человек, растения, животные, грибы) или к определенным группам клеток. БАВ применяют в медицине и в качестве профилактики болезней, а также для поддержания полноценной жизнедеятельности.

Биологически активные вещества бывают:

1. Алкалоиды - азотсодержащие природы. Как правило, растительного происхождения. Обладают основными свойствами. Нерастворимы в воде, с кислотами образуют различные соли. Обладают хорошей физиологической активностью. В больших дозах - это сильнейшие яды, в малых - лекарства (медикаменты "Атропин", "Папаверин", "Эфедрин").

2. Витамины - особенная группа органических соединений, которые жизненно необходимы животным и человеку для хорошего метаболизма и полноценной жизнедеятельности. Многие из витаминов принимают участие в образовании нужных ферментов, тормозят или ускоряют активность определенных ферментных систем. Также витамины используются как к пище (входят в их состав). Некоторые витамины поступают в организм с пищей, другие образуются микробами в кишечнике, третьи - появляются в результате синтеза из жироподобных веществ под воздействием ультрафиолета. Недостаток витаминов может привести к различным нарушениям в обмене веществ. Болезнь, которая возникла в результате малого поступления витаминов в организм, называют авитаминозом. Недостаток - а чрезмерное количество - гипервитаминоз.

3. Гликозиды - соединения органической природы. Обладают самым разнообразным воздействием. Молекулы гликозидов состоят из двух важных частей: несахаристой (агликона или генина) и сахаристой (гликон). В медицине используют для лечения заболеваний сердца и сосудов, как противомикробное и отхаркивающее средство. Также гликозиды снимают усталость умственную и физическую, дезинфицируют мочевые пути, успокаивают ЦНС, улучшают пищеварение и повышают аппетит.

4. Гликолалкалоиды - биологически активные вещества, родственные гликозидам. Из них можно получить следующие лекарственные препараты: "Кортизон", "Гидрокортизон" и другие.

5. (другое название - таниды) способны осаждать белки, слизи, клеевые вещества, алкалоиды. По этой причины они несовместимы с этими веществами в лекарствах. С белками они образуют альбуминаты (противовоспалительное средство).

6. Масла жирные - это жирных кислот или спирта трехатомного. Некоторые жирные кислоты участвуют в выведение из организма холестерина.

7. Кумарины - это биологически активные вещества, в основе которых лежит изокумарин или кумарин. В эту же группу относят пиранокумарины и фурокумарины. Некоторые кумарины обладают спазмолитическим действием, другие проявляют капилляроукрепляющую активность. Также существуют кумарины противоглистного, мочегонного, курареподобного, противомикробного, обезболивающего и иного действия.

8. Микроэлементы, как и витамины, тоже добавляются в биологически активные пищевые добавки. Они входят в состав витаминов, гормонов, пигментов, ферментов, образуют химические соединения с белками, накапливаются в тканях и органах, в железах эндокринных. Для человека важны следующие микроэлементы: бор, никель, цинк, кобальт, молибден, свинец, фтор, селен, медь, марганец.

Существуют и другие биологически активные вещества: (бывают летучие и нелетучие), пектиновые вещества, пигменты (другое название - красящие вещества), стероиды, каротиноиды, флавоноиды, фитонциды, экдизоны, эфирные масла.

Главная > Лекция

ОСНОВНЫЕ ГРУППЫ БАВ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ. Первичные метаболиты Вещества первичного синтеза: Аминокислоты, белки, липиды, углеводы, ферменты, витамины, органические кислоты. Белки, наряду с липидами и углеводами, составляют структуру клеток и тканей растительного организма, участвуют в процессах биосинтеза, являются эффективным энергетическим материалом. Это биополимеры, структурную основу которых составляют длинные полипептидные цепи, построенные из остатков α-аминокислот, соединенных между собой пептидными связями. Белки подразделяются на: - простые (при гидролизе дают только аминокислоты) - сложные - в них белок связан с веществами небелковой природы: Белки и аминокислоты лекарственных растений оказывают неспецифическое благоприятное действие на организм больного - влияют на синтез белков, создают условия для усиленного синтеза иммунных тел, это приводит к повышению защитных сил организма. Улучшенный синтез белков включает также и усиленный синтез ферментов, вследствие чего улучшается обмен веществ. Биогенные амины и аминокислоты играют важную роль в нормализации нервных процессов.

Липиды (от греч. « lipos » - жир) - большая и относительно разнородная группа органических соединений, содержащихся в животных и растительных тканях, не ра-створимых в воде и растворимых в малополярных органических растворителях (эфи-ре, бензоле, и дp.).

Они являются запасными питательными веществами растений и накапливаются в больших количествах в плодах и семенах.

В зависимости от строения липиды подразделяются на простые и сложные.

К простым липидам относятся соеди-нения, молекулы которых состоят только из остатков жирных кислот (или альдегидов) и спиртов.

Из простых липидов в растительных и животных тканях встречаются жиры и жирные масла.

Жиры (нейтральные жиры, глицеролипиды, триацилглицериды) - вещества рас-тительного или животного происхождения, представляющие собой смесь сложных эфиров глицерина и высших, жирных кислот.

Наибольшее значение для медицины имеют такие группы липидов, как жиры и жирные масла.

Жирные масла - группа жиров, которые при комнатной температуре представляют собой густые жидкости и являются смесью глицеридов высших ненасы-щенных жирных кислот.

Жиры растительные (Olea pinguia ) - природные продукты, получаемые из ле-карственного растительного сырья и являющиеся смесью триглицеридов высших, жирных кислот, чаще всего ненасыщенных.

В подавляющем большинстве имеют жид-кую консистенцию, поэтому обычно называются жирными (растительными) масла-ми.

Жидкие растительные масла - оливковое, миндальное, персиковое, абрикосо-вое - используются в медицине для приготовления инъекционных растворов камфа-ры, гормональных препаратов.

Жирное масло клещевины - касторовое масло - применяется как слабительное средство.

Жирные масла служат растворителями ле-карственных веществ при приготовлении препаратов наружного применения: мазей, линиментов.

Твердое масло какао используется как основа для приготовления твер-дых лекарственных форм суппозиториев, шариков.

Витамины (от латинского « vita » - жизнь) - биологически активные органичес-кие соединения разнообразной химической природы, присутствие которых в неболь-ших количествах в пище человека и животных необходимо для их нормальной жизне-деятельности.

Витамины были открыты в 1880 г. Н.И. Луниным, термин предложен в 1912 г. К. Функом.

Они требуются организму в очень малых количествах (от несколь-ких микрограмм до нескольких миллиграмм в сутки).

Синтезируются главным обра-зом растениями, частично микроорганизмами. Большинство витаминов (около 20 соединений) поступает в организм человека с растительной и животной пищей непос-редственно или в виде провитаминов - соединений, из которых в животных тканях в результате химических превращений образуются витамины (например, каротиноиды).

Витамины играют первостепенную роль в обмене веществ, регулируют процесс усвоения и использования питательных основных веществ - белков, жиров, углеводов.

Потребность человека в витаминах зависит от условий его жизни, работы, состо-яния и других факторов.

Растительное сырье содержит сбалансированный комплекс витаминов, который, как правило, исключает передозировку.

Наиболее богаты вита-минами плоды (шиповник, рябина, облепиха, черная смородина), цветки (ноготки), листья (крапива, первоцвет), трава (пастушья сумка).

Лекарственное растительное сырье, заготовленное от лекарственных растений, накапливающих в значительных ко-личествах несколько витаминов, называют поливитаминным.

Так, витамину С (аскор-биновой кислоте) в плодах шиповника, облепихи сопутствуют витамины Р, Е, каротиноиды.

В качестве лекарственных средств назначают сиропы, настои, отвары, масля-ные экстракты из витаминного лекарственного растительного сырья.

Ферменты. Занимают особое место среди белков. Роль : являются катализаторами большинства химических реакций. 2 класса: Однокомпонентные: состоят только из белка Двухкомпонентные: из белка (апофермента) и небелковой части (кофермента). Коферментами могут быть витамины. Органические кислоты наряду с углеводами и белками, являются самыми распространенными веществами в растениях. Принимают участие в дыхании растений, биосинтезе белков, жиров и других веществ. относятся к веществам как первичного синтеза (яблочная, уксусная, щавелевая, аскорбиновая), так и вторичного синтеза (урсоловая, олеаноловая).

Являются фармакологически активными веществами и участвуют в суммарном эффекте препаратов и лекарственных форм растений.

Углеводы обширный класс органических веществ, к которому относятся полиоксикарбонильные соединения и их производные. В зависимости от числа мономеров в молекуле, это: Моносахариды, Олигосахариды, Полисахариды.

Полисахариды - природные полимерные высокомолекулярные соединения, со-стоящие из моносахаров или продуктов их окисления (уроновых кислот), соединен-ных О-гликозидными связями, имеющих линейную или разветвленную структуру.

Наибольшее значение для медицины имеют такие высокомолекулярные полисаха-риды, как крахмал, инулин, камеди, слизи, пектиновые вещества.

Слизи (Mucilagines ) - гидрофильные гетерополисахариды, образующиеся в расте-ниях в процессе естественного обмена веществ как результат «слизистого» перерожде-ния клеток эпидермиса или паренхимы, либо клеточных стенок и межклеточного веще-ства. В состав слизей входят пентозы (85- 90% от общего числа моносахаров) и гексозы.

Полисахариды являются основными запасными питательными веществами кле-ток и в больших количествах откладываются в подземных органах и плодах. Различные виды крахмала - пшеничный, картофельный, кукурузный - широко применяются в присыпках, в составе мазей, в производстве таблеток; как обволакивающие средства употребляются внутрь в виде отвара. Слизи накапливаются в корнях (алтей), семенах (лен, подорожник блошный, пажитник), листья» (подорожник большой) и извлекают-ся из сырья водой. Они играют роль запасных питательных веществ, а также предохра-няют семена растений от пересыхания и способствует прорастанию.

В медицинских целях водные слизистые извлечения применяются при заболеваниях верхних дыха-тельных путей и желудочно-кишечного тракта.

Вещества вторичного метаболизма.

Образуются в растениях в результате диссимиляции. Диссимиляция – процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся выделением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вторичного синтеза. К веществам вторичного синтеза относятся: терпены, гликозиды, фенольные соединения, алкалоиды. Вещества вторичного синтеза применяются в медицинской практике значительно чаще и шире, чем вещества первичного синтеза.

Сапонины (от латинского « sapo » - мыло) - природные биологически активные вещества гликозидного характера, обладающие гемолитической и поверхностной ак-тивностью, а также токсичностью для холоднокровных животных. Водные растворы сапонинов образуют при встряхивании обильную, очень стойкую пену, подобно мыльной, за что они и получили свое название.

Сапонины широко распространены в природе и встречаются в растениях различ-ных климатических зон, наиболее типичны для районов сухого и жаркого климата. В значительных количествах они накапливаются в подземных органах (синюха, солодка, аралия, женьшень).

Для сырья, содержащего сапонины, характерно отхаркиваю-щее действие, способность усиливать секрецию бронхиальных желез, снижать содер-жание холестерина в крови, а также тонизирующее действие на организм, что особен-но характерно для лекарственных препаратов женьшеня, аралии, заманихи. Очень цен-ное свойство сапонинов - их способность регулировать водно-солевой обмен, а так-же оказывать противовоспалительное действие.

Ряд стероидных сапонинов служит источником (исходным сырьем) для синтеза гормональных препаратов, широко при-меняются при нарушении холестеринового обмена.

Алкалоиды (от араб. « alkali » - щелочь и греч. « eidos » - вид, подобный) - группа природных азотсодержащих органических соединений основного характера, обладающих сильным специфическим фармакологическим действием.

Их использу-ют как спазмолитические, болеутоляющие, успокаивающие, желчегонные средства, они входят в состав препаратов отхаркивающего и гипотензивного действия.

Алкало-иды стимулируют центральную нервную систему, а также служат источниками для синтеза ценных гормональных стероидных препаратов. Химическая их структура весь-ма разнообразна и сложна.

Алкалоиды встречаются в растворенном состоянии в кле-точном соке в виде солей с органическими кислотами - щавелевой, яблочной, ли-монной. Они накапливаются во всех частях растений, но чаще преобладают только в одном органе, например в листьях чая, в траве чистотела, плодах дурмана индейского, в корневище скополии, коре хинного дерева. Большинство растений содержит в своем составе несколько алкалоидов.

Алкалоидное сырье используется для приготовления настоек, экстрактов, но наиболее типичный путь использования - это выделение индивидуальных алкалоидов или суммы алкалоидов в виде солей.

Алкалоиды имеют очень широкий спектр фармакологического действия, что связано с их сложным и разнообразном химическим составом.

Они характеризуются значительным терапев-тическим эффектом, поэтому их относят к группе сильнодействующих, и прием алка-лоидных препаратов допускается только при назначении и под контролем врача.

Антраценпроизводные - группа природных биологически активных соединений фенольного характера.

Они встречаются у представителей незначительного чис-ла семейств (крушиновые, бобовые, мареновые).

Накапливаются в коре крушины ломкой, корнях конского щавеля, ревеня, корневищах и корнях морены красильной, придавая им характерную оранжевую или красную окраску.

В зеленых частях расте-ний, например в листьях сенны, окраска маскируется хлорофиллом.

Антраценпроизводные очень чувствительны к кислороду воздуха, поэтому сырье в процессе хране-ния может изменять окраску (темнеть).

В качестве классических слабительных средств сырье, содержащее антраценпроизводные, отпускается населению в измельченном виде, в составе слабительных, желудочных сборов для приготовления отваров.

Для марены красильной характерен нефролитический эффект, который проявляется в спо-собности выводить камни из почек и мочевого пузыря.

Сердечные гликозиды - природные биологически активные вещества гликозидного характера, агликоном которых являются производные циклопентанпергидрофенантрена, у которых в 17 положении находится ненасыщенное лактонное кольцо. Об-ладают специфическим действием на сердечную мышцу.

По своему действию сердечные гликозиды не имеют аналогичных заменителей, и растения служат единственным источником для их получения. Удельный вес препара-тов растительного происхождения, используемых при лечении сердечно-сосудистых заболеваний, составляет около 80% от числа всех применяемых лекарственных средств.

Сердечные гликозиды довольно распространены в растительном мире, но особен-но богаты ими виды, произрастающие в тропической и субтропической зонах. В рас-тениях накапливаются обычно 20-30 сердечных гликозидов близкого химического стро-ения. Они встречаются в различных органах растений: в семенах строфанта, в цветках ландыша, в листьях наперстянки, в траве желтушника, в корнях кендыря и др.

Все лекарственные препараты сердеч-ных гликозидов обладают выраженным действием на сердце, в связи с чем применя-ются при сердечной недостаточности.

Сердечные гликозиды способны накапливаться в организме человека, что может привести к отравлению. Препараты сердечных гли-козидов относятся к группе сильнодействующих и применяются только по назначе-нию и под контролем врача.

Фенологликозиды - природные биологически активные соединения гликозидного характера, агликон которых представлен простыми фенолами или фенолоспиртами.

В растениях встречаются не часто.

Наиболее распространен гликозид арбутин, которые встречаются в представителях следующих семейств: верес-ковые, брусничные, розоцветные, камнеломковые, астровые.

В качестве лекарствен-ного растительного сырья используются листья (толокнянка, брусника), применяе-мые в форме отвара как мочегонное и противовоспалительное средство.

Для фенологликозидов, агликон которых представлен фенолоспиртами (корневища с корнями родиолы розовой), характерно тонизирующее действие.

Флавоноиды (от латинского « flavus » - желтый) - природные биологически ак-тивные соединения фенольного характера.

Это очень распространенная группа природных соединений, чаще всего гликозидного характера, которые наряду с растительными пигментами обусловливают жел-тую, красную, оранжевую окраску плодов, цветков и корней.

Накапливаются флаво-ноиды в различных органах растений.

Чаще всего они присутствуют в травах (пустыр-ник, горцы перечный, птичий, почечуйный, зверобой и др.), цветках (бессмертник, пижма, василек и др.), плодах (боярышник, арония черноплодная и др.), корнях (солод-ка, стальника, шлемник и др.).

Флавоноиды имеют широкий спектр фармакологичес-кого действия.

Для них установлено желчегонное, бактерицидное, спазмолитическое, кровоостанавливающее, седативное, мочегонное, кардиотоническое действие. Чрез-вычайно важная особенность некоторых флавоноидов - способность уменьшать проницаемость и ломкость капилляров, особенно в сочетании с аскорбиновой кисло-той (Р-витаминная активность).

Эфирные масла (Olea aetherea ) - многокомпонентная смесь летучих душистых веществ, образующихся в растениях и относящихся к различным классам органичес-ких соединений, преимущественно терпеноидам, реже к ароматическим и алифати-ческим соединениям.

Эфирные масла широко распространены в растительном мире, всего в приро-де известно до 3000 эфирномасличных растений.

Многие растения, например ва-лериана лекарственная, полынь горькая, чабрец, сосна и др., издавна используют-ся в качестве лекарственных.

Эфирные масла накапливаются во всех органах рас-тений в специальных образованиях : эфирно-масличных железках, вместилищах, канальцах.

Эфирными маслами богаты цветки (роза, ромашка и др.), листья (мята, эвкалипт и др.), трава (душица, полынь и др.). плоды (фенхель, анис и др.), подзем-ные органы (аир, валериана и др.).

Эфирномасличное сырье входит в состав лекарственных сборов, используется для приготовления настоев, отваров, настоек и экстрактов.

Полученные из сырья эфир-ные масла вводятся в состав комплексных препаратов.

Являясь смесями различных химических соединений эфирные масла имеют очень широкий спектр фармакологического действия, поэтому применяются как противо-воспалительные, антимикробные, противовирусные и противоглистные средства.

Они обладают отхаркивающим, успокаивающим действием, возбуждают дыхание и улуч-шают функцию желудочно-кишечного тракта, стимулируют аппетит.

Кроме того, не-которые эфирные масла оказывают выраженное влияние на деятельность сердечно-сосудистой системы, расширяют кровеносные сосуды. Издавна они известны как сред-ства, улучшающие и изменяющие вкус и запах лекарств, широко применяются в пи-щевой и парфюмерной промышленности.

ЗАГОТОВКА ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ

Заготовка дикорастущего лекарственного сырья - это система организационных, технологических и экономических мероприятий, обеспечивающих получение высо-кокачественного сырья, отвечающего требованиям нормативных документов. Она включает ряд последовательных этапов: сбор сырья, первичную обработку, сушку, приведение сырья в стандартное состояние, ею упаковку и хранение. Все этапы заго-товительного процесса направлены на сохранение в сырье комплекса биологически активных веществ и получение сырья, отвечающего требованиям нормативной до-кументации (НД).

Качество лекарственного растительного сырья в первую очередь определяется со-держанием в нем биологически активных веществ (БАВ). Накопление этих веществ в растении имеет определенную динамику, поэтому собирать сырье следует в ту фазу развития растения, когда оно наиболее богато ими.

Например, большинство листьев и трав заготавливают во время цветения, подземные органы - осенью, в конце вегетации.

При сборе сырья кроме динамики накопления веществ по фазам вегетации растения учитывают также суточную динамику.

Обычно для большинства растений лучшее вре-мя сбора приходится на 11-13 часов. В это время отмечается максимальное содержаниеБАВ и растения уже высохли от росы. Этот факт особенно важно иметь в виду при заготовке сырья, содержащего гликозиды.

Кроме динамики накопления БАВ учитывается урожайность, т.е. выход сырья с единицы площади. Иногда отдают предпочтение не содержанию действующих веществ, а урожайности сырья.

Так, в листьях красавки максимальное содержание алкалоидов установлено в фазу бутонизации, а заготовку сырья ведут в фазу цветения, так как к этому времени у красавки отрастает большое количестве листьев и растение дает значительно больше сырьевой массы.

В некоторых случаях (при заготовке дикорастущих растений) учитывают легкость распознавания растений в травостое.

Например, корневища лапчатки особенно бога-ты дубильными веществами осенью, когда заканчивается период вегетации, но в это время надземная часть увядает и растение трудно распознать, поэтому заготавливают корневища лапчатки летом, во время цветения.

Общие правила сбора лекарственного растительного сырья

Почки собирают зимой или ранней весной. Заготовку почек березы ведут в местах лесоразработок или санитарных рубок.

Для сбора почек используют веткорезы. Пос-ле сушки почки обмолачивают, очищают, сортируют.

Сосновые почки срезают с вер-хушек веток целыми «коронками», по несколько штук. Сушат почки, раскладывая гонким слоем. Искусственная сушка для почек недопустима.

Если почки сразу высу-шить не удалось, их оставляют в неотапливаемом помещении, чтобы они не трону-лись в рост.

При заготовке почек в сырье могут попасть мелкие веточки, цветочные сережки, почерневшие почки, пораженные плесенью, проросшие - их следует уда-лить.

Коры собирают весной (апрель-май ) во время сокодвижения. В это время кору легко отделить от древесины.

Заготавливают коры на лесных рубках. С растущих расте-ний сбор этого сырья запрещен, так как это ведет к образованию сухостоя, а порой и к гибели растения.

Для снятия коры на отрубленных ветках острым ножом делают кольцевые надрезы на расстоянии 25-30 см один от другого, соединяют одним или двумя продольными разрезами и снимают в виде желобков или трубочек.

При сборе нужно отделить куски коры, пораженные лишайниками, с остатками древесины, по-темневшие с внутренней стороны.

Листья, как правило, собирают в фазе цветения.

Их обрывают вручную, срезают ножами или ножницами.

Сочные листья (мать-и-мачеха, наперстянка пурпуровая и др.) складывают в тару рыхло, быстро доставляют к месту сушки, раскладывают тон-ким слоем и сушат.

В сырье, помимо органической примеси (листья других неядови-тых растений), могут быть также листья, утратившие естественную окраску, измель-ченные стебли, цветки, которые следует удалить.

Цветки собирают обычно в фазе начала цветения, срывая их руками, срезая нож-ницами или счесывая специальными совками.

На каждом растении часть цветков оставляют для осеменения.

Особенно внимательно следует относиться к сбору цвет-ков с однолетних и двулетних растений.

Наиболее частые причины недоброкачествен-ности этого вида сырья - преждевременный сбор бутонов или запоздалый сбор в фазе образования семян, примесь цветоножек, стеблей, листьев, измельченность.

Трудность сбора некоторых цветков (боярышник и др.) связана с кратким периодом цветения (3-5 дней). Цветки насыпают в тару рыхло и быстро доставляют к месту сушки. Раскладывают тонким слоем и сушат без доступа прямых солнечных лучей.

Травы собирают в период цветения, срезая ножницами, ножами, секторами, косят косами, сенокосилками, предварительно удалив из зарослей нелекарственные расте-ния. Срезают цветущие верхушки лекарственных растений длиной 15-40 см. Некото-рые травы (чабреца, тимьяна обыкновенного) после сушки обмолачивают.

При сборе травы сушеницы топяной растение выдергивают с корнем и сушат целиком без отде-ления корней.

Траву собирают в мешки или доставляют к месту сушки насыпью.

Сушат обязательно в день заготовки, раскладывая тонким слоем и периодически пе-ремешивая. При заготовке трав возможны примеси одревесневших стеблей, осыпь листьев и цветков, которые следует удалить.

Плоды собирают в фазе созревания.

Сбору подлежат вполне развитые плоды без примесей плодоножек и других частей.

Плоды фенхеля, аниса, тмина, кориандра и дру-гих растений семейства сельдерейных (зонтичных) созревают не одновременно, поэто-му плодоносящие верхушки растения срезают когда в зонтике созрело около 60% пло-дов, и складывают в копны для полного дозревания, затем обмолачивают.

Сочные и мягкие плоды (шиповник, черемуха, черника, черная смородина, малина) снимают с веток руками.

Чернику в урожайные годы осторожно счесывают специальными совка-ми. Боярышник и рябину собирают целыми щитками, на месте сушки плоды освобож-дают от плодоножек.

При сборе сочных плодов в ведра по мере их наполнения массу плодов разделяют травяными или листовыми прокладками.

Сушат сочные плоды без промедления, раскладывая тонким слоем. Примесями в сырье могут быть недозрелые плоды и семена, плодоножки, плоды, поврежденные вредителями, подгоревшие плоды, плоды, слипшиеся в комки, плоды других растений (органическая примесь).

Подземные органы (корни, корневища, клубни, луковицы) лекарственных расте-ний чаще всего заготавливают в период осеннего увядания или ранней весной до начала вегетации.

Выкапывают подземные органы лопатами, копалками.

Ползучие корневища иногда вырывают из почвы руками или крючковидными захватами.

После сбора подземных органов тщательно восстанавливают нарушенную почву и в рых-лую землю по возможности подсеивают семена или подсаживают кусочки корневищ для восстановления заросли.

После сбора сырья отделяют остатки стеблей, прикорневых листьев, мелкие корни, частицы почвы.

Подземные органы моют, погружая их в проточную воду, сложив рыхло в корзину.

Сырье, содержащее слизь (корни алтея, лопуха) и сапонины (корни солодки, корневища с корнями синюхи), моют быстро, чтобы сохранить биологичес-ки активные вещества, которые очень хорошо растворяются в воде.

После промыва-ния крупные подземные органы режут на куски, удаляя загнившие части.

Некоторые корни и корневища (алтей, солодка) очищают от пробки.

Перед сушкой многие под-земные органы предварительно подвяливают.

Особые меры предосторожности следует соблюдать при сборе ядовитых расте-ний .

К сбору сырья красавки, белены, дурмана, чемерицы можно привлекать только совершеннолетних сборщиков после тщательной инструкции.

Не допускаются к такой работе беременные и кормящие женщины.

Во время работы запрещается прикасать-ся руками к слизистым оболочкам глаз, носа, принимать пищу, курить. После работы следует тщательно вымыть с мылом руки и лицо, очистить и выстирать одежду. При переработке ядовитого сырья надевают защитные респираторы или увлажненные многослойные марлевые повязки. Одновременно с ядовитым сырьем нельзя заготав-ливать другие виды лекарственного растительного сырья.

Сушка лекарственного растительного сырья

Сушка лекарственного растительного сырья - сложный биохимический процесс, который должен обеспечить сохранность внешних признаков сырья и содержание в нем биологически активных веществ (БАВ). Сушку можно рассматривать как наибо-лее простой, экономически целесообразный метод консервирования лекарственного сырья.

В свежесобранном растительном материале содержание влаги составляет 60-80%.

Удаление влаги до 20% снижает ферментативную активность, а при снижении ее до 10-14% деятельность ферментов прекращается, т.е. инактивируются биохимические процессы, приводящие к разрушению в сырье БАВ.

Сушка лекарственного растительного сырья бывает естественной и искусствен-ной.

Сушка естественным теплом пригодна для большинства видов сырья. Практику-ется солнечная и воздушно-теневая сушка.

Применение солнечной сушки возможно только в тех случаях, когда под действием УФ света не происходит изменения в струк-туре БАВ.

Она проводится в сухую жаркую погоду под открытым небом.

На ночь или в сырую погоду сырье покрывают полиэтиленовой пленкой, брезентом и открывают после спада росы.

Воздушно-теневая сушка проводится в помещениях или на воздухе. Используются сараи, типовые сборно-разборные сушилки с вентиляцией, чистые чердачные помещения под железной или шиферной крышей, где в жаркие дни темпе-ратура достигает 40-50 °С.

Воздушно-теневую сушку можно осуществлять под тенью деревьев, под навесами, на токах.

Сушка с искусственным обогревом проводится в сушилках различной конструк-ции.

Температурный режим сушки сырья определяется его химическим составом и морфологической принадлежностью.

Температура сушки сырья, содержащего эфир-ное масло, 30-40 °С.

Для определения конца сушки сырья используют простые приемы: стебли трав, крупные черешки листьев, корни легко ломаются с характерным треском; недосушенное сы-рье не ломается, а сгибается.

Выход воздушно-сухого сырья характерен для каждого вида сырья и зависит от содержания внутриклеточной и поверхностной влаги.

Хранение лекарственного растительного сырья

Хранение лекарственного растительного сырья - процесс, обеспечивающий доб-рокачественность сырья в течение установленного срока годности.

Сырье хранится на складах в соответствии с требованиями Государственной фарма-копеи.

Помещения должны быть сухие, чистые, хорошо вентилируемые, не заражен-ные амбарными вредителями, защищенные от воздействия прямого солнечного света. Необходимо строгое соблюдение правил противопожарной безопасности.

В складских помещениях сырье хранят на стеллажах, установленных на расстоянии не менее 15 см от пола, с укладкой в штабель высотой не более 2,5 м для плодов, семян, почек и 4 м для других видов сырья.

Штабель должен отстоять от стен склада на расстоянии не менее 25 см, промежутки между штабелями должны быть не менее 50 см.

На каждом штабеле помещают этикетку размером 20x10 см с указанием наименования сырья, предприя-тия-отправителя, года и месяца заготовки, номера поступления, даты поступления.

Тем-пературный режим в складских помещениях 10-12 °С и влажность около 20-30%.

Сырье хранят раздельно по следующим группам

ядовитое и сильнодействующее («список Б»); эфирно-масличное сырье; плоды и семена; общая группа хранения.

Сырье, хранящееся на складе, ежегодно перекладывают.

Помещение склада и стел-лажи во время перекладки должны подвергаться дезинфекции.

На складе должно быть приемное отделение, изолятор для сырья,

пораженного амбарными вредителями, ком-ната для размещения бракованной продукции.

В аптеках сырье хранится в шкафах с соблюдением деления по группам хранения и условий хранения, как и на складах.

Против вредителей в местах хранения сырья поме-щают склянки с ватой, пропитанной хлороформом, для отпугивания вредителей.

Вновь поступившее сырье хранят в материальной комнате, в сухих подвалах на стеллажах.

ПУТИ ИСПОЛЬЗОВАНИЯ И СПОСОБЫ ПРИМЕНЕНИЯ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ

Лекарственные растения используют в медицинской практике в свежем или высу-шенном виде.

Из свежих растений готовят соки, настои и отвары, иногда отдельные части растений прикладывают на пораженный участок тела.

Свежие растения облада-ют более сильным лечебным действием, так как в процессе сушки сырья часть биоло-гически активных веществ разрушается.

К препаратам на основе растительного сырья (plant preparation ) относят измель-ченное или порошкованное растительное сырье, полученные из растительного сырья настойки, экстракты, жирные и эфирные масла, смолы, камеди, бальзамы, соки и т.д., и препараты, чье производство включало процессы фракционирования, очистки или концентрирования, за исключением выделения индивидуальных компонентов с изве-стным химическим строением. Препарат на основе растительного сырья можно рас-сматривать как активный ингредиент, независимо оттого, известны ли компоненты, обладающие терапевтической активностью, или нет.

В медицинской практике чаще всего используют высушенное и измельченное ле-карственное растительное сырье.

Самой простой лекарственной формой являются порошки.

Наиболее часто изготавливают настои и отвары, которые представляют водные из-влечения из лекарственного растительного сырья.

Настои и отвары можно готовить в домашних условиях, для чего измельченное лекарственное растительное сырье залива-ют водой комнатной температуры и нагревают на кипящей водяной бане.

Однако эта лекарственная форма является нестойкой и может храниться в прохладных условиях не более 2 суток.

Фильтр-пакет - дозированная форма выпуска лекарственного растительного сы-рья, представляющая собой пакет, изготовленный из пористого материала, в который помещена разовая доза сырья для приготовления настоя. При погружении в горячую воду обеспечивается проникновение ее внутрь пакета и извлечение действующих ве-ществ из лекарственного растительного сырья.

Настойки - спиртовые или водно-спиртовые извлечения из лекарственного рас-тительного сырья, получаемые без нагревания и удаления экстрагента.

В медицинской практике настойки применяют как самостоятельные препараты для внутреннего и наружного применения; кроме того, они входят в состав микстур, капель, мазей и пластырей.

Экстракты представляют собой концентрированные извлечения из раститель-ного сырья.

Сиропы - жидкая лекарственная форма для внутреннего применения, представ-ляющая собой концентрированный, густой, водный раствор различных Сахаров с ле-карственными веществами, экстрактами, настойками, плодово-ягодными соками или без них.

Лекарственные средства, представляющие собой различные водно-спиртовые из-влечения из лекарственного растительного сырья для применения внутрь или (и) на-ружно раньше называли галеновыми препаратами (по имени римского врача Клав-дия Галена, предложившего их получение).

Максимально очищенные от балластных веществ извлечения из растительного сырья, содержащие в своем составе весь комп-лекс биологически активных веществ растений, получили название новогаленовых препаратов. В настоящее время эти препараты чаще называют суммарными очищен-ными лекарственными средствами.

Лекарственное растительное сырье поступает на фармацевтические предприятия, где из него с использованием различных методов экстракции и очистки выделяют индивиду-альные соединения . Например, алкалоиды - анабазин, платифиллин, эфедрин, берберин, глауцин; сердечные гликозиды-дигоксин, строфантин; флавоноиды-рутин и др.

Лекарственный растительный сбор - лекарственная форма, представляющая собой смесь нескольких видов высушенных, чаще измельченных лекарственных рас тений или их частей, иногда с добавлением лекарственных средств иного происхожде-ния.

Обычно используется для приготовления настоев и отваров.

Сырье, входящее в сбор, измельчают по отдельности.

Листья, травы и коры режут; кожистые листья пре-вращают в грубый порошок; корни и корневища режут или дробят, плоды и семена пропускают через вальцы или мельницы; некоторые плоды и цветки оставляют цель-ными. Измельченное сырье отсеивают от пыли и тщательно смешивают для получе-ния однородной смеси.

Биологически активные органические соединения

К биологически активным веществам относятся: ферменты, витамины, гормоны и лекарства. Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Без ферментов нет жизни. В основе многих заболеваний человека лежат нарушения ферментативных процессов. Витамины могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т. д. Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме, вызывая определенный биологический эффект. Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция. Термином» гормоны» следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях – железах внутренней секреции.

Витамины

Общая характеристика

Витамины (от лат. YITA – жизнь) – группа органических соединений разнообразной химической природы, необходимых для питания человека и животных и имеющих огромное значение для нормального обмена веществ и жизнедеятельности организма Витамины выполняют в организме те или иные каталитические функции и требуются в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и минеральными солями.)

История открытия витаминов

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Однако практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.

Настоящим бичом для мореплавателей долгое время была цинга.Практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище. Основоположником учения о витаминах, является русский учёный Николай Иванович Лунин, который ещё в 1880 году провёл весьма показательные опыты, изучая пищевые потребности животного организма.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа. В 1911 году он выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов).По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу.Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita – жизнь). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы.

Классификация витаминов

Витамины делят на две большие группы: витамины растворимые в жирах, и витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами «латинского алфавита».

  1. ВИТАМИНЫ, РАСВОРИМЫЕ В ЖИРАХ.
  • Витамин A (антиксерофталический).
  • Витамин D (антирахитический).
  • Витамин E (витамин размножения).
  • Витамин K (антигеморрагический)
  1. ВИТАМИНЫ,РАСВОРИМЫЕ В ВОДЕ.
  • Витамин В1 (антиневритный).
  • Витамин В2 (рибофлавин).
  • Витамин PP (антипеллагрический).
  • Витамин В6 (антидермитный).
  • Пантотен (антидерматитный фактор).
  • Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).
  • Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).
  • Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).
  • Витамин В12 (антианемический витамин).
  • Витамин В15 (пангамовая кислота).
  • Витамин С (антискорбутный).
  • Витамин Р (витамин проницаемости).

Ферменты

Общая характеристика

Ферме́нты или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον - закваска) - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу). Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают). Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

История открытия

Термин «фермент» (fermentum по-латыни означает «бродило», «закваска») был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения. Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц.
Значительно позже (1836 г.) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto – «варю») под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов. Важным событием в развитии науки о ферментах явились работы К.С. Кирхгоффа. В 1814 г. действительный член Петербургской Академии наук К.С. Кирхгофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды – глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.) В разных изданиях применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и тоже – биологические катализаторы.
Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки. В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода.
Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

  • Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом. Температурный оптимум для различных ферментов неодинаков. В общем, для ферментов животного происхождения он лежит между 40 и 50 °С, а растительного – между 50 и 60 °С.
  • Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента. Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Гипотеза Кошланда об индуцированном соответствии

  • Специфичность – одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества – пространственные изомеры расщепляются по эфирной связи двумя совершенно разными ферментами. Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения.По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Классификация ферментов

По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции не гидролитического распада.

Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы.

  1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В) С+D.
  2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В) С.
  3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А) В.

По типу биохимических процессов все ферменты делят на 6 классов.

  1. Оксидоредуктазы – ускоряют реакции окисления – восстановления.
  2. Трансферазы – ускоряют реакции переноса функциональных групп и молекулярных остатков.
  3. Гидролазы – ускоряют реакции гидролитического распада.
  4. Лиазы – ускоряют не гидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).
  5. Изомеразы – ускоряют пространственные или структурные перестройки в пределах одной молекулы.
  6. Лигазы – ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Эти классы и положены в основу новой научной классификации ферментов.

Группа Ферменты

Гормоны

Серотонин

Общая характеристика

Гормоны- специфические вещества, которые вырабатываются в организме и регулируют его развитие и функцианирование. В переводе с греческого – гормоны- означают двигаю, возбуждаю. Гормоны образуются специальными органами – железами внутренней секреции (или эндокринными железами). Гормоны, в широком смысле слова, являются биологически активными веществами и носителями специфической информации, с помощью которой осуществляется связь между различными клетками и тканями, что необходимо для регуляции многочисленных функций организма. Информация, содержащаяся в гормонах, достигает своего адресата благодаря наличию рецепторов, которые переводят ее в пострецепторное действие (влияние), сопровождающееся определенным биологическим эффектом.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Cвойства гормонов

Особый интерес представляет способность организма сохранять гормоны в инактивированном (недеятельном) состоянии.

Гормоны, являясь специфическими продуктами желез внутренней секреции, не остаются стабильными, а изменяются структурно и функционально в процессе обмена веществ. Продукты превращения гормонов, могут обладать новыми биокаталитическими свойствами и играть определенную роль в процессе жизнидеятельности.

Работа гормонов осуществляется под контролем и в теснейшей зависимости с нервной системой.

Специфичность физиологического действия гормонов является относительной и зависит от состояния организма как целого. Большое значение имеет изменение состава среды, в которой действует гормон, в частности, увеличение или уменьшение концентрации водородных ионов, сульфгидрильных групп, солей калия и кальция, содержание аминокислот и прочих продуктов обмена веществ, влияющих на реактивность нервных окончаний и взаимоотношения гормонов с ферментными системами.

Доказано, что гормоны находятся в тесной зависимости от условий внешней среды, влияние которой опосредуется рецепторами нервной системы. Раздражение болевых, температурных, зрительных и др. рецепторов оказывает влияние на выделение гормона гипофиза, щитовидной железы, надпочечника и др. желез.

Некоторые химические вещества, вводимые в организм, могут специфически нарушать гормонообразование.

Классификация гормонов

По химической природе гормоны делятся на белковые, стероидные (или липидные) и производные аминокислот.

Белковые гормоны подразделяют на пептидные: АКТГ, соматотропный (СТГ), меланоцитостимулирующий (МСГ), пролактин, паратгормон, кальцитонин, инсулин, глюкагон, и протеидные – глюкопротеиды: тиротропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), тироглобулин. Гипофизотропные гормоны и гормоны желудочно-кишечного тракта принадлежат к олигопептидам, или малым пептидам.

К стероидным (липидным) гормонам относятся кортикостерон, кортизол, альдостерон, прогестерон, эстрадиол, эстриол, тестостерон, которые секретируются корой надпочечника и половыми железами. К этой группе можно отнести и стеролы витамина D – кальцитриол. Производные арахидоновой кислоты являются, как уже указывалось, простагландинами и относятся к группе эйкозаноидов.

Адреналин и норадреналин, синтезируемые в мозговом слое надпочечника и других хромаффинных клетках, а также тироидные гормоны являются производными аминокислоты тирозина.

Белковые гормоны гидрофильны и могут переноситься кровью как в свободном, так и в частично связанном с белками крови состоянии. Стероидные и тироидные гормоны липофильны (гидрофобны), отличаются небольшой растворимостью, основное их количество циркулирует в крови в связанном с белками состоянии.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными эффектом.

Группа Гормоны

Лекарственные средства

Общая характеристика

Лекарственные средства - фармакологические средства (вещества или смеси веществ), прошедшие клинические испытания и разрешенные к применению для профилактики, диагностики и лечения заболеваний уполномоченным на то органом страны в установленном порядке, полученные из крови, плазмы крови, а также органов, тканей человека или животных, растений, минералов, методом синтеза или с применением биотехнологий.

Таким образом, к лекарственным средствам относятся вещества растительного, животного или синтетического происхождения, обладающие фармакологической активностью и предназначенные для производства и изготовления лекарственных форм.

История открытия

Лекарства как химические вещества, способные купировать всевозможные патологические состояния организма, приобретают все большее значение в жизни общества. Сейчас известно уже более 12 тысяч таких препаратов.

Уже в глубокой древности люди пытались спасти свою жизнь, используя различные природные лекарственные вещества. Чаще всего это были растительные экстракты, но применялись и препараты, которые получали из сырого мяса, дрожжей и отходов животных. Первые ученые инстинктивно чувствовали, что во многих живых организмах находятся вещества, которые могут помочь в борьбе с болезнями, но лишь по мере развития химии люди убедились, что лечебный эффект таких веществ заключается в избирательном воздействии на организм определенных химических соединений. Прошло еще какое-то время, и такие соединения стали получать в лабораториях путем синтеза.