Слух ВКонтакте Facebook. Наружное ухо

Звуковая волна является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают её колебания. В фазе повышения давления или сгущения барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молотка, благодаря подвешивающим связкам смещается кнаружи, а длинный росток наковальни - кнутри, смещая, таким образом, кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение волны по лестнице преддверия передают колебательные движения мембране Рейсснера, а та в свою очередь приводит в движение эндолимфу и через основную мембрану - перилимфу барабанной лестницы. В результате такого перемещения перилимфы возникают колебания основной и рейсснеровской мембран. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге приводит к смещению в сторону барабанной полости мембраны окна преддверия. В фазе снижения давления происходит возврат передающей системы в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо является основным. Другим путем проведения звуков к спиральному органу является костная (тканевая) проводимость. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм костно-тканевой передачи звука может иметь двоякий характер. В одном случае звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану круглого окна и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой - инерционный вариант. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа и, следовательно, основная и рейсснерова мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание кос­тей черепа можно вызвать прикосновением к нему звучащего камертона или телефона. Таким образом, костный путь передачи при нарушении передачи звука через воздух приобретает большое значение.

Ушная раковина. Роль ушной раковины в физиологии слуха человека невелика. Некоторое значение она имеет в ототопике и как коллекторы звуковых волн.

Наружный слуховой проход. Представляет собой форму трубки, благодаря чему является хорошим проводником звуков в глубину. Ширина и форма слухового прохода не играет особой роли при звукопроведении. Вместе с тем механическая закупорка его препятствует распространению звуковых волн к барабанной перепонке и приводит к заметному ухудшению слуха. В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, что обеспечивает стабильность упругих сред барабанной полости. В силу особого строения наружного уха, давление звуковой волны в наружном слуховом проходе в два раза больше, чем в свобод­ном звуковом поле.

Барабанная перепонка и слуховые косточки. Основная роль барабанной перепонки и слуховых кос­точек заключается в трансформации звуковых колебаний большой ампли­туды и малой силы в колебания жидкостей внутреннего уха с малой амплитудой и большой силой (давлением). Колебания барабанной пере­понки приводят в соподчинение движение молоточек, наковальню и стремя. В свою очередь стремя передает колебания перилимфе, которое вызывает смещение мембран улиткового хода. Движение основной мемб­раны обусловливает раздражение чувствительных, волосковых клеток спирального органа, вследствие чего возникают нервные импульсы, следующие по слуховому пути в кору головного мозга.

Барабанная перепонка вибрирует в основном в своем нижнем квадранте с синхронным движением прикрепленного к ней молоточка. Ближе к периферии её колебания уменьшаются. При максимальной интенсивности звука колебания барабанной перепонки могут варьировать от 0,05 до 0,5 мм, причем на тоны низкой частоты размах колебаний больше, на тоны высокой частоты - меньше.

Трансформационный эффект достигается за счет разницы площади барабанной перепонки и площади основания стремени, соотношение которых составляет приблизительно 55:3 (соотношение площадей 18:1), а также благодаря рычажной системе слуховых косточек. При переводе в дБ рычажное действие системы слуховых косточек составляет 2 дБ, а повышение звукового давления вследствие разницы соотношения полезных площадей барабанной перепонки к основанию стремени обеспечивает усиление звука на 23 - 24 дБ.

По данным Бекеши /I960/, общий акустический выигрыш трансфор­матора звукового давления составляет 25 - 26 дБ. Это повышение давления компенсирует естественную потерю звуковой энергии, возникающую в результате отражения звуковой волны при переходе её из воз­душной среды в жидкую, особенно для низких и средних частот (Вульштеин JL, 1972).

Помимо трансформации звукового давления, барабанная перепонка; выполняет также функцию звукозащиты (экранирования) окна улитки. В норме звуковое давление, передаваемое через систему слуховых косточек к средам улитки, достигает окна преддверия несколько раньше, чем оно приходит к окну улитки через воздушную среду. Вследствие разницы давлений и сдвига фазы возникает движение перилимфы, вызывающее изгиб основной мембраны и раздражение рецепторного аппарата. При этом мембрана окна улитки колеблется синхронно с основанием стремени, но в противоположном направлении. При отсутствии барабанной перепонки этот механизм звукопередачи нарушается: следующая наружного слухового прохода звуковая волна одновременно в фазе достигает окна преддверия и улитки, в результате чего действие волны взаимно уничтожается. Теоретически при этом не должно быть сдвига перилимфы и раздражения чувствительных волосковых клеток. На caмом деле при полном дефекте барабанной перепонки, когда оба окна в равной степени доступны звуковым волнам, слух снижается до 45 - 50 Разрушение же цепи слуховых косточек сопровождается значительной потерей слуха (до 50-60 дБ).

Конструктивные особенности рычажной системы позволяют не только усиливать слабые звуки, но и выполнять в определённой мере защитную функцию - ослаблять передачу сильных звуков. При слабых звуках основание стремени колеблется главным образом вокруг вертикальной оси. При сильных звуках происходит скольжение в наковально-молоточковом суставе главным образом при низкочастотных тонах, в результате чего движение длинного отростка молоточка ограничивается. Наряду с этим основание стремени начинает колебаться преиму­щественно в горизонтальной плоскости, что также ослабляет переда звуковой энергии.

Помимо барабанной перепонки и слуховых косточек, защита внутреннего уха от избыточной звуковой энергии осуществляется в результате сокращения мышц барабанной полости. При сокращении мышцы стремени, когда акустический импеданс среднего уха резко возрастает, чувствительность внутреннего уха к звукам главным образом низкой частоты снижается до 45 дБ. Исходя из этого, существует мнение, стременная мышца предохраняет внутреннее ухо от избыточной энергии низкочастотных звуков (Ундриц В.Ф. и др., 1962; Мороз Б.С., 1978)

Функция мышцы, натягивающей барабанную перепонку, остается недостаточно изученной. Полагают, что она в большей степени связана с вентиляцией среднего уха и поддерживанием нормального давления в барабанной полости, чем с защитой внутреннего уха. Обе внутриушные мышцы сокращаются также при открытии рта, глотании. В этот момент чувствительность улитки к восприятию низких звуков снижается.

Звукопроводящая система среднего уха функционирует в оптималь­ном режиме, когда давление воздуха в барабанной полости и клетках сосцевидного отростка равно атмосферному давлению. В норме давление воздуха в системе среднего уха уравновешено с давлением внешней среды достигается это благодаря слуховой трубе, которая, открываясь в носоглотку, обеспечивает приток воздуха в барабанную полость. Одна­ко непрерывное поглощение воздуха слизистой оболочкой барабанной полости создает в ней слегка отрицательное давление, что требует постоянного выравнивания его с атмосферным давлением. В спокойном состоянии слуховая труба обычно закрыта. Она открывается при глота­нии или зевании в результате сокращения мышц мягкого неба (натяги­вающей и поднимающей мягкое нёбо). При закрытии слуховой трубы в ре­зультате патологического процесса, когда воздух не поступает в ба­рабанную полость, возникает резко отрицательное давление. Это при­водит к снижению слуховой чувствительности, а также к транссудации серозной жидкости из слизистой оболочки среднего уха. Потеря слуха при этом преимущественно на тоны низких и средних частот достигает 20 - 30 дБ. Нарушение вентиляционной функции слуховой трубы сказы­вается также на внутрилабиринтном давлении жидкостей внутреннего уха, что в свою очередь ухудшает проведение низкочастотных звуков.

Звуковые волны, вызывая перемещение лабиринтной жидкости, при­водят в колебание основную мембрану, на которой расположены чувст­вительные волосковые клетки спирального органа. Раздражение волосковых клеток сопровождается нервным импульсом, поступающим в спиральный ганглий, а затем по слуховому нерву к центральным отделам анализатора.

Для нашей ориентации в окружающем мире слух играет такую же роль, как и зрение. Ухо позволяет нам общаться друг с другом при помощи звуков оно имеет специальную чувствительность к звуковым частотам речи. С помощью уха человек улавливает различные звуковые колебания воздуха. Вибрации, которые идут от предмета (источник звука), передаются через воздух играющий роль передатчика звука, улавливаются ухом. Человеческое ухо воспринимает колебания воздуха с частотой от 16 до 20 000 Гц. Вибрации с большей частотой относятся к ультразвуковым, но человеческое ухо их не воспринимает. Способность различать высокие тона с возрастом уменьшается. Способность улавливать звук двумя ушами даёт возможность определять, где он находится. В ухе колебания воздуха преобразуются в электрические импульсы, которые воспринимаются мозгом как звук.

В ухе расположен и орган восприятия движения и положения тела в пространстве - вестибулярный аппарат . Вестибулярная система играет большую роль в пространственной ориентации человека, анализирует и передаёт информацию об ускорениях и замедлениях прямолинейного и вращательного движения, а также при изменении положения головы в пространстве.

Строение уха

Исходя из внешнего строения ухо делится на три части. Первые две части уха, наружное (внешнее) и среднее, проводят звук. Третья часть - внутреннее ухо - содержит слуховые клетки, механизмы для восприятия всех трёх особенностей звука: высоты, силы и тембра.

Наружное ухо - выступающая часть наружного уха называется ушной раковиной , её основу составляет полужёсткая опорная ткань - хрящ. Передняя поверхность ушной раковины имеет сложное строение и непостоянную форму. Она состоит из хряща и фиброзной ткани, за исключением нижней части - дольки (ушной мочки) образованной жировой клетчаткой. В основании ушной раковины имеется передняя, верхняя и задняя ушные мышцы, движения которой ограничены.

Кроме акустической (звукоулавливающей) функции, ушная раковина выполняет защитную роль, предохраняя слуховой проход в барабанную перепонку от вредного воздействия окружающей среды (попадания воды, пыли, сильных воздушных потоков). Как форма, так и величина ушных раковин индивидуальны. Длина ушной раковины у мужчин 50–82 мм и ширина 32–52 мм, у женщин размеры несколько меньше. На маленькой площади ушной раковины представлена вся чувствительность тела и внутренних органов. Поэтому можно использовать её для получения биологически важной информации о состоянии любого органа. Ушная раковина концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

Наружный слуховой проход служит для проведения звуковых колебаний воздуха от ушной раковины к барабанной перепонке. Наружный слуховой проход имеет длину от 2 до 5 см. его наружная треть образована хрящевой тканью, а внутренние 2/3 - костной. Наружный слуховой проход дугообразно изогнут в верхнее-заднем направлении, и легко выпрямляется при оттягивании ушной раковины вверх и назад. В коже слухового прохода находятся особые железы, выделяющие секрет желтоватого цвета (ушная сера), функция которой: защита кожи от бактериальной инфекции и инородных частиц (попадание насекомых).

Наружный слуховой проход отделяется от среднего уха барабанной перепонкой, всегда втянутой внутрь. Это тонкая соединительно-тканная пластинка, покрытая снаружи многослойным эпителием, а изнутри - слизистой оболочкой. Наружный слуховой проход служит для проведения звуковых колебаний к барабанной перепонке, которая отделяет наружное ухо от барабанной полости (среднего уха).

Среднее ухо , или барабанная полость, представляет собой небольшую заполненную воздухом камеру, которая расположена в пирамиде височной кости и отделена от наружного слухового прохода барабанной перепонкой. Эта полость имеет костные и перепончатую (барабанная перепонка) стенки.

Барабанная перепонка - это малоподвижная мембрана толщиной 0,1 мкм, сплетённая из волокон, которые идут в различных направлениях и неравномерно натянуты в разных участках. Благодаря такому строению барабанная перепонка не имеет собственного периода колебаний, что приводило бы к усилению звуковых сигналов, совпадающих с частотой собственных колебаний. Она начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход. Через отверстие на задней стенке барабанная перепонка сообщается с сосцевидной пещерой.

Отверстие слуховой (евстахиевой) трубы расположено в передней стенке барабанной полости и ведёт в носовую часть глотки. Благодаря этому атмосферный воздух может попадать в барабанную полость. В норме отверстие евстахиевой трубы закрыто. Оно открывается во время глотательных движений или зевания, способствуя выравниванию давления воздуха на барабанную перепонку со стороны полости среднего уха и наружного слухового отверстия, тем самым она предохраняется от разрывов, приводящих к нарушению слуха.

В барабанной полости лежат слуховые косточки . Они имеют очень маленькие размеры и соединяются в цепочку, которая простирается от барабанной перепонки до внутренней стенки барабанной полости.

Самая наружная косточка - молоточек - своей рукояткой соединена с барабанной перепонкой. Головка молоточка соединяется с наковальней, которая подвижно сочленяется с головкой стремени .

Слуховые косточки получили такие названия из-за своей формы. Косточки покрыты слизистой оболочкой. Две мышцы регулируют движение косточек. Соединение косточек такое, что способствует усилению давления звуковых волн на мембрану овального окна в 22 раза, что даёт слабым звуковым волнам приводить в движение жидкость в улитке .

Внутреннее ухо заключено в височной кости и представляет собой систему полостей и каналов, расположенных в костном веществе каменистой части височной кости. В совокупности они формируют костный лабиринт, внутри которого находится перепончатый лабиринт. Костный лабиринт представляет собой костные полости различной формы и состоит из преддверия, трёх полукружных каналов и улитки. Перепончатый лабиринт состоит из сложной системы тончайших перепончатых образований, находящихся в костном лабиринте.

Все полости внутреннего уха заполнены жидкостью. Внутри перепончатого лабиринта - эндолимфа, а жидкость, омывающая перепончатый лабиринт снаружи - перелимфа и по составу схожа со спинно-мозговой жидкостью. Эндолимфа отличается от перелимфы (в ней больше ионов калия и меньше ионов натрия) - несёт положительный заряд по отношению к перелимфе.

Предверие - центральная часть костного лабиринта, которая сообщается со всеми его частями. Сзади от преддверия расположены три костных полукружных канала: верхний, задний и латеральный. Латеральный полукружный канал лежит горизонтально, два других - под прямым углом к нему. Каждый канал имеет расширенную часть - ампулу. Внутри его содержится перепончатая ампула, заполненная эндолимфой. При движении эндолимфы во время изменения положения головы в пространстве раздражаются нервные окончания. По волокнам нерва возбуждение передаётся в головной мозг.

Улитка представляет собой спиральную трубку, образующую два с половиной оборота вокруг конусовидного костного стержня. Она является центральной частью органа слуха. Внутри костного канала улитки располагается перепончатый лабиринт, или улитковый проток, к которому подходят окончания улитковой части восьмого черепного нерва Колебания перилимфы передаются эндолимфе улиткового протока и активизирует нервные окончания слуховой части восьмого черепного нерва.

Преддверно-улитковый нерв состоит из двух частей. Преддверная часть проводит нервные импульсы от преддверия и полукружных каналов к вестибулярным ядрам моста и продолговатого мозга и далее - к мозжечку. Улитковая часть передаёт информацию по волокнам, следующим от спирального (кортиева) органа к слуховым ядрам ствола и далее - через ряд переключений в подкорковых центрах - к коре верхнего отдела височной доли полушария большого мозга.

Механизм восприятия звуковых колебаний

Звуки возникают благодаря колебаниям воздуха и усиливаются в ушной раковиной. Затем звуковая волна проводится по наружному слуховому проходу к барабанной перепонке, вызывая её колебания. Вибрация барабанной перепонки передаётся на цепь слуховых косточек: молоточек, наковальню и стремя. Основание стремени при помощи эластичной связки фиксировано к окну преддверия, благодаря чему колебания передаются на перилимфу. В свою очередь, через перепончатую стенку улиткового протока эти колебания переходят на эндолимфу, перемещение которой вызывает раздражение рецепторных клеток спирального органа. Возникающий при этом нервный импульс следует по волокнам улитковой части преддверно-улиткового нерва в головной мозг.

Перевод воспринимаемых органом слуха звуков как приятных и неприятных ощущений осуществляется в головном мозге. Нерегулярные звуковые волны формируют ощущения шума, а регулярные, ритмичные волны воспринимаются как музыкальные тоны. Звуки распространяются со скоростью 343 км/с при температуре воздуха 15–16ºС.

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны. Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

Различные возможности слуха оцениваются дифференциальными порогами (ДП), т. е. улавливанием минимально изменяемых какого-либо из параметров звука, например, его интенсивности или частоты. У человека дифференциальный порог по интенсивности равен 0,3-0,7 дБ, по частоте 2-8 Гц.

Кость хорошо проводит звук. При некоторых формах глухоты, когда слуховой нерв не поврежден, звук проходит через кости. Глухие иногда могут танцевать, слушая музыку через пол, воспринимая её ритм ногами. Бетховен слушал игру на рояле через трость, которой он опирался на рояль, а другой конец держал в зубах. При костно-тканевом проведении, можно слышать ультразвуки – звуки с частотой свыше 50 000 Гц.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация ).

Временное снижение слуховой чувствительности с более длительным периодом восстановления нормальной остроты слуха, также возникающее при длительном воздействии интенсивных звуков, но восстанавливающееся после кратковременного отдыха, носит название слухового утомления . Слуховое утомление, в основе которого лежит временное охранительное торможение в коре головного мозга, – это физиологическое явление, носящее защитный характер против патологического истощения нервных центров. Не восстанавливающееся после кратковременного отдыха слуховое утомление, в основе которого лежит стойкое запредельного торможение в структурах головного мозга, носит название слухового переутомления , требующего для его снятия проведения целого ряда специальных лечебно-оздоровительных мероприятий.



Физиология звукового восприятия. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения. Изучение их затруднено как малой величиной колебаний, так и слишком малым размером улитки и глубиной ее расположения в плотной капсуле лабиринта. Еще труднее выявить характер физиологических процессов, происходящих при трансформации механической энергии в нервное возбуждение в рецепторе, а также в нервных проводниках и центрах. В связи с этим существует лишь ряд гипотез (предположений), объясняющих процессы звуковосприятия.

Самая ранняя из них – теория Гельмгольца (1863 г.). По этой теории, в улитке возникают явления механического резонанса, в результате которого сложные звуки разлагаются на простые. Тон любой частоты имеет свой ограниченный участок на основной мембране и раздражает строго определенные нервные волокна: низкие звуки вызывают колебание у верхушки улитки, а высокие – у её основания.

Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является не частота, а амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки.



В любом случае, приводимые в колебание волосковые клетки, касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению в них потенциала возбуждения. Возникающее в определенных группах рецепторных клеток возбуждение, в виде нервных импульсов распространяется по волокнам слухового нерва в ядра ствола мозга, подкорковые центры, расположенные в среднем мозге, где информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через различные уровни слухового тракта. В ходе этого процесса нейроны того или иного типа выделяют «свои» свойства стимула, что обеспечивает довольно специфичную активацию нейронов высших уровней. По достижении слуховой зоны коры, локализующейся в височных долях (поля 41 – первичная слуховая кора и 42 – вторичная, ассоциативная слуховая кора по Бродману), эта многократно перекодированная информация преобразуется в слуховое ощущение. При этом в результате перекреста проводящих путей, звуковой сигнал из правого и левого уха попадает одновременно в оба полушария головного мозга.

Возрастные особенности становления слуховой чувствительности. Развитие периферических и подкорковых отделов слухового анализатора в основном заканчивается к моменту рождения, и слуховой анализатор начинает функционировать уже с первых часов жизни ребёнка. Первая реакция на звук проявляется у ребёнка расширением зрачков, задержкой дыхания, некоторыми движениями. Затем ребёнок начинает прислушиваться к голосу взрослых и реагировать на него, что связано уже с достаточной степенью развития корковых отделов анализатора, хотя завершение их развития происходит на довольно поздних этапах онтогенеза. Во втором полугодии ребёнок воспринимает определённые звукосочетания и связывает их с определёнными предметами или действиями. В возрасте 7–9 месяцев малыш начинает подражать звукам речи окружающих, а к году у него появляются первые слова.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 мес. звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

2.3. Патология слухового анализатора

Нарушения слуха – это незаметное препятствие, которое может иметь далеко идущие психологические и социальные последствия. Больные со сниженным слухом или страдающие полной глухотой сталкиваются со значительными трудностями. Отрезанные от словесной коммуникации, они во многом утрачивают связь с близкими и другими окружающими их людьми и существенно изменяют свое поведение. С задачами, за решение которых отвечает слух, другие сенсорные каналы справляются крайне неудовлетворительно, поэтому слух – это важнейшее из человеческих чувств, и его потерю нельзя недооценивать. Он требуется не только для понимания речи окружающих, но и для умения говорить самому. Глухие от рождения дети не научаются говорить, так как лишены слуховых стимулов, поэтому глухота, возникающая до приобретения речи, относится к особенно серьезным проблемам. Невозможность говорить приводит к всеобщему отставанию в развитии, уменьшая возможности обучаться. Поэтому тугоухие от рождения дети, должны начинать пользоваться слуховыми аппаратами до 18-месячного возраста.

Дети с нарушением слуха делятся на три категории (классификация):

Ø глухие это дети с тотальным выпадением слуха, среди которых выделяются глухие без речи (рано оглохшие) и глухие, сохранившие речь. К рано оглохшим детям относятся и дети с двусторонним стойким нарушением слуха. У детей с врожденным или приобретенным до речевого развития нарушением слуха, в последствии глухота компенсируется другими анализаторами (наглядно-зрительными образами, вместо словесно-логических). Основная форма общения – мимика и жесты.

У детей, сохранивших речь, из-за отсутствия слухового контроля, она нечёткая, смазанная. У детей часто возникают нарушения голоса (неадекватная высота голоса, фальцет, гнусавость, резкость, неестественность тембра), так же встречаются нарушения речевого дыхания. В психическом плане дети неустойчивы, заторможены, с большими комплексами.

Ø позднооглохшие дети с потерей слуха, но с относительно сохранной речью. Они обучаются в специальных школах по специальным программам с соответствующими ТСО для нормализации остаточного слуха (прибор для вибрации, прибор механической защиты речи). Устная речь воспринимается на слух с искажениями, поэтому возникают трудности в обучении, в подборе восприятия речи, в выражении и проговаривании речи. Эти дети замкнуты, раздражительны, владеют речью с нарушениями лексического и грамматического строя речи.

Ø слабослышащие – эти дети с частичной слуховой недостаточностью, затрудняющей слуховое развитие, но сохранившие возможность самостоятельно накоплять речевой запас.

По глубине нарушения слуха выделяют 4 степени:

легкая восприятие шепота на расстоянии 3-6 м, разговорной речи 6-8 м;

умеренная – восприятие шепота – 1-3 м, разговорной речи 4-6 м;

значительная – восприятие шепота – 1 м, разговорной речи 2-4 м;

тяжелая – восприятие шепота – не бол. 5-10 см от уха, разговорной речи – не более 2 метров.

Снижение остроты слуха в силу каких-либо патологических процессов в любом из отделов слухового анализатора (гипоакузия ) или потеря слуха – это наиболее частое следствие патологии слухового анализатора. Более редкими формами нарушения слуха являются гиперакузия , когдадаже обычная речь вызывает болевые или неприятные звукоощущения (может наблюдаться при поражении лицевого нерва); двоение звука (диплакузия ), возникающее при неодинаковом воспроизведении левым и правым ухом высоты звукового сигнала; паракузия – улучшение остроты слуха в шумной обстановке, характерная для отосклероза.

Гипоакузия условно может быть связана с тремя категориями причин:

1. Нарушения проведения звука. Ослабление слуха вследствие механического препятствия для прохождения звуковых волн может быть вызвано накоплением в наружном слуховом проходе ушной серы . Она выделяется железами наружного слухового прохода и выполняет защитную функцию, но, скапливаясь в наружном слуховом проходе, образует серную пробку, удаление которой полностью восстанавливает слух. Сходный эффект даёт и присутствие инородных тел в слуховом проходе, которое особенно часто отмечается у детей. Следует отметить, что основную опасность представляет не столько присутствие инородного тела в ухе, сколько неудачные попытки его удаления.

Нарушение слуха может быть вызвано разрывом барабанной перепонки при воздействии очень сильных шумов или звуков, например, взрывной волны. В таких случаях рекомендуется открывать рот к моменту, когда произойдет взрыв. Частой причиной перфорации барабанной перепонки является ковыряние в ухе шпильками, спичками и другими предметами, а также неумелые попытки удаления инородных тел из уха. Нарушение целости барабанной перепонки при сохранности остальных отделов слухового органа, сравнительно мало отражается на слуховой функции (страдает лишь восприятие низких звуков). Главную опасность несут последующие инфицирование и развитие гнойного воспаления в барабанной полости.

Потеря эластичности барабанной перепонки при воздействии производственных шумов приводит к постепенной потере остроты слуха (профессиональной тугоухости).

Воспаление тимпанально-косточкового аппарата снижает его способности по усилению звука и даже при здоровом внутреннем ухе слух ухудшается.

Воспаления среднего уха представляют опасность для слухового восприятия своими последствиями (осложнениями), которые наиболее часто отмечаются при хроническом характере воспаления (хронический средний отит). Например, вследствие образования спаек между стенками барабанной полости и перепонкой, подвижность последней снижается, в результате чего возникает ухудшение слуха, шум в ушах. Очень частым осложнением как хронического, так и острого гнойного отита, является прободение барабанной перепонки. Но главная опасность таится в возможном переходе воспаления на внутреннее ухо (лабиринтит), на мозговые оболочки (менингит, абсцесс мозга), либо в возникновении общего заражения крови (сепсиса).

Во многих случаях даже при правильном и своевременном лечении, особенно хронического среднего отита, восстановления слуховой функции в полном объёме не достигается, в силу возникающих рубцовых изменений барабанной перепонки, сочленений слуховых косточек. При поражениях среднего уха, как правило, возникает стойкое понижение слуха, но полной глухоты не наступает, поскольку сохраняется костная проводимость. Полная глухота после воспаления среднего уха может развиться лишь в результате перехода гнойного процесса из среднего уха во внутреннее.

Вторичный (секреторный) отит является следствием перекрытия слуховой трубы вследствие воспалительных процессов в носоглотке или разрастания аденоидов. Находящийся в среднем ухе воздух частично поглощается его слизистой оболочкой и создаётся отрицательное давление воздуха, с одной стороны, ограничивающее подвижность барабанной перепонки (следствие – ухудшение слуха), а с другой стороны – способствующее пропотеванию плазмы крови из сосудов в барабанную полость. Последующая организация плазменного сгустка может приводить к развитию спаечного процесса в барабанной полости.

Особое место занимает отосклероз, заключающийся в разрастании губчатой ткани, чаще всего в области ниши овального окна, в результате чего стремечко оказывается замурованным в овальном окне и теряет свою подвижность. Иногда это разрастание может распространяться и на лабиринт внутреннего уха, что приводит к нарушению не только функции звукопроведения, но и звуковосприятия. Проявляется, как правило, в молодом возрасте (15-16 лет) прогрессирующим падением слуха и шумом в ушах, приводя к резкой тугоухости или даже полной глухоте.

Поскольку поражения среднего уха касаются только звукопроводящих образований и не затрагивают звуковоспринимающие нейроэпителиальные структуры, вызываемая ими тугоухость называется кондуктивной. Кондуктивная тугоухость (кроме профессиональной) у большинства больных достаточно успешно корригируется микрохирургическим и аппаратным путем.

2. Нарушения восприятия звука. В этом случае повреждены волосковые клетки кортиева органа, так что нарушено либо преобразование сигнала, либо выделение нейромедиатора. В результате страдает передача информации из улитки в ЦНС и развивается сенсорная тугоухость .

Причина – воздействие внешних или внутренних неблагоприятных факторов: инфекционные заболевания детского возраста (корь, скарлатина, эпидемический цереброспинальный менингит, эпидемический паротит), общие инфекции (грипп, сыпной и возвратный тиф, сифилис); лекарственная (хинин, некоторые антибиотики), бытовая (окись углерода, светильный газ) и промышленная (свинец, ртуть, марганец) интоксикации; травмы; интенсивное воздействие производственного шума, вибрации; нарушение кровоснабжения внутреннего уха; атеросклероз, возрастные изменения.

В силу своего глубокого расположения в костном лабиринте, воспаления внутреннего уха (лабиринтиты), как правило, носят характер осложнений воспалительных процессов среднего уха или мозговых оболочек, некоторых детских инфекций (кори, скарлатины, эпидемического паротита). Гнойные диффузные лабиринтиты в подавляющем большинстве случае заканчиваются полной глухотой, вследствие гнойного расплавления кортиева органа. Результатом ограниченного гнойного лабиринтита является частичная потеря слуха на те или иные тоны, в зависимости от места поражения в улитке.

В некоторых случаях при инфекционных заболеваниях в лабиринт проникают не сами микробы, а их токсины. Развивающийся в этих случаях сухой лабиринтит протекает без гнойного воспаления и обычно не ведёт к гибели нервных элементов внутреннего уха. Поэтому полной глухоты не наступает, но нередко наблюдается значительное понижение слуха вследствие образования рубцов и сращений во внутреннем ухе.

Нарушения слуха возникают вследствие повышения давления эндолимфы на чувствительные клетки внутреннего уха, которое наблюдается при болезни Меньера. Несмотря на то, что повышение давления при этом имеет преходящий характер, снижение слуха прогрессирует не только во время обострений болезни, но и в межприступный период.

3. Ретрокохлеарные нарушения – внутреннее и среднее ухо здоровы, но нарушены либо передача нервных импульсов по слуховому нерву к слуховой зоне коры больших полушарий, либо сама деятельность корковых центров (например, при опухоли головного мозга).

Поражения проводникового отдела слухового анализатора могут возникать на любом его отрезке. Наиболее частыми являются невриты слухового нерва , под которыми понимается воспалительное поражение не только ствола слухового нерва, но и поражения нервных клеток, входящих в состав спирального нервного узла, находящегося в улитке.

Нервная ткань очень чувствительна к любым токсическим воздействиям. Поэтому очень частым следствием воздействия некоторых лекарственных (хинин, мышьяк, стрептомицин, салициловые препараты, антибиотики группы аминогликозидов и мочегонные средства) и токсических (свинец, ртуть, никотин, алкоголь, окись углерода и др.) веществ, бактерийных токсинов является гибель нервных ганглиев спирального узла, которая приводит к вторичной нисходящей дегенерации волосковых клеток кортиева органа и восходящей дегенерации нервных волокон слухового нерва, с формированием полного или частичного выпадения слуховой функции. Причём, хинин и мышьяк имеют такое же сродство к нервным элементам слухового органа, как метиловый (древесный) спирт – к нервным окончаниям в глазу. Снижение остроты слуха в таких случаях может достигать значительной выраженности, вплоть до глухоты, а лечение, как правило, не эффективно. В этих случаях реабилитация больных происходит с помощью тренировки и использования слуховых аппаратов.

Заболевания ствола слухового нерва возникают вследствие перехода воспалительных процессов с мозговых оболочек на оболочку нерва при менингите.

Проводящие слуховые пути в головном мозгу могут страдать при врождённых аномалиях и при различных заболеваниях и повреждениях мозга. Это, прежде всего, кровоизлияния, опухоли, воспалительные процессы мозга (энцефалиты) при менингите, сифилисе и др. Во всех случаях такие поражения обычно не бывают изолированными, а сопровождаются и другими мозговыми расстройствами.

Если процесс развивается в одной половине мозга и захватывает слуховые пути до их перекреста – полностью или частично нарушается слух на соответствующее ухо; выше перекреста – наступает двустороннее понижение слуха, более выраженное на стороне, противоположной поражению, но полной потери слуха не наступает, т. к. часть импульсов поступает по сохранившимся проводящим путям противоположной стороны.

Повреждение височных долей мозга, где располагается слуховая кора, может происходить при кровоизлияниях в мозг, опухолях, энцефалитах. Затрудняется понимание речи, пространственная локализация источника звука и идентификация его временных характеристик. Однако подобные поражения не влияют на способность различать частоту и силу звука. Односторонние поражения коры ведут к понижению слуха на оба уха, больше – на противоположной стороне. Двусторонних поражений проводящих путей и центрального конца слухового анализатора практически не отмечается.

Дефекты органов слуха :

1.Аллозия врождённое полное отсутствие или недоразвитие (например, отсутствие кортиева органа) внутреннего уха.

2. Атрезия – заращение наружного слухового прохода; при врождённом характере обычно сочетается с недоразвитием ушной раковины или полным её отсутствием. Приобретённая атрезия может быть следствием длительного воспаления кожи ушного прохода (при хроническом гноетечении из уха), либо рубцовых изменений после травм. Во всех случаях к значительному и стойкому понижению слуха ведёт лишь полное заращение слухового прохода. При неполных заращениях, когда в слуховом проходе имеется хотя бы минимальная щель, слух обычно не страдает.

3. Оттопыренные ушные раковины, сочетающиеся с увеличением их размера – макротия, или маленькими размерами ушной раковины микротия . Ввидутого, что функциональное значение ушной раковины невелико, все её заболевания, повреждения и аномалии развития, вплоть до полного отсутствия, не влекут за собой существенного нарушения слуха и имеют в основном лишь косметическое значение.

4. Врожденные свищи незаращение жаберной щели, открытой на передней поверхности ушной раковины, несколько выше козелка. Отверстие малозаметно и из него выделяется тягучая, прозрачная жидкость желтого цвета.

5. Врождённые аномалии среднего уха сопутствуют нарушениям развития наружного и внутреннего уха (заполнение барабанной полости костной тканью, отсутствие слуховых косточек, сращивание их).

Причина врождённых дефектов уха чаще всего кроется в нарушениях хода развития зародыша. К таким факторам относится патологическое воздействие на зародыш со стороны организма матери (интоксикации, инфицирование, травмирование плода). Известную роль играет и наследственное предрасположение.

От врождённых дефектов развития следует отличать повреждения органа слуха, возникающие во время родового акта. Например, даже травмы внутреннего уха могут быть следствием сдавления головки плода узкими родовыми путями или последствиями наложения акушерских щипцов при патологических родах.

Врожденная глухота или тугоухость – это либо наследственное нарушение эмбриологического развития периферической части слухового анализатора или отдельных его элементов (наружное, среднее ухо, костная капсула лабиринта, кортиев орган); либо нарушения слуха, связанные с вирусными инфекциями, перенесенными беременной в ранние сроки (до 3-х месяцев) беременности (корь, грипп, паротит); либо последствия поступления в организм беременных токсичных веществ (хинин, салициловые препараты, алкоголь). Врожденное снижение слуха обнаруживается уже в первый год жизни ребенка: он не переходит от «гуления» к произнесению слогов или простых слов, а, напротив, постепенно полностью замолкает. Кроме того, самое позднее, к середине второго года нормальный ребенок научается поворачиваться по направлению к звуковому стимулу.

Роль наследственного (генетического) фактора в качестве причины врождённых нарушений слуха в прежние годы несколько преувеличивалась. Однако этот фактор, несомненно, имеет некоторое значение, т. к. известно, что у глухих родителей дети с врождённым дефектом слуха рождаются чаще, чем у слышащих.

Субъективные реакции на шум. Помимо звуковой травмы, т. е. объективно наблюдаемого повреждения слуха, длительное пребывание в среде, «загрязненной» избыточными звуками («звуковой шум»), ведет к повышению раздражительности, ухудшению сна, головным болям, повышению артериального давления. Дискомфорт, вызываемый шумом, в значительной степени зависит от психологического отношения субъекта к источнику звука. Например, жильца дома может раздражать игра на пианино двумя этажами выше, хотя уровень громкости объективно невелик и у других жильцов жалоб не возникает.

Представляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, - молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - кортиев орган, в котором находятся рецепторы звуковых колебаний - волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами - волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Звук можно представить как колебательные движения упругих тел, распространяющиеся в различных средах в виде волн. Для восприятия звуковой сигнализации сформировался еще сложнее, чем вестибулярный, - рецепторный орган. Формировался он вместе с вестибулярным аппаратом, и поэтому в их строении есть немало подобных структур. Костный и перепончатый каналы в человека образуют 2,5 витка. Слуховая сенсорная система для человека - второй после зрения по значимости и объему информации, получаемой от внешней среды.

Рецепторы слухового анализатора относятся к вторинночутливих. Рецепторные волосковые клетки (у них сокращенный кіноцилій) образуют спиральный орган (кортіїв), что находится в завитці внутреннего уха, в ее завитковій проливе на основной мембране, длина которой - около 3,5 см. Она состоит из 20 000-30 000 волокон (рис. 159). Начиная от овального отверстия, длина волокон постепенно увеличивается (примерно в 12 раз), тогда как толщина их постепенно уменьшается (примерно в 100 раз).

Образование спирального органа завершает текторіальна мембрана (покровная перепонка), расположенная над волосковими клетками. На основной мембране располагаются рецепторные клетки двух типов: внутренние -в один ряд, а внешние - в 3-4. На их мембране, возвращенной в сторону покровной, у внутренних клеток находится 30 - 40 относительно коротких (4-5 мкм) волосков, а у внешних - 65 - 120 более тонких и более длинных. Между отдельными рецепторними клетками нет функциональной равенства. Об этом свидетельствует и морфологическая характеристика: сравнительно небольшая (около 3 500) количество внутренних клеток обеспечивает 90% аферентів кохлеарного (улиткового) нерва; в то время как от 12 000-20 000 внешних клеток отходит только 10 % нейронов. Кроме того, клетки базальной, и

Рис. 159. 1 - лестница пригінка; 2 - барабанные лестницы; С - основная перепонка; 4 - спиральный орган; 5 - средние лестница; 6 - сосудистая полоска; 7 -покровная перепонка; 8 - рейснерова перепонка

особенно средней, спирали и завитки имеют больше нервных окончаний, чем верхушечной спирали.

Пространство завиткової пролива заполнено эндолимфой. Над вестибулярной и основной мембранами в пространстве соответствующих каналов содержится перилімфа. Она сочетается не только с перилимфой вестибулярного канала, но и с субарахноидальным пространством мозга. Состав ее довольно подобный состав спинномозговой жидкости.

Механизм передачи звуковых колебаний

Прежде чем достичь внутреннего уха, звуковые колебания проходят через наружное и среднее. Наружное ухо служит преимущественно для улавливания звуковых колебаний, поддержания постоянства влажности и температуры барабанной перепонки (рис. 160).

За барабанной перепонкой начинается полость среднего уха, с другого конца закрыта перепонкой овального отверстия. Заполненная воздухом полость среднего уха соединяется с полостью носоглотки с помощью слуховой (евстахиевой) трубы, служит для выравнивания давления с обеих сторон барабанной перепонки.

Барабанная перепонка, воспринимая звуковые колебания, передает их на систему расположенных в среднем ухе лодыжек (молоточек, наковальня и стремечко). Косточки не только отправляют колебания на мембрану овального отверстия, но и усиливают колебания звуковой волны. Это происходит вследствие того, что сначала колебания передаются более длинному рычагу, образованном рукояткой молоточка и отростком коваделка. Этому же способствует и различие поверхностей стремінця (около 3,2 o МҐ6 м2) и барабанной перепонки (7 * 10"6). Последнее обстоятельство примерно в 22 раза (70:3,2) усиливает давление звуковой волны на барабанную пе

Рис. 160. : 1 - воздушная передача; 2 - механическая передача; 3 - жидкостная передача; 4 - электрическая передача

ретинку. Но при усилении колебания барабанной перепонки снижается амплитуда волны.

Указанные выше и последующие звукопередавальні структуры создают чрезвычайно высокую чувствительность слухового анализатора: звук воспринимается уже в случае давления на барабанную перепонку более 0,0001 мг1см2. К тому же мембрана завитки перемещается на расстояние, меньше диаметра атома водорода.

Роль мышц среднего уха.

Расположенные в полости среднего уха мышцы (m. tensor timpani и m. stapedius), воздействуя на натяжение барабанной перепонки и ограничивая амплитуду движения стремінця, участвуют в рефлекторной адаптации слухового органа к интенсивности звука.

Мощный звук может повлечь нежелательные последствия как для слухового аппарата (вплоть до повреждения барабанной перепонки и волосков рецепторных клеток, нарушения микроциркуляции в завитці), так и для ЦНС. Поэтому для предотвращения указанных последствий рефлекторно уменьшается натяжение барабанной перепонки. Вследствие этого, с одной стороны, снижается возможность ее травматического разрыва, а с другой, - уменьшается интенсивность колебания косточек и расположенных за ними структур внутреннего уха. Рефлекторную реакцию мышц наблюдают уже через 10 мс от начала действия мощного звука, что оказывается во время звука в 30-40 дБ. Этот рефлекс замыкается на уровне стволовых отделов мозга. В некоторых случаях воздушная волна бывает такой мощной и быстрой (например при взрыве), что защитный механизм не успевает сработать и возникают различные повреждения слуха.

Механизм восприятия звуковых колебаний рецепторними клетками внутреннего уха

Колебания мембраны овального окна сначала передается пери-лимфе вестибулярных лестницы, а затем через вестибулярную мембрану - ендолімфі (рис. 161). На вершине улитки между верхним и нижним перепончатыми каналами содержится соединительное отверстие - гелікотрема, через которое колебание передается перилимфе барабанных лестницы. В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще и круглое отверстие со своей мембраной.

Возникновение волны приводит к движению базилярной и покровной мембраны, после чего волоски рецепторных клеток, которые касаются покровной мембраны, деформируются, вызывая зарождение РП. Хотя волоски внутренних волосковых клеток касаются покровной мембраны, однако они также сгибаются под действием смещений эндолимфы в промежутке между ней и верхушками волосковых клеток.

Рис. 161.

С рецепторними клетками связаны аференти кохлеарного нерва, передача импульса на которые опосредуется медиатором. Главными сенсорными клетками органа Корти, обусловливающих генерирование ПД в слуховых нервах, являются внутренние волосковые клетки. Внешние волосковые клетки іннервовані холинергическим еферентними нервными волокнами. Эти клетки становятся более низкими в случае деполяризации и удлиняются в случае гіперполяризації. Они гіперполяризують под действием ацетилхолина, что выделяют эфферентные нервные волокна. Функция этих клеток заключается в увеличении амплитуды и обострении пиков вибрации базилярной мембраны.

Даже в тишине волокна слухового нерва проводят до 100 имп.1с (фоновая импульсация). Деформация волосков приводит к повышению проницаемости клеток к №+, вследствие чего в нервных волокнах, отходящих от этих рецепторов, частота импульсации возрастает.

Различение высоты тона

Основные характеристики звуковой волны - частота и амплитуда колебаний, а также время воздействия.

Ухо человека способно воспринимать звук в случае колебания воздуха в диапазоне от 16 до 20 000 Гц. Однако наибольшая чувствительность находится в пределах от 1000 до 4000 Гц, а это диапазон человеческого голоса. Именно здесь чувствительность слуха подобная к уровню броуновского шума - 2 * 10"5. В пределах участка слухового восприятия человек может испытывать около 300 000 различных по силе и высоте звуков.

Предполагают наличие двух механизмов различения высоты тонов. Звуковая волна представляет собой колебания молекул воздуха, распространяется в виде продольной волны давления. Передаваясь на перийендолімфу, эта волна, что бежит, между местом возникновения и затухания имеет участок, где колебания характеризуются максимальной амплитудой (рис. 162).

Месторасположение этого амплитудного максимума зависит от частоты колебания: в случае высоких частот он ближе к овальной мембране, а низших - к гелікотреми (проема перепонки). Как следствие амплитудный максимум для каждой слышимой частоты размещается в специфической точке эндолимфатического канала. Так, амплитудный максимум для частоты колебаний 4000 за 1 с находится на расстоянии 10 мм от овального отверстия, а 1000 за 1 с-23 мм. На верхушке (в гелікотреми) содержится амплитудный максимум для частоты 200 за 1 сек.

На указанных явлениях основывается так называемая пространственная (принцип места) теория кодирования высоты сприймального тона в самом рецеп

Рис. 162. а - распространение звуковой волны завиткою; б частотный максимум в зависимости от длины волны: И - 700 гЦ; 2 - 3 000 гЦ

тори. Амплитудный максимум начинает проявляться при частотах свыше 200 за 1 сек. Наивысшая чувствительность уха человека в диапазоне человеческого голоса (от 1000 до 4000 Гц) отображается и морфологическими особенностями соответствующего отдела завитки: в базальных и средних спиралях наблюдают наибольшую плотность афферентных нервных окончаний.

На уровне рецепторов только начинается различение звуковой информации, окончательное ее обработка происходит в нервных центрах. К тому же в диапазоне частот человеческого голоса на уровне нервных центров может оказаться суммация возбуждения нескольких нейронов, поскольку каждый из них в отдельности не способен надежно играть своими разрядами звуковые частоты свыше нескольких сотен герц.

Различение силы звука

более Интенсивные звуки ухо человека воспринимает как громче. Этот процесс начинается уже в самом рецепторе, что структурно составляет целостный орган. Основными клетками, где зарождается РП завитки, считают внутренние волосковые клетки. Внешние клетки, вероятно, немного усиливают это возбуждение, передавая свой РП внутренним.

В пределах наивысшей чувствительности различения силы звука (1000-4000 Гц) человек слышит звук, имеет ничтожно малую энергию (до 1 -12 ерг1с * см). В то же время чувствительность уха к звуковым колебаниям во втором диапазоне волн значительно ниже, и в пределах слышимости (ближе к 20 или 20 000 Гц) пороговая энергия звука должна быть не ниже чем 1 ерг1с - см2.

Слишком громкий звук может вызвать ощущение боли. Уровень громкости, когда человек начинает чувствовать боль, составляет 130-140 дБ над порогом слышимости. Если на ухо длительное время действует звук, особенно громкий, постепенно развивается явление адаптации. Снижение чувствительности достигается прежде всего благодаря сокращению мышцы-натяжителя и стремінцевого мышцы, которые изменяют интенсивность колебания косточек. Кроме того, до многих отделов обработки слуховой информации, в том числе и рецепторных клеток, подходят эфферентные нервы, которые могут изменять их чувствительность и тем самым участвовать в адаптации.

Центральные механизмы обработки звуковой информации

Волокна кохлеарного нерва (рис. 163) достигают кохлеарных ядер. После переключения на клетках кохлеарных ядер ПД поступают до следующего скопления ядер: оливарних комплексов, латеральной петли. Далее волокна направляются в нижних бугорков чотиригорбикового тела и медиальных коленчатых тел - главных релейных отделов слуховой системы таламуса. Потом заходят в таламус, и лишь післязвукові

Рис. 163. 1 - спиральный орган; 2 - переднее ядро завитки; 3 - заднее ядро завитки; 4 - олива; 5 - добавочное ядро; 6 - боковая петля; 7 - нижние бугорки чотиригорбикової пластинки; 8 - присереднє коленчатый тело; 9 - височная область коры

пути поступают к первичной звуковой коры полушарий большого мозга, расположенной в височной доле. Рядом с ней размещены нейроны, принадлежащие к вторичной слуховой зоны коры.

Информация, содержащаяся в звуковом стимуле, пройдя все указанные ядра переключения, многократно (по крайней мере не меньше чем 5 - б раз) "прописывается" в виде нейронного возбуждения. В таком случае на каждом этапе происходит ее соответствующий анализ, к тому же нередко с подключением сенсорных сигналов других, "неслухових", отделов ЦНС. В результате могут возникать рефлекторные ответы, характерные для соответствующего отдела ЦНС. Но распознавание звука, его осмысленное осознание происходят лишь в том случае, если импульсы достигают коры полушарий большого мозга.

Во время действия сложных звуков, что реально существующие в природе, в нервных центрах возникает своеобразная мозаика нейронов, которые возбуждаются одновременно, и происходит запоминание этой мозаичной карты, связанной с поступлением соответствующего звука.

Осознанное оценки различных свойств звука человеком возможно лишь в случае соответствующего предварительной тренировки. Наиболее полно и качественно эти процессы происходят только в корковых отделах. Корковые нейроны активируются не одинаково: одни - контр латеральным (противоположным) ухом, другие - іпсилатеральними стимулами, третьи - только при одновременной стимуляции обеих ушей. Возбуждаются они, как правило, целыми звуковыми группами. Повреждение этих отделов ЦНС затрудняет восприятие речи, пространственную локализацию источника звука.

Широкие связи слуховых участков ЦНС способствуют взаимодействия сенсорных систем и образованию различных рефлексов. Например, при возникновении резкого звука происходит бессознательный поворот головы и глаз в сторону его источника и перераспределение мышечного тонуса (стартовая позиция).

Слуховая ориентация в пространстве.

Довольно точная слуховая ориентация в пространстве возможна только в случае бінаурального слуха. В таком случае большое значение имеет то обстоятельство, что одно ухо находится дальше от источника звука. Учитывая то, что в воздушной среде звук распространяется со скоростью 330 м1с, 1 см он проходит за 30 мс, и малейшее отклонение источника звука от средней линии (даже меньше чем 3°) оба уха уже воспринимают с разницей во времени. То есть в этом случае имеет значение фактор разделения и по времени, и по интенсивности звука. Ушные раковины как рупоры способствуют концентруванню звуков, а также ограничивают поток звуковых сигналов с тыльной поверхности головы.

нельзя исключить участие формы ушной раковины в некоторой индивидуально обусловленной смене звуковых модуляций. Кроме того, ушная раковина и наружный слуховой ход, имея собственную резонансную частоту около 3 кГц, усиливают интенсивность звука для тонов, подобных к диапазону голоса человека.

Остроту слуха измеряют с помощью аудиометра, основывается на поступлении чистых тонов различной частоты через наушники и регистрации порога чувствительности. Снижение чувствительности (глухота) может быть связано с нарушением состояния передающих сред (начиная с наружного слухового хода и барабанной перепонки) или волосковых клеток и нейронных механизмов передачи и восприятия.