Газообмен происходит путем. Газообмен в тканях и легких. Строение дыхательной системы. Для чего мы дышим

Реферат по предмету «Английский язык», 6 класс

The importance of plants for life on the Earth

It is impossible to imagine our world without plants, which are our true and silent green friends.
Green plants create conditions for life on the Earth. They secrete oxygen, which is necessary for breath, and they are the food for animals. Plants prevent accumulation of carbon dioxide redundancy in atmosphere. Because of that the greenhouse effect decreases.
Plants protect and keep the Earth since they cover it with a green carpet. Plants form milder and wetter climate, because the leaves of plants resists to drying effect of sun rays. Roots of plants fasten and keep ground. At woodlands the Earth surface isn’t disfigured by ravines. Plants take active part in forming of soils, minerals. Plants assist in snow retention and air clearance from the dust and gases.
Even the most bloodthirsty predator depends on plants, which one is eaten by its victims.
Plants are important for everyone. Our food, medicines and clothes are made from plants. They give a material for building of houses and production the paper, furniture and musical instruments. Besides, plants help us to feel the pleasure of communication with the nature, its charm and beauty. We becomes kinder looking after fine plants.

Перевод

Невозможно представить себе окружающий мир без растений — наших верных и молчаливых зеленых друзей.
Зеленые растения создают на Земле условия для жизни на Земле. Они выделяют кислород, который необходим для дыхания, и служат пищей для животных. Растения предотвращают накопление в атмосфере избытка углекислого газа, за счет чего уменьшается парниковый эффект.
Покрывая Землю зеленым ковром, растения защищают и сохраняют ее. Растения формируют более мягкий и более влажный климат, поскольку листва противодействует иссушающему действию солнечных лучей. Корни растений скрепляют и удерживают почву. Там, где сохранился лес, поверхность Земли не обезображена оврагами. Растения принимают активное участие в формировании почв, полезных ископаемых. Растения способствуют задержанию снега и очищают воздух от пыли и газов.
Даже самый кровожадный хищник зависит от растений, которыми питаются его жертвы.
Неоценимо значение растений и для каждого из нас. Из растений получают пищу, лекарства и волокно. Они дают материал для строительства домов и производства бумаги, для изготовления мебели и музыкальных инструментов. Кроме того, растения помогают нам почувствовать радость общения с природой, ее очарование и красоту. Ухаживая за безмолвными и прекрасными растениями человек сам становится чище и добрее.

Инструкция

В легочном дыхании принимают участие межреберные мышцы и диафрагма - плоская мышца, находящаяся на границе брюшной и грудной полостей. При сокращении диафрагмы давление в легких понижается давление, и в результате в них устремляется воздух. Выдох делается пассивно: легкие самостоятельно выталкивают воздух наружу. Процесс дыхания контролируется частью головного мозга – продолговатым мозгом. В нем находится центр регуляции дыхания, который реагирует на присутствие в крови углекислого газа. Как только его уровень повышается, центр посылает сигнал диафрагме по нервным путям, она сокращается, и происходит вдох. При повреждениях дыхательного центра применяют искусственную вентиляцию легких.

Процесс газообмена осуществляется в альвеолах легких - микроскопических пузырьках, находящихся на концах бронхиол. Они состоят из сквамозных (дыхательных) альвеоцитов, больших альвеоцитов и хеморецепторов. Основная роль в данном случае принадлежит кровеносной системе. Поступивший в альвеолы легких кислород проникает в стенки капилляров. Подобный процесс происходит вследствие разницы в крови и в воздухе, находящемся в альвеолах. Кровь в венах имеет меньшее давление, поэтому из альвеол кислород устремляется в капилляры. Углекислый газ в альвеолах имеет меньшее давление, поэтому из венозной крови он поступает в просвет альвеол.

В крови находятся эритроциты, содержащие белок гемоглобин. К гемоглобину присоединяются молекулы кислорода. Обогащенная кислородом кровь называется артериальной, она переносится к сердцу. Сердце перегоняет ее к клеткам тканей. В клетках кровь отдает кислород, а взамен забирает углекислый газ, который также переносится с помощью гемоглобина. Затем происходит обратный процесс: кровь поступает из тканевых капилляров в вены, в сердце и в легкие. В легких венозная кровь с углекислым газом поступает в альвеолы, углекислый газ вместе с воздухом выталкивается наружу. Двойной газообмен происходит в альвеолах молниеносно.

Жизненная емкость легких включает в себя дыхательный объем, а также резервные объемы вдоха и выдоха. Дыхательный объем – это количество воздуха, поступающее в легкие при 1-ом вдохе. Если после спокойного вдоха сделать усиленный вдох, в легкие поступит дополнительное количество воздуха, которое называется резервом объема вдоха. После спокойного выдоха можно выдохнуть еще некоторое количество воздуха (резервный объем выдоха). В целом, жизненная емкость легких составляет наибольшее количество воздуха, которое человек способен выдохнуть после глубокого вдоха.

В тканях кровь отдает кислород и поглощает углекислоту. Газообмен в капиллярах тканей большого круга, так же как и в легочных капиллярах, обусловлен диффузией вследствие разности парциальных напряжений газов в крови и в тканях.

Напряжение углекислого газа в клетках может достигать 60 мм, в тканевой жидкости оно весьма изменчиво и в среднем составляет 46 мм, а в притекающей к тканям артериальной крови - 40 мм рт. ст. Диффунтируя по направлению более низкого напряжения, углекислый газ переходит из клеток в тканевую жидкость и далее в кровь, делая ее венозной. Напряжение углекислого газа в крови при прохождении ее по капиллярам становится равным напряжению углекислого газа в тканевой жидкости.

Клетки весьма энергично потребляют кислород, поэтому его парциальное напряжение в протоплазме клеток очень низко, а при усилении их активности может быть равно нулю. В тканевой жидкости напряжение кислорода колеблется между 20 и 40 мм. Вследствие этого кислород непрерывно поступает из артериальной крови, приносимой к капиллярам большого круга кровообращения (здесь напряжение кислорода равно 100 мм рт. ст.), в тканевую жидкость. В результате в оттекающей от тканей венозной крови напряжение кислорода значительно ниже, чем в артериальной, составляя 40 мм.

Кровь, проходя по капиллярам большого круга, отдает не весь свой кислород. Артериальная кровь содержит около 20 об.% кислорода, венозная же кровь - примерно 12 об. % кислорода. Таким образом, из 20 об. % кислорода ткани получают 8 об. %, т. е. 40% всего кислорода, содержащегося в крови.

То количество кислорода в процентах от общего содержания его в артериальной крови, которое получают ткани, носит название коэффициента утилизации кислорода. Его вычисляют путем определения разности содержания кислорода в артериальной и венозной крови. Эту разность делят на содержание кислорода в артериальной крови и умножают на 100.

Коэффициент утилизации кислорода меняется в зависимости от ряда физиологических условий. В покое организма он равен 30-40%. При тяжёлой же мышечной работе содержание кислорода в оттекающей от мышц венозной крови уменьшается до 8-10 об. % и, следовательно, утилизация кислорода повышается до 50-60%.

Более быстрый переход кислорода в ткани обеспечивается раскрытием нефункционировавших капилляров в работающей ткани. Повышению коэффициента утилизации способствует также усиленное образование кислот - молочной и угольной, что понижает сродство гемоглобина к кислороду и обеспечивает более быструю диффузию кислорода из крови. Наконец, увеличению утилизации кислорода содействуют повышение температуры работающих мышц и усиление ферментативных и энергетических процессов, протекающих в клетках. Таким образом, доставка кислорода к тканям регулируется в соответствии с интенсивностью окислительных процессов.

Для обеспечения клеток, тканей и органов кислородом в организме человека существует дыхательная система. Она состоит из следующих органов: носовой полости, носоглотки, гортани, трахеи, бронхов и легких. В этой статье мы изучим их строение. А также рассмотрим газообмен в тканях и легких. Определим особенности внешнего дыхания, происходящего между организмом и атмосферой, и внутреннего, протекающего непосредственно на клеточном уровне.

Для чего мы дышим?

Большинство людей, не задумываясь, ответят: чтобы получить кислород. Но они не знают, зачем он нам нужен. Многие отвечают просто: кислород необходим, чтобы дышать. Получается какой-то замкнутый круг. Разорвать его нам поможет биохимия, изучающая клеточный обмен веществ.

Светлые умы человечества, изучающие эту науку, уже давно пришли к выводу, что кислород, поступающий в ткани и органы, окисляет углеводы, жиры и белки. При этом образуются энергетически бедные соединения: вода, аммиак. Но главным является то, что в результате этих реакций синтезируется АТФ - универсальное энергетическое вещество, используемое клеткой для своей жизнедеятельности. Можно сказать, что газообмен в тканях и легких как раз и будет поставлять организму и его структурам необходимый для окисления кислород.

Механизм газообмена

Он подразумевает наличие хотя бы двух веществ, чья циркуляция в организме обеспечивает метаболические процессы. Кроме вышеназванного кислорода, газообмен в легких, крови и тканях происходит с еще одним соединением - углекислым газом. Он образуется в реакциях диссимиляции. Являясь токсичным веществом обмена, он должен быть выведен из цитоплазмы клеток. Рассмотрим этот процесс подробнее.

Диоксид углерода путем диффузии проникает через клеточную мембрану в межтканевую жидкость. Из неё он поступает в капилляры крови - венулы. Далее эти сосуды сливаются, образуя нижнюю и верхнюю полые вены. Они собирают кровь, насыщенную СО 2. И направляют её в правое предсердие. При сокращении его стенок порция венозной крови поступает в правый желудочек. Отсюда начинается легочный (малый) круг кровообращения. Его задачей является насыщение крови кислородом. Венозная в легких становится артериальной. А СО 2 , в свою очередь, выходит из крови и удаляется наружу через Чтобы понять, как это происходит, нужно прежде всего изучить строение легких. Газообмен в легких и тканях осуществляется в особых структурах - альвеолах и их капиллярах.

Строение легких

Это парные органы, расположенные в грудной полости. Левое легкое состоит из двух долей. Правое больше по размерам. Оно имеет три доли. Через ворота легких в них входят два бронха, которые, разветвляясь, образуют так называемое дерево. По его веткам воздух движется во время вдоха и выдоха. На мелких, респираторных бронхиолах располагаются пузырьки - альвеолы. Они собраны в ацинусы. Те, в свою очередь, формируют легочную паренхиму. Важно то, что каждый дыхательный пузырек густо оплетен капиллярной сетью малого и большого кругов кровообращения. Приносящие ветви легочных артерий, поставляющие венозную кровь из правого желудочка, транспортируют в просвет альвеолы углекислый газ. А выносящие легочные венулы забирают из альвеолярного воздуха кислород.

Поступает по легочным венам в левое предсердие, а из него - в аорту. Её ветвления в виде артерий обеспечивают клетки организма необходимым для внутреннего дыхания кислородом. Именно в альвеолах кровь из венозной становится артериальной. Таким образом, газообмен в тканях и легких непосредственно осуществляется циркуляцией крови по малому и большому кругам кровообращения. Происходит это благодаря непрерывным сокращениям мышечных стенок сердечных камер.

Внешнее дыхание

Оно еще называется вентиляцией легких. Представляет собой обмен воздуха между внешней средой и альвеолами. Физиологически правильный вдох через нос обеспечивает организм порцией воздуха такого состава: около 21% О 2 , 0,03% СО 2 и 79% азота. По он поступает в альвеолы. Они имеют собственную порцию воздуха. Её состав следующий: 14,2% О 2 , 5,2% СО 2 , 80% N 2 . Вдох, как и выдох, регулируется двумя путями: нервным и гуморальным (концентрацией углекислого газа). Благодаря возбуждению дыхательного центра продолговатого мозга, нервные импульсы передаются к дыхательным межреберным мышцам и диафрагме. Объем грудной клетки увеличивается. Легкие, пассивно движущиеся вслед за сокращениями грудной полости, расширяются. Давление воздуха в них становится ниже атмосферного. Поэтому порция воздуха из верхних дыхательных путей поступает в альвеолы.

Выдох осуществляется вслед за вдохом. Он сопровождается расслаблением межреберных мышц и поднятием свода диафрагмы. Это приводит к уменьшению объема легких. Давление воздуха в них становится выше атмосферного. И воздух с избытком углекислого газа поднимается в бронхиолы. Далее, по верхним дыхательным путям, он следует в носовую полость. Состав выдыхаемого воздуха следующий: 16,3% О 2 , 4% СО 2 , 79 N 2 . На этом этапе происходит внешний газообмен. Легочный газообмен, осуществляемый альвеолами, обеспечивает клетки кислородом, необходимым для внутреннего дыхания.

Клеточное дыхание

Входит в систему катаболических реакций обмена веществ и энергии. Эти процессы изучает как биохимия, так и анатомия, и Газообмен в легких и тканях взаимосвязан и друг без друга невозможен. Так, поставляет в межтканевую жидкость кислород и удаляет из нее углекислый газ. А внутреннее, осуществляемое непосредственно в клетке её органеллами - митохондриями, которые обеспечивают окислительное фосфолирование и синтез молекул АТФ, использует кислород для этих процессов.

Цикл Кребса

Цикл трикарбоновых кислот является ведущим в Он объединяет и согласует реакции бескислородного этапа и процессов с участием трансмембранных белков. Он также выполняет роль поставщика строительного клеточного материала (аминокислот, простых сахаров, высших карбоновых кислот), образующегося в его промежуточных реакциях и используемого клеткой для роста и деления. Как видим, в данной статье был изучен газообмен в тканях и легких, а также определена его биологическая роль в жизнедеятельности организма человека.