Законы распространения звуковых волн

.

Звук распространяется в воде в пять раз быстрее, чем в воздухе. Средняя скорость равняется 1400 - 1500 м/сек (скорость распространения звука в воздухе 340 м/сек). Казалось бы, что слышимость в воде также улучшается. На самом деле это далеко не так. Ведь сила звука зависит не от скорости распространения, а от амплитуды звуковых колебаний и воспринимающей способности органов слуха. В улитке внутреннего уха расположен кортиев орган, состоящий из слуховых клеток. Звуковые волны колеблят барабанную перепонку, слуховые косточки и мембрану кортиевого органа. От волосяных клеток последнего, воспринимающих звуковые колебания, нервное возбуждение идет в слуховой центр, расположенный в височной доли головного мозга.

Звуковая волна может попасть во внутреннее ухо человека двумя путями: воздушной проводимостью через наружный слуховой проход, барабанную перепонку и слуховые косточки среднего уха и посредством костной проводимости - вибрации костей черепа. На поверхности преобладает воздушная, а под водой костная проводимость. В этом убеждает простой опыт. Закройте ладонями рук оба уха. На поверхности слышимость резко ухудшится, под водой же этого не отмечается.

Итак, под водой звуки воспринимаются преимущественно путем костной проводимости. Теоретически это объясняется тем, что акустическое сопротивление воды приближается к акустическому сопротивлению тканей человека. Поэтому потери энергии при переходе звуковых волн из воды в кости головы человека меньше, чем в воздухе. Воздушная же проводимость под водой почти исчезает, так как наружный слуховой проход заполнен водой, а небольшая прослойка воздуха возле барабанной перепонки слабо передает звуковые колебания.

Опытами установлено, что костная проводимость на 40% ниже воздушной. Поэтому слышимость под водой в общем ухудшается. Дальность слышимости при костной проводимости звука зависит не столько от силы, сколько от тональности: чем выше тон, тем дальше слышен звук.

Подводный мир для человека - это мир тишины, где отсутствуют посторонние шумы. Поэтому простейшие звуковые сигналы могут восприниматься под водой на значительных расстояниях. Человек слышит удар по металлическому баллончику, погруженному в воду, на расстоянии 150-200 м, звук трещотки-на 100 м, колокольчика - на 60 м.

Звуки, издаваемые под водой, обычно не слышны на поверхности, так же как под водой не слышно звуков извне. Для восприятия подводных звуков необходимо хотя бы частично погрузиться. Если войти в воду по колени, начинаешь воспринимать звук, который до этого не был слышен. По мере погружения громкость увеличивается. Особенно хорошо слышно при погружении головы.

Для подачи звуковых сигналов с поверхности обязательно нужно опустить источник звука в воду хотя бы наполовину, и сила звука изменится. Ориентировка под водой по слуху крайне затруднена. В воздушной среде звук приходит в одно ухо раньше на 0,00003 сек., чем в другое. Это позволяет определить нахождение источника звука с ошибкой всего в 1-3°. Под водой же звук одновременно воспринимается обоими ушами и поэтому четкого, направленного восприятия не происходит. Ошибка в ориентировке бывает 180°.

В специально поставленном опыте только отдельные легкие водолазы после долгих блужданий и. поисков выходили к месту расположения источника звука, находившегося от них в 100-150 м. Отмечено, что систематические тренировки в течение длительного времени позволяют выработать способность довольно точно ориентироваться по звуку под водой. Однако как только тренировка прекращается, ее результаты сводятся на нет.

3281 руб


Однослойные. Дышашие. Удобно сидят по руке. Усиление внутренней части пальцев и ладони прорезиненым материалом.

636 руб


Универсальный костюм, который выделяется своей легкостью и мобильностью. Предназначен как для зимней ловли, так и для межсезонья, особенно поздной осенью, когда в лодке или на берегу замерзаешь даже больше чем на льду. Костюм рассчитан на обеспечение комфорта, свободы движения и теплоты при температуре до -20°С.
Материал: Nortex Breathable:
- Водонепроницаемость, мм: 4 000;
- "Дышащая" способность материала, г. кв. м/24 час: 2 000.
- Утеплитель: Fleece.

10484 руб


305 руб


Белье нательное функциональное прилегающего силуэта, состоит из лонгслива с длинными рукавами и кальсон. Трикотажное полотно, используемое для пошива белья, изготовлено из 100% хлопковых нитей. Переплетение тонких и мягких волокон кулирной гладью делает полотно гладким, приятным на ощупь. Белье рекомендовано использовать в холодное время года для обычных прогулок, ежедневной носки, для охоты, рыбалки, а также для сна. Изготовлено из экологически чистого сырья, имеет высокую воздухопроницаемость, гигроскопично, не требует особого ухода.

Вопросы.

1. С какой частотой колеблется барабанная перепонка уха человека, когда до нее доходит звук?

Барабанная перепонка уха человека колеблется с частотой пришедшего к ней звука.

2. Какую волну - продольную или поперечную - представляет собой звук, распространяющийся в воздухе? в воде?

В воздухе и в воде звук распространяется продольными волнами.

3. Приведите пример, показывающий, что звуковая волна распространяется не мгновенно, а с определенной скоростью.

Самый наглядный пример - вспышка молнии, а затем приходящий вслед за ней гром.

4. Чему равна скорость распространения звука в воздухе при 20 °С?

Скорость распространения звука в воздухе при 20°С равна 343 м/с 2 .

5. Зависит ли скорость звука от того, в какой среде он распространяется?

V =340 м/с. Да, зависит.

Упражнения.

1. Определите скорость звука в воде, если источник, колеблющийся с периодом 0,002 с, возбуждает в воде волны длиной 2,9 м.

2. Определите длину звуковой волны частотой 725 Гц в воздухе, в воде и в стекле.


3. По одному концу длинной металлической трубы один раз ударили молотком. Будет ли звук от удара распространяться ко второму концу трубы по металлу? по воздуху внутри трубы? Сколько ударов услышит человек стоящий у другого конца трубы?

Человек услышит два удара. Один звук придет к нему по металлической трубе, а другой по воздуху.

4. Наблюдатель, стоящий около прямолинейного участка железной дороги, увидел пар над свистком идущего вдали паровоза. Через 2с после появления пара он услышал звук свистка, а через 34 с паровоз прошел мимо наблюдателя. Определите скорость движения паровоза.


5. Наблюдатель удаляется от колокола, в который бьют каждую секунду. Сначала видимые и слышимые удары совпадают. Потом они перестают совпадать. Затем на некотором расстоянии наблюдателя от колокола видимые и слышимые удары снова совпадают. Объясните это явление.

Звук распространяется посредством звуковых волн. Эти волны проходят не только сквозь газы и жидкости, но и через твердые тела. Действие любых волн заключается главным образом в переносе энергии. В случае звука перенос принимает форму мельчайших перемещений на молекулярном уровне.

В газах и жидкостях звуковая волна сдвигает молекулы в направлении своего движения, то есть в направлении длины волны. В твердых телах звуковые колебания молекул могут происходить и в направлении перпендикулярном волне.

Звуковые волны распространяются из своих источников во всех направлениях, как это показано на рисунке справа, на котором изображен металлический колокол, периодически сталкивающийся со своим языком. Эти механические столкновения заставляют колокол вибрировать. Энергия вибраций сообщается молекулам окружающего воздуха, и они оттесняются от колокола. В результате в прилегающем к колоколу слое воздуха увеличивается давление, которое затем волнообразно распространяется во все стороны от источника.

Скорость звука не зависит от громкости или тона. Все звуки от радиоприемника в комнате, будь они громкими или тихими, высокого тона или низкого, достигают слушателя одновременно.

Скорость звука зависит от вида среды, в которой он распространяется, и от ее температуры. В газах звуковые волны распространяются медленно, потому что их разреженная молекулярная структура слабо препятствует сжатию. В жидкостях скорость звука увеличивается, а в твердых телах становится еще более высокой, как это показано на диаграмме внизу в метрах в секунду (м/с).

Путь волны

Звуковые волны распространяются в воздухе аналогично показанному на диаграммах справа. Волновые фронты движутся от источника на определенном расстоянии друг от друга, определяемом частотой колебаний колокола. Частота звуковой волны определяется путем подсчета числа волновых фронтов, прошедших через данную точку в единицу времени.

Фронт звуковой волны удаляется от вибрирующего колокола.

В равномерно прогретом воздухе звук распространяется с постоянной скоростью.

Второй фронт следует за первым на расстоянии, равном длине волны.

Сила звука максимальна вблизи источника.

Графическое изображение невидимой волны

Звуковое зондирование глубин

Пучок лучей гидролокатора, состоящий из звуковых волн, легко проходит через океанскую воду. Принцип действия гидролокатора основан на том факте, что звуковые волны отражаются от океанского дна; этот прибор обычно используется для определения особенностей подводного рельефа.

Упругие твердые тела

Звук распространяется в деревянной пластине. Молекулы большинства твердых тел связаны в упругую пространственную решетку, которая плохо сжимается и вместе с тем ускоряет прохождение звуковых волн.

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

На таких элементарных и фундаментальных постоянных как звуковая и световая скорость держится наша вселенная, это аксиомы в мире физики. Понятное дело, что все мы задумывались над вопросом – от чего же зависят эти скорости? Когда мы наблюдаем молнию, то сначала видим свет, а потом до нас докатывается раскат. Почему так происходит и от чего зависит время, которое проходит от вспышки к грому? На самом деле все очень просто и легко объясняется, нужно просто вспомнить некоторые основные положения из школьного курса физики, они все расставят по своим местам, ну почти все... Но обо всем по порядку…

Чему равна скорость света

Свет распространяется - 299 792 458 м/с, в более привычном нам километровом эквиваленте это 1 079 252 848,8 км/ч, но для простоты оперирования эту сложную цифру принято округлять и считать, что она составляет 300 тысяч км/с. Скорость света - максимальная величина распространения чего-либо в нашей вселенной. Но самое интересное во всем этом то, что она абсолютно не зависит от скорости движения источника, излучающего ее. Как же обстоят дела в нашем мире? Разница темпа брошенного тела и объекта, с которого его бросили может увеличиваться или уменьшаться, в зависимости от того, в какое ускорение был совершен бросок. Давайте рассмотрим пример: вы едете на автомобиле, скорость которого составляет 100 км в час и бросаете камень по ходу движения (примем скорость запущенного камня в 10 км/ч), для стороннего наблюдателя, который стоит на обочине, камень будет лететь уже со скоростью – 110 км/ч. В данном случае скорость броска и автомобиля суммируются. Но это не касается скорости света. В какую бы сторону не летел источник, свет будет распространяться с одинаковой быстротой, он не ускорится и не замедлится. В этом и состоит парадокс. По крайней мере так думали раньше, но как же обстоят дела сейчас? Об этом немного позже…

Что быстрее - скорость света или скорость звука?

Ученым известно, что скорость света примерно в миллион раз больше звуковой. Но темп звука может меняться. Среднее его значение составляет 1450 м/с. Быстрота продвижения звука зависит от типа среды, вода это или воздух, от температуры и даже давления. Выходит, что точного значения этой величины не существует, есть лишь примерная величина в привычной для нас среде - воздухе. Касательно скорости света до сих пор ведутся целые серии экспериментов передовых ученых со всей планеты.

Какова скорость звука в воздухе

Определить скорость звука в воздухе в первый раз удалось в 1636 году ученому из Франции М. Мерсенну. Температура окружающей среды была 20 °С и при таком показателе звук летел со значением 343 м/с, в километрах - 1235 км/ч. Темп движения звука напрямую зависит от температуры окружающей среды в которой он распространяется: если температура газа растет, звук тоже начинает двигаться быстрее, соответственно, наоборот, чем ниже температура воздуха, тем медленнее распространяется звук.

Например, при нулевой температуре звук передается уже на скорости 331 м/с. Также скорость звука зависит и от типа газа. Чем больше диаметр молекул из которых состоит газ, тем медленнее двигается звук. Например, при нулевой температуре, в водороде быстрота звука составит 1284 м/с, гелии - 965 м/с. Заметная разница.

Скорость звука в вакууме

Звук по своей сути - это колебание молекул по ходу распространения. Понятно, что для того чтобы звук мог как-то передаваться, нужна среда из молекул, которые будут колебаться. В вакууме же нет никакой материи, поэтому звук там проходить не может. Но по результатам последних исследований, стало ясно, что звук может преодолеть прослойку из вакуума, толщиной мене микрона. Данное явление назвали - «вакуумное туннелирование фононов», информацию по нему появилась одновременно в двух статьях, которые появились в печатном издании «Physical Review Letters». Следует помнить, что колебание молекул кристаллической решетки переносят не один звук, но и тепловую энергию, следовательно, через вакуум можно передавать и тепло.

Скорость звука в воде

Обычно, скорость звука в жидкостях, в том числе воде, больше чем в газообразной среде. Первый замер такой стремительности в воде произвели в 1826 г. ученые Ж- Колладон и Я. Штурм. Эксперимент проходил в Швейцарии, а именно на одном из озер. Последовательность действий, по которой проходило измерение, была таковой:

  1. На лодке, которая стояла на якоре, поджигали пакет с порохом и в то же время били в подводный колокол;
  2. На расстоянии в 14 километров стояла вторая, наблюдательная лодка, помимо вспышки пороха, которую было видно из далека, на лодке улавливали и звук колокола посредством подводного рупора;
  3. Именно по разнице времени между вспышкой и приходом звуковой волны удалось вычислить скорость звука. Тогда вода имела температуру в 8 °С и скорость звука составила 1440 м/с.

Между двумя разными средами звуковая волна ведет себя интересно. Одна ее часть заходит в другую среду, вторая попросту отражается. Если звук попадает из воздуха в жидкость, то 99,9 % его отражается, но давление в той доле звука что все-таки проходит в воду в два раза вырастает. Именно этим и пользуются рыбы. Если возле воды кричать и шуметь, хвостатые обитатели глубин быстро уйдут куда подальше.

Скорость распространения звука

Даже свет, равно как звук и электромагнитные колебания может менять свою скорость в разных физических средах. Новейшие исследования в этой области, доказали теоретическую возможность запустить тело быстрее света. Дело в том, что в некоторых газах быстрота фотонов (частички из которых состоит свет) заметно замедляются. Понятное дело, что увидеть такое явление невооруженным глазом не выйдет, но в точной науке, такой как физика, это имеет огромное значение. Так вот, ученные доказали, что, если пропустить свет через газ, его скорость снизится на столько, что быстро запущенное тело сможет двигаться быстрее фотонов.

Обсуждайте вопросы распространения звука в разных средах