Зрительный анализатор строение глаза оптическая система глаза. Строение зрительного анализатора. Зрачок - отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок

Чтобы взаимодействовать с окружающим миром, человеку необходимо принимать и анализировать информацию из внешней среды. Для этого природа и наделила его органами чувств. Их шесть: глаза, уши, язык, нос, кожа и Таким образом, человек формирует представление обо всем, что его окружает и о себе самом в результате зрительных, слуховых, обонятельных, осязательных, вкусовых и кинестетических ощущений.

Вряд ли можно утверждать, что какой-то орган чувств является более значимым, нежели остальные. Они дополняют друг друга, создавая полную картину мира. Но то, что большую часть всей информации - до 90%! - люди воспринимают с помощью глаз - это факт. Чтобы понимать, как эта информация попадает в мозг и как происходит ее анализ, нужно представлять себе строение и функции зрительного анализатора.

Особенности зрительного анализатора

Благодаря зрительному восприятию мы узнаем о размерах, форме, расцветке, взаимному расположению объектов окружающего мира, их движении или неподвижности. Это сложный и многоэтапный процесс. Строение и функции зрительного анализатора - системы, осуществляющей получение и обработку зрительной информации, и тем самым обеспечивающей зрение - очень сложны. Изначально в нем можно выделить периферическую (воспринимающую исходные данные), проводящую и анализирующую части. Получение информации осуществляется посредством рецепторного аппарата, включающего в себя глазное яблоко и вспомогательные системы, а далее она отправляется с помощью зрительных нервов в соответствующие центры мозга, где происходит ее обработка и формируются зрительные образы. Все отделы зрительного анализатора будут рассмотрены в статье.

Как устроен глаз. Наружный слой глазного яблока

Глаза являются парным органом. Каждое глазное яблоко по форме напоминает слегка приплюснутый шар и состоит из нескольких оболочек: внешней, средней и внутренней, окружающих заполненные жидкостью полости глаза.

Внешняя оболочка - это плотная фиброзная капсула, сохраняющая форму глаза и защищающая его внутренние структуры. Кроме того, к ней осуществляется крепление шести двигательных мышц глазного яблока. Внешняя оболочка состоит из прозрачной передней части - роговицы, и задней, светонепроницаемой - склеры.

Роговица является преломляющей средой глаза, она выпуклая, имеет вид линзы и состоит, в свою очередь, из нескольких слоев. В ней нет кровеносных сосудов, но есть множество нервных окончаний. Белая или голубоватая склера, видимую часть которой обычно называют белком глаза, сформирована из соединительной ткани. К ней и крепятся мышцы, обеспечивающие повороты глаз.

Средний слой глазного яблока

Средняя сосудистая оболочка участвует в обменных процессах, обеспечивая питание глаза и вывод продуктов обмена. Передняя, самая заметная ее часть - это радужка. Пигментное вещество, находящееся в радужной оболочке, а точнее, его количество, определяет индивидуальный оттенок глаз человека: от голубого, если его мало, до карего, если достаточно. Если пигмент отсутствует, как бывает при альбинизме, то становится видно сплетение сосудов, и радужка приобретает красный цвет.

Радужная оболочка расположена сразу за роговицей, ее основу составляют мышцы. Зрачок - округлое отверстие по центру радужки - благодаря этим мышцам регулирует проникновение света в глаз, расширяясь при недостаточном освещении и сужаясь при слишком ярком. Продолжением радужки является Функцией этой части зрительного анализатора является выработка жидкости, питающей те отделы глаза, которые не имеют собственных сосудов. Кроме того, ресничное тело оказывает непосредственное влияние на толщину хрусталика посредством специальных связок.

В заднем отделе глаза в среднем слое располагается хориоидея, или собственно сосудистая почти целиком состоящая из кровеносных сосудов разного диаметра.

Сетчатка

Внутренний, самый тонкий слой, - это сетчатая оболочка, или сетчатка, образованная нервными клетками. Здесь происходит непосредственное восприятие и первичный анализ зрительной информации. Задняя часть сетчатки состоит из специальных фоторецепторов, называемых колбочками (их 7 млн) и палочками (130 млн). Именно они отвечают за восприятие предметов глазом.

Колбочки отвечают за распознавание цвета и обеспечивают центральное зрение, позволяют разглядеть мельчайшие детали. Палочки, будучи более чувствительными, дают возможность человеку видеть в черно-белых цветах в условиях плохого освещения, а также отвечают за периферическое зрение. Больше всего колбочек сосредоточено в так называемом желтом пятне напротив зрачка, несколько выше входа зрительного нерва. Это место соответствует максимальной остроте зрения. Сетчатка, как, впрочем, и все отделы зрительного анализатора, строение имеет непростое - в ее структуре выделяют 10 слоев.

Строение полости глаза

Глазное ядро состоит из хрусталика, стекловидного тела и камер, заполненных жидкостью. Хрусталик выглядит как выпуклая с двух сторон прозрачная линза. Он не имеет ни сосудов, ни нервных окончаний и подвешен к отросткам окружающего его ресничного тела, мышцы которого изменяют его кривизну. Такая способность называется аккомодацией и помогает глазу сфокусироваться на близких или, наоборот, далеких предметах.

Позади хрусталика, прилегая к нему и далее ко всей поверхности сетчатки, расположено Это прозрачное студенистое вещество, заполняющее большую часть объема В составе этой гелеобразной массы 98% - вода. Назначение данного вещества - проведение световых лучей, компенсация перепадов внутриглазного давления, поддержка постоянства формы глазного яблока.

Передняя камера глаза ограничена роговицей и радужкой. Она посредством зрачка соединяется с более узкой задней камерой, простирающейся от радужки до хрусталика. Обе полости заполнены внутриглазной жидкостью, которая свободно циркулирует между ними.

Преломление света

Система зрительного анализатора такова, что изначально лучи света преломляются и фокусируются на роговице и проходят через переднюю камеру до радужки. Через зрачок центральная часть светового потока попадает на хрусталик, где происходит более точная его фокусировка, а потом через стекловидное тело - на сетчатку. На сетчатке проецируется изображение предмета в уменьшенном и притом перевернутом виде, а энергия световых лучей фоторецепторами преобразуется в нервные импульсы. Информация далее через глазной нерв поступает в головной мозг. Место на сетчатке, сквозь которое проходит зрительный нерв, лишено фоторецепторов, поэтому называется слепым пятном.

Двигательный аппарат органа зрения

Глаз, чтобы своевременно реагировать на раздражители, должен быть подвижным. За движение зрительного аппарата отвечают три пары глазодвигательных мышц: две пары прямых и одна косых. Эти мышцы, пожалуй, самые быстродействующие в организме человека. Контролирует движения глазного яблока глазодвигательный нерв. Он связывает с нервной системой четыре из шести глазных мышц, обеспечивая их адекватную работу и согласованные движения глаз. Если глазодвигательный нерв по какой-то причине перестает нормально функционировать, это выражается в различных симптомах: косоглазии, опущении века, двоении предметов, расширении зрачка, нарушениях аккомодации, выпячивании глаз.

Защитные системы глаза

Продолжая такую объемную тему, как строение и функции зрительного анализатора, нельзя не упомянуть о тех системах, которые его оберегают. Глазное яблоко расположено в костной полости - глазнице, на амортизирующей жировой подушке, где оно надежно защищено от ударного воздействия.

Кроме глазницы, в защитный аппарат органа зрения входят верхнее и нижнее веки с ресницами. Они предохраняют глаза от попадания извне различных предметов. Кроме того, веки помогают равномерному распределению по поверхности глаза слезной жидкости, удаляют при мигании с роговицы мельчайшие частицы пыли. Брови тоже в какой-то степени выполняют защитные функции, предохраняя глаза от стекающего со лба пота.

В верхнем наружном углу глазницы расположены слезные железы. Их секрет защищает, питает и увлажняет роговицу, а также обладает дезинфицирующим действием. Лишняя жидкость через слезный проток стекает в носовую полость.

Дальнейшее проведение и окончательная обработка информации

Проводниковый отдел анализатора состоит из пары зрительных нервов, которые выходят из глазниц и в полости черепа входят в специальные каналы, образуя далее неполный перекрест, или хиазму. Изображения от височной (наружной) части сетчатки остаются на той же стороне, а от внутренней, носовой - перекрещиваются и передаются на противоположную сторону мозга. В итоге получается, что правые поля зрения обрабатываются левым полушарием, а левые - правым. Такое пересечение необходимо для формирования объемного зрительного образа.

После перекреста нервы проводникового отдела продолжаются в зрительных трактах. Визуальная информация поступает ту часть коры больших полушарий мозга, которая отвечает за ее обработку. Такая зона расположена в затылочной области. Там происходит окончательное преобразование поступившей информации в зрительное ощущение. Это и есть центральная часть зрительного анализатора.

Итак, строение и функции зрительного анализатора таковы, что нарушения на любом из его участков, будь то воспринимающая, проводящая или анализирующая зоны, влекут сбой его работы в целом. Это очень многогранная, тонкая и совершенная система.

Нарушения зрительного анализатора - врожденные или приобретенные, - в свою очередь, приводят к значительным сложностям в познании действительности и ограничению возможностей.

Зрительный анализатор человека является сложной нервно-рецепторной системой, предназначенной для восприятия и анализа световых раздражений. Согласно И. П. Павлову, в нем, как и в любом анализаторе, имеются три основных отдела - рецепторный, проводниковый и корковый. В периферических рецепторах - сетчатке глаза происходят восприятие света и первичный анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от про-приорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужной оболочке и цилиарном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

Источником деятельности зрительного анализатора является превращение световой энергии в нервный процесс, возникающий в органе чувств. По классическому определению В. И. Ленина, «... ощущение есть действительно непосредственная связь сознания с внешним миром, есть превращение энергии внешнего раздражения в факт сознания. Это превращение каждый человек миллионы раз наблюдал и наблюдает действительно на каждом шагу».

Адекватным раздражителем для органа зрения служит энергия светового излучения. Человеческий глаз воспринимает свет с длиной волны от 380 до 760 нм. Однако в специально созданных условиях этот диапазон заметно расширяется в сторону инфракрасной части спектра до 950 нм и в сторону ультрафиолетовой части - до 290 нм.

Такой диапазон световой чувствительности глаза обусловлен формированием его фоторецепторов приспособительно к солнечному спектру. Земная атмосфера на уровне моря полностью поглощает ультрафиолетовые лучи с длиной волны менее 290 нм, часть ультрафиолетового излучения (до 360 нм) задерживается роговицей и особенно хрусталиком.

Ограничение восприятия длинноволнового инфракрасного излучения связано с тем, что внутренние оболочки глаза сами излучают энергию, сосредоточенную в инфракрасной части спектра. Чувствительность глаза к этим лучам привела бы к снижению четкости изображения предметов на сетчатке за счет освещения полости глаза светом, исходящим из его оболочек.

Зрительный акт является сложным нейрофизиологическим процессом, многие детали которого еще не выяснены. Он состоит из 4 основных этапов.

1.С помощью оптических сред глаза (роговица, хрусталик) на фоторецепторах сетчатки образуется действительное, но инвертированное (перевернутое) изображение предметоввнешнего мира.

2. Под воздействием световой эвергии в фоторецепторах (колбочки, палочки) происходит сложный фотохимический процесс, приводящий к распаду зрительных пигментов с последующей их регенерацией при участии витамина А и других веществ. Этот фотохимический процесс способствует трансформации световой энергии в нервные импульсы. Правда, до сих пор неясно, каким образом зрительный пурпур участвует в возбуждении фоторецепторов.


Светлые, темные и цветные детали изображения предметов по-разному возбуждают фоторецепторы сетчатки и позволяют воспринимать свет, цвет, форму и пространственные отношения предметов внешнего мира.

3. Импульсы, возникшие в фоторецепторах, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4. В корковых центрах происходит превращение энергии нервного импульса в зрительное ощущение и восприятие. Но каким образом происходит это преобразование, до сих пор неизвестно.

Таким образом, глаз является дистантным рецептором, дающим обширную информацию о внешнем мире без непосредственного контакта с его предметами. Тесная связь с другими анализаторными системами позволяет с помощью зрения на расстоянии получить представление о свойствах предмета, которые могут быть восприняты только другими рецепторами - вкусовыми, обонятельными, тактильными. Так, вид лимона и сахара создает представление о кислом и сладком, вид цветка - о его запахе, снега и огня - о температуре и т. п. Сочетанная и взаимная связь различных рецепторных систем в единую совокупность создается в процессе индивидуального развития.

Дистантный характер зрительных ощущений оказывал существенное влияние на процесс естественного отбора, облегчая добывание пищи, своевременно сигнализируя об опасности и способствуя свободной ориентации в окружающей обстановке. В процессе эволюции шло совершенствование зрительных функций, и они стали важнейшим источником информации о внешнем мире.

Основой всех зрительных функций является световая чувствительность глаза. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области желтого пятна и особенно в центральной ямке. Здесь сетчатка представлена только нейроэпителием и состоит исключительно из высокодифференцированных колбочек. При рассматривании любого предмета глаз устанавливается таким образом, что изображение предмета всегда проецируется на область центральной ямки. На остальной части сетчатки преобладают менее дифференцированные фоторецепторы - палочки, и чем дальше от центра проецируется изображение предмета, тем менее отчетливо оно воспринимается.

В связи с тем, что сетчатка животных, ведущих ночной образ жизни, состоит преимущественно из палочек, а дневных животных - из колбочек, Шульце в 1868 г. высказал предположение о двойственной природе зрения, согласно которому дневное зрение осуществляется колбочками, а ночное - палочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать ощущение цветности; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету и функционируют только при хорошем освещении.

В зависимости от степени освещенности можно выделить три разновидности функциональной способности глаза.

1. Дневное (фотопическое) зрение (от греч. photos - свет и opsis - зрение) существляется колбочковым аппаратом глаза при большой интенсивности освещения. Оно характеризуется высокой остротой зрения и хорошим восприятием цвета.

2. Сумеречное (мезопическое) зрение (от греч. mesos - средний, промежуточный) осуществляется палочковым аппаратом глаза при слабой степени освещенности (0,1-0,3лк). Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов. Отсутствие цветовосприятия при слабом освещении хорошо отражено в пословице «ночью все кошки серы».

3. Ночное (скотопическое) зрение (от греч. skotos - темнота) также осуществляется палочками при пороговой и надпороговой освещенности. Оно сводится только к ощущению света.

Таким образом, двойственная природа зрения требует дифференцированного подхода к оценке зрительных функций. Следует различать центральное и периферическое зрение.

Центральное зрение осуществляется колбочковым аппаратом сетчатки. Оно характеризуется высокой остротой зрения и восприятием цвета. Другой важной чертой центрального зрения является визуальное восприятие формы предмета. В осуществлении форменного зрения решающее значение принадлежит корковому отделу зрительного анализатора. Так, среди рядов точек человеческий глаз легко формирует их в виде треугольников, наклонных линий за счет именно корковых ассоциаций (рис. 46).

Рис. 46. Графическая модель, демонстрирующая участие коркового отдела зрительного анализатора в восприятии формы предмета.

Значение коры головного мозга в осуществлении форменного зрения подтверждают случаи потери способности распознавать форму предметов, наблюдаемые иногда при повреждении затылочных областей мозга.

Периферическое палочковое зрение служит для ориентации в пространстве и обеспечивает ночное и сумеречное зрение.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Острота зрения

Для распознавания предметов внешнего мира необходимо не только выделить их по яркости или цвету на окружающем фоне, но и различить в них отдельные детали. Чем мельче детали может воспринимать глаз, тем выше его острота зрения (visus). Под остротой зрения принято понимать способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии.

При рассматривании темных точек на светлом фоне их изображения на сетчатке вызывают возбуждение фоторецепторов, количественно отличающееся от возбуждения, вызываемого окружающим фоном. В связи с этим становится различимым светлый промежуток между точками и они воспринимаются как раздельные. Величина промежутка между изображениями точек на сетчатке зависит как от расстояния между ними на экране, так и от удаленности их от глаза. В этом легко убедиться, отдаляя книгу от глаз. Вначале исчезают наиболее мелкие промежутки между деталями букв и последние становятся неразборчивыми, затем исчезают промежутки между словами и строка видится в виде линии, и, наконец, происходит слияние строк в общий фон.

Взаимосвязь между величиной рассматриваемого объекта и удаленностью последнего от глаза характеризует угол, под которым виден объект. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Острота зрения обратно пропорциональна углу зрения: чем меньше угол зрения, тем выше острота зрения. Минимальный угол зрения, позволяющий раздельно воспринимать две точки, характеризует остроту зрения исследуемого глаза.

Определение минимального угла зрения для нормального глаза человека имеет уже трехсотлетнюю историю. Еще в 1674 г. Гук с помощью телескопа установил, что минимальное расстояние между звездами, доступное для их раздельного восприятия невооруженным глазом, равно 1 угловой минуте. Через 200 лет, в 1862 г., Снеллен использовал эту величину при построении таблиц для определения остроты зрения, приняв угол зрения в 1 мин. за физиологическую норму. Только в 1909 г. на Интернациональном конгрессе офтальмологов в Неаполе угол зрения 1 мин был окончательно утвержден в качестве международного эталона для определения нормальной остроты зрения, равной единице. Однако эта величина не предельная, а скорее характеризующая нижнюю границу нормы. Встречаются люди с остротой зрения 1,5; 2,0; 3,0 и более единиц. Гумбольт описал жителя Бреслау с остротой зрения 60 единиц, который невооруженным глазом различал спутники Юпитера, видимые с земли под углом зрения 1 с.

Предел различительной способности глаза во многом обусловлен анатомическими размерами фоторецепторов желтого пятна. Так, угол зрения 1 мин соответствует на сетчатке линейной величине 0,004 мм, что, например, равно диаметру одной колбочки. При меньшем расстоянии изображение падает на одну или две соседние колбочки и точки воспринимаются слитно. Раздельное восприятие точек возможно только в том случае, если между двумя возбужденными колбочками находится одна интактная.

В связи с неравномерным распределением колбочек в сетчатке различные ее участки неравноценны по остроте зрения. Наиболее высокая острота зрения в области центральной ямки желтого пятна, а по мере удаления от нее быстро падает. Уже на расстоянии 10° от центральной ямки она равна всего 0,2 и еще более снижается к периферии, поэтому правильнее говорить не об остроте зрения вообще, а об остроте центрального зрения.

Острота центрального зрения меняется в различные периоды жизненного цикла. Так, у новорожденных она очень низка. Форменное зрение появляется у детей после установления устойчивой центральной фиксации. В 4-месячном возрасте острота зрения несколько меньше 0,01 и к году постепенно достигает 0,1. Нормальной острота зрения становится к 5-15 годам. В процессе старения организма происходит постепенное падение остроты зрения. По данным Лукиша, если принять за 100% остроту зрения в 20-летнем возрасте, то в 40 лет она снижается до 90%, в 60 лет - до 74% и к 80 годам - до 42 %.

Для исследования остроты зрения применяются таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используются буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5 мин, а его детали - под углом 1 мин. Под деталью знака понимается как толщина линий, составляющих оптотип, так и промежуток между этими линиями. Из рис. 47 видно, что все линии, составляющие оптотип Е, и промежутки между ними ровно в 5 раз меньше размеров самой буквы.


Рис.48. Принцип построения оптотипа Ландольта

В 1909 г. на XI Международном конгрессе офтальмологов кольца Ландольта были приняты в качестве интернационального оптотипа. Они входят в большинство таблиц, получивших практическое применение.

В Советском Союзе наиболее распространены таблицы С. С. Головина и Д. А. Сивцева, в которые наряду с таблицей,составленной из колец Ландольта, входит таблица с буквенными оптотипами (рис. 49).


В этих таблицах впервые буквы были подобраны не случайно, а на основании углубленного изучения степени их узнаваемости большим числом людей с нормальным зрением. Это, естественно, повысило достоверность определения остроты зрения. Каждая таблица состоит из нескольких (обычно 10-12) рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но посте­пенно уменьшаются от первого ряда к последнему. Таблицы рассчитаны для исследования остроты зрения с расстояния 5 м. На этом расстоянии детали оптотипов 10-го ряда видны под углом зрения 1 мин. Следовательно, острота зрения глаза, различающего оптотипы этого ряда, будет равна единице. Если острота зрения иная, то определяют, в каком ряду таблицы исследуемый различает знаки. При этом остроту зрения высчитывают по формуле Снеллена: visus = - , где d - расстояние, с кото­рого проводится исследование, a D - расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).

Например, исследуемый с расстояния 5 м читает 1-й ряд. Нормальный глаз различает знаки этого ряда с 50 м. Следовательно, vi-5м sus= =0,1.

Изменение величины оптотипов выполнено в арифметической прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка - 0,1, вторая - 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й - 2 единицам.

Иногда значение остроты зрения выражается в простых дробях, например 5 / 5 о, 5 /25, где числитель соответствует расстоянию, с которого проводилось исследование, а знаменатель - расстоянию, с которого видит оптотипы этого ряда нормальный глаз. В англо-американской литературе расстояние обозначается в футах, и исследование обычно проводится с расстояния 20 футов, в связи с чем обозначения vis = 20 /4o соответствуют vis = 0,5 и т. п.

Острота зрения, соответствующая чтению данной строки с расстояния 5 м, проставлена в таблицах в конце каждого ряда, т. е. справа от оптотипов. Если исследование проводится с меньшего расстояния, то пользуясь формулой Снеллена, нетрудно рассчитать остроту зрения для каждого ряда таблицы.

Для исследования остроты зрения у детей дошкольного возраста используются таблицы, где оптотипами служат рисунки (рис. 50).


Рис. 50. Таблицы для определения остроты зрения у детей.

В последнее время для ускорения процесса исследования остроты зрения выпускаются телеуправляемые проекторы оптотипов, что позволяет врачу, не отходя от исследуемого, демонстрировать на экране любые комбинации оптотипов. Такие проекторы (рис. 51) обычно комплектуются с другими аппаратами для исследования глаза.


Рис. 51. Комбайн для исследования функций глаза.

Если острота зрения исследуемого меньше 0,1, то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого исследуемого постепенно подводят к таблице, или, что более удобно, приближают к нему оптотипы 1-го ряда, пользуясь разрезными таблицами или специальными оптотипами Б. Л. Поляка (рис. 52).

Рис. 52. Оптотипы Б. Л. Поляка.

С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов первого ряда таблицы и человек с нормальной остротой зрения может их различать с расстояния 50 м.

Остроту зрения при этом вычисляют по общей формуле. Например, если исследуемый видит оптотипы 1-го ряда или считает количество демонстрируемых пальцев с расстояния 3 м, то его visus= = 0,06.

Если острота зрения исследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: visus = c46T пальцев на 10 см.

Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: visus= - (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят с помощью офтальмоскопа (рис. 53).

Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если исследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают visus=- proectia lucis certa, или сокращенно - р. 1. с.

Правильная проекция света свидетельствует о нормальной функции периферических отделов сетчатки и является важным критерием при определении показаний к операции при помутнении оптических сред глаза.

Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такая острота зрения оценивается как светоощущение с неправильной светопроекцией и обозначается visus = - pr. 1. incerta. Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (visus = 0). Для правильной оценки изменений функционального состояния глаза во время лечения, при экспертизе трудоспособности, освидетельствовании военнообязанных, профессиональном отборе и т. п. необходима стандартная методика исследования остроты зрения для получения соизмеримых результатов. Для этого помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию.

Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками.

Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1,2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза в отдельности. Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуется, заслоняют щитком из белого, непрозрачного, легко дезинфицируемого материала. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза.

Оптотипы на таблицах показывают указкой, длительность экспозиции каждого знака не более 2-3 с.

Остроту зрения оценивают по тому ряду, где были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3-0,6, и двух знаков в рядах 0,7-1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная.

Кроме описанного субъективного метода, имеется и объективный метод определения остроты зрения. Он основан на появлении непроизвольного нистагма при рассматривании движущихся объектов. Определение оптокинетического нистагма проводят на нистагмаппарате, в котором через смотровое окно видна лента движущегося барабана с объектами разной величины. Исследуемому демонстрируют подвижные объекты, постепенно уменьшая их размеры. Наблюдая за глазом в роговичный микроскоп, определяют наименьшую величину объектов, которые вызывают нистагмоидные движения глаза.

Этот метод пока еще не нашел широкого применения в клинике и используется в случаях экспертизы и при исследовании маленьких детей, когда субъективные методы определения остроты зрения недостаточно надежны.

Цветоощущение

Способность глаза различать цвета имеет важное значение в различных областях жизнедеятельности. Цветовое зрение не только существенно расширяет информативные возможности зрительного анализатора, но и оказывает несомненное влияние на психофизиологическое состояние организма, являясь в определенной степени регулятором настроения. Велико значение цвета в искусстве: живописи, скульптуре, архитектуре, театре, кино, телевидении. Цвет широко используется в промышленности, транспорте, научных исследованиях и многих других видах народного хозяйства.

Большое значение цветовое зрение имеет для всех отраслей клинической медицины и особенно офтальмологии. Так, разработанный А. М. Водовозовым метод исследования глазного дна в свете различного спектрального состава (офтальмохромоскопия) позволил проводить «цветовую препаровку» тканей глазного дна, что значительно расширило диагностические возможности офтальмоскопии, офтальмофлюорографии.

Ощущение цвета, как и ощущение света, возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

В 1666 г. Ньютон, пропуская солнечный свет через трехгранную призму, обнаружил, что он состоит из ряда цветов, переходящих друг в друга через множество тонов и оттенков. По аналогии со звуковой гаммой, состоящей из 7 основных тонов, Ньютон выделил в спектре белого цвета 7 основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Восприятие глазом того или иного цветового тона зависит от длины волны излучения. Можно условно выделить три группы цветов:

1) длинноволновые - красный и оранжевый;

2) средневолновые - желтый и зеленый;

3) коротковолновые - голубой, синий, фиолетовый.

За пределами хроматической части спектра располагается невидимое невооруженным глазом длинноволновое - инфракрасное и коротковолновое - ультрафиолетовое излучение.

Все многообразие наблюдаемых в природе цветов разделяется на две группы - ахроматические и хроматические. К ахроматическим относятся белый, серый и черный цвета, где средний человеческий глаз различает до 300 различных оттенков. Все ахроматические цвета характеризует одно качество - яркость, или светлота, т. е. степень близости его к белому цвету.

К хроматическим цветам относятся все тона и оттенки цветного спектра. Они характеризуются тремя качествами: 1) цветовым тоном, который зависит от длины волны светового излучения; 2) насыщенность, опpeделяемой долей основного тона и примесей к нему; 3) яркостью, или светлостью, цвета, т.е. степенью близости его к белому цвету. Различные комбинации этих характеристик дают несколько десятков тысяч оттенков хроматического цвета.

В природе редко приходится видеть чистые спектральные тона. Обычно цветность предметов зависит от отражения лучей смешанного спектрального состава, а возникающие зрительные ощущения являются следствием суммарного эффекта.

Каждый из спектральных цветов имеет дополнительный цвет, при смешивании с которым образуется ахроматический цвет - белый или серый. При смешивании цветов в иных комбинациях возникает ощущение хроматического цвета промежуточного тона.

Все многообразие цветовых оттенков можно получить путем смешивания только трех основных цветов - красного, зеленого и синего.

Физиология цветоощущения окончательно не изучена. Наибольшее распространение получила трехкомпонентная теория цветного зрения, выдвинутая в 1756 г. великим русским ученым М. В. Ломоносовым. Она подтверждена работами Юнга (1807), Максвелла (1855) и особенно исследованиями Гельмгольца (1859). Согласно этой теории, в зрительном анализаторе допускается существование трех видов цветоощущающих компонентов, различно реагирующих на свет разной длины волны.

Цветоощущающие компоненты I типа сильнее всего возбуждаются длинными световыми волнами, слабее - средними и еще слабее - короткими. Компоненты II типа сильнее реагируют на средние световые волны, более слабую реакцию дают на длинные и короткие световые волны. Компоненты III типа слабо возбуждаются длинными, сильнее - средними и больше всего - короткими волнами. Таким образом, свет любой длины волны возбуждает все три цветоощущающих компонента, но в различной степени (рис. 54, см. цветную вклейку).

При равномерном возбуждении всех трех компонентов создается ощущение белого цвета. Отсутствие раздражения дает ощущение черного цвета. В зависимости от степени возбуждения каждого из трех компонентов суммарно получается все многообразие цветов и их оттенков.

Рецепторами цвета в сетчатке являются колбочки, но остается невыясненным, локализуются ли специфические цветоощущающие компоненты в различных колбочках или все три вида имеются в каждой из них. Существует предположение, что в ощущении цвета участвуют также биполярные клетки сетчатки и пигментный эпителий.

Трехкомпонентная теория цветного зрения, как и другие (четырех- и даже семикомпонентные) теории, не может полностью объяснить цветоощущение. В частности, эти теории недостаточно учитывают роль коркового отдела зрительного анализатора. В связи с этим их нельзя считать законченными и совершенными, а следует рассматривать как наиболее удобную рабочую гипотезу.

Расстройства цветоощущения. Расстройства цветового зрения бывают врожденными и приобретенными. Врожденные именовались раньше дальтонизмом (по имени английского ученого Дальтона, страдавшего этим дефектом зрения и впервые его описавшим). Врожденные аномалии цветоощущения наблюдаются довольно часто - у 8% мужчин и 0,5% женщин.

В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазие и, а люди, им обладающие, - нормальными трихроматами.

Расстройства цветоощущения могут проявляться либо аномальным восприятием цветов, которое называется цветоаномалией, или аномальной трихромазией, либо полным выпадением одного из трех компонентов - дихрома-зией. В редких случаях наблюдается только черно-белое восприятие - монохромазия.

Каждый из трех цветорецепторов в зависимости от порядка их расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (протос), зеленый - второй (дейторос) и синий - третий (тритос). Таким образом, аномальное восприятие красного цвета называется протаномалиеи, зеленого - дейтераномалией, синего - тританомалией, а людей с таким расстройством называют соответственно протаномалами, дейтераномалами и тританомалами.

Дихромаз^я наблюдается также в трех формах: а) протанопии, б) дейтеранопии, в) тританопии. Лиц с данной патологией называют протанопами, дейтеранопами и тританопами.

Среди врожденных расстройств цветоощущения наиболее часто встречается аномальная трихромазия. На ее долю приходится до 70% всей патологии цветоощущения.

Врожденные расстройства цветоощущения всегда двусторонние и не сопровождаются на­рушением других зрительных функций. Они обнаруживаются только при специальном исследовании.

Приобретенные расстройства цветоощущения встречаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы. Они бывают в одном или обоих глазах, выражаются в нарушении восприятия всех трех цветов, обычно сопровождаются расстройством других зрительных функций и в отличие от врожденных расстройств могут претерпевать изменения в процессе заболевания и его лечения.

К приобретенным расстройствам цветоощущения относится и видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают: эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Эритропсия и цианопсия наблюдаются нередко после экстракции катаракты, а ксантопсия и хлоропсия - при отравлениях и интоксикациях.

Диагностика. Для работников всех видов транспорта, рабочих ряда отраслей промышленности и при службе в некоторых родах войск необходимо хорошее цветоощущение. Выявление его расстройств - важный этап профессионального отбора и освидетельствования военнообязанных. Следует учитывать, что лица с врожденным расстройством цветоощущения не предъявляют жалоб, не чувствуют аномального цветовосприятия и обычно правильно называют цвета. Ошибки цветовосприятия проявляются только в определенных условиях при одинаковой яркости или насыщенности разных цветов, плохой видимости, малой величине объектов. Для исследования цветового зрения применяются два основных метода: специальные пигментные таблицы и спектральные приборы - аномалоскопы. Из пигментных таблиц наиболее совершенными признаны полихроматические таблицы проф. Е."Б. Рабкина, так как они позволяют установить не только вид, но и степень расстройства цветоощущения (рис. 55 см. цветную вклейку).

В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Таблица содержит набор тестов. Каждая таблица состоит из кружков основного и дополнительных цветов. Из кружков основного цветаразной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна людям с расстройством цветоощущения, так как цветослепой человек не может прибегнуть к помощи различия тона и производит уравнивание по насыщенности. В некоторых таблицах имеются скрытые цифры или фигуры, которые могут различать только лица с расстройством цветоощущения. Это повышает точность исследования и делает его более объективным.

Исследование проводят только при хорошем дневном освещении. Исследуемого усаживают спиной к свету на расстоянии 1 м от таблиц. Врач поочередно демонстрирует тесты таблицы и предлагает называть видимые знаки. Длительность экспозиции каждого теста таблицы 2-3 с, но не более 10 с. Первые два теста правильно читают лица как с нормальным, так и расстроенным цветоощущением. Они служат для контроля и объяснения исследуемому его задачи. Показания по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам. Анализ полученных данных позволяет определить диагноз цветовой слепоты или вид и степень цветоаномалии.

К спектральным, наиболее тонким методам диагностики расстройств цветового зрения относится аномалоскопия. (от греч. anomalia - неправильность, skopeo - смотрю).

В основе действия аномалоскопов лежит сравнение двухцветных полей, из которых одно постоянно освещается монохроматическими желтыми лучами с изменяемой яркостью; другое поле, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, исследуемый должен получить желтый цвет, по тону и яркости соответствующий контрольному. Нормальные трихроматы легко решают эту задачу, а цветоаномалы - нет.

В СССР изготовляется аномалоскоп конструкции Е. Б. Рабкина, при помощи которого при врожденных и приобретенных расстройствах цветового зрения можно проводить исследования во всех участках видимого спектра.

Зрительный анализатор является важнейшим среди других, потому что дает человеку более 80% всей информации об окружающей среде.

Зрительная сенсорная система состоит из трех частей:

Проводниковой, состоящий из чувствительного правого и левого зрительного нерва, частичного перекреста нервных зрительных путей правого и левого глаза (хиазма), зрительного тракта, вносят много переключений, когда проходит через зрительные бугорки чотиригорбикового тела среднего мозга и таламус (латеральные коленчатые тела) промежуточного мозга и далее продолжается до коры головного мозга;

Центральной, находящийся в затылочных областях коры головного мозга и где именно расположены высшие зрительные центры.

Благодаря хиазмам зрительных путей от правого и левого глаза достигается эффект надежности зрительного анализатора, так как воспринимаемая глазами зрительная информация делится примерно поровну таким образом, что от правых половин обоих глаз она собирается в один зрительный тракт, который направляется в центр зрения левого полушария коры головного мозга, а от левых половин обоих глаз — в центр зрения правого полушария коры головного мозга.

Функцией зрительного анализатора является зрение , то бы то способность воспринимать свет, величину, взаимное расположение и расстояние между предметами с помощью органов зрения, каким является пара глаз.

Каждый глаз содержится в углублении (глазнице) черепа и имеет вспомогательный аппарат глаза и глазное яблоко.

Вспомогательный аппарат глаза обеспечивает защиту и движения глаз и включает: брови, верхние и нижние веки с ресницами, слезная железы и двигательные мышцы. Глазное яблоко сзади окружено жировой клетчаткой, которая играет роль мягкой эластичной подушки. Над верхним краем глазниц размещены брови, волосы которых защищает глаза от жидкости (пота, воды), что может течь по лбу.

Спереди глазное яблоко покрыто верхняя и нижняя веки, защищающие глаз спереди и способствуют его увлажнению. Вдоль переднего края век растут волосы, что образует ресницы, раздражение которых вызывает защитный рефлекс смыкания век (закрывание глаз). Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта кон ‘юнктивою (слизистой оболочкой). В верхнем латеральном (внешнем) края каждой глазницы расположена слезная железа, которая выделяет жидкость, охраняющий глаз от высыхания и обеспечивает чистоту склеры и прозрачность роговицы. Равномерному распределению слезной жидкости на поверхности глаза способствует мигание век. Каждое глазное яблоко приводят в движение шесть мышц, из которых четыре называются прямыми, а два косыми. В систему защиты глаза также принадлежат роговичный (прикосновение к роговице или попадания в глаз соринки) и зрачковый запирающие рефлексы.

Глаз или глазное яблоко, имеет шаровидную форму с диаметром до 24 мм и массой до 7-8 г.

Стенки глазного яблока образованы тремя оболочками: наружной (фиброзной), средней (сосудистой) и внутренней (сетчаткой).

Внешняя белая оболочка, или склера образована прочной непрозрачной соединительной тканью белого цвета, которая обеспечивает определенную форму глаза и защищает его внутренние образования. Передняя часть склеры переходит в прозрачную роговицу, которая защищает от повреждения внутренность глаза и пропускает в его середину свет. Роговица не содержит кровеносных сосудов, питается за счет межклеточной жидкости и имеет форму выпуклой линзы.

Под склерой находится средняя или сосудистая оболочка «имеющая толщину 0,2-0,4 мм и плотно пронизана большим количеством кровеносных сосудов. Функция сосудистой оболочки состоит в обеспечении питанием других оболочек и образований глаза. Эта оболочка в передней части переходит в радужку, имеющий центральный округлое отверстие (зрачок) и радужную оболочку, богатую пигмент меланин, от количества которого цвет радужки может быть от голубого до черного. В переднем отделе глазного яблока сосудистая оболочка переходит в вийчасте тело, содержащее ресничных мышц, который н вязаный с хрусталиком и регулирующая его кривизну. Диаметр зрачка может изменяться в зависимости от освещенности. Если вокруг больше света, то зрачок сужается, а когда меньше — она ​​расширяется и становится максимально расширенной в полной темноте. Диаметр зрачка изменяется рефлекторно (зрачковый рефлекс) благодаря сокращение не исполосованных мышц радужки, одни из которых иннервируются симпатичной (расширяют), а другие — парасимпатической (сужают) нервной системой.

Внутренняя оболочка глаза представлена ​​сетчаткой, толщина которой 0,1-0,2 мм. Эта оболочка состоит из многих (до 12) слоев различных по форме нервных клеток, которые, соединяясь между собой своими отростками, сплетают ажурную сетку (отсюда ее название). Различают следующие основные слои сетчатки:

Внешний пигментный слой (1), что образованный эпителием и содержит пигмент фуксин. Этот пигмент поглощает свет, проникающий в глаз и тем препятствует его отражению и рассеянию, а это способствует четкости зрительного восприятия. Отростки пигментных клеток также окружают фоторецепторы глаза, участвуя в их обмене веществ и в синтезе зрительных пигментов;

С физиологической точки зрения сетчатка является периферической частью зрительного анализатора, рецепторы которого (палочки и колбочки) именно и воспринимают световые образы.

Основная масса колбочек находится в центральной части сетчатки, образуя так называемую желтое пятно. Желтое пятно является местом наилучшего видение при дневном освещении и обеспечивает центральный зрение, а также восприятие световых волн разной длины, что является основой выделения (распознавания) цветов. Остальные сетчатки в основном представлена ​​палочками и способна воспринимать только черно-белые образы (в том числе в темноте), а также обусловливает периферическое зрение. С удалением от центра глаза количество колбочек уменьшается, а палочек возрастает. Место, где от сетчатки отходит зрительный нерв не содержит фоторецепторов, а потому и не воспринимает света и называется слепым пятном.

Ощущение света является процессом формирования субъективных образов, возникающих в результате воздействия электромагнитных световых волн длиной от 390 до 760 нм (1 нм, где нм — наномет составляет 10-9 метра) на рецепторные структуры зрительного анализатора. Из этого следует, что первым этапом в формировании светоощущение является трансформация энергии раздражителя в процесс нервного возбуждения. Это и происходит в сетчатой ​​оболочке глаза.

Каждый фоторецептор состоит из двух сегментов: внешнего, содержащей светочувствительные (светло-реактивный) пигмент, и внутреннего, где расположены органеллы клетки. В палочках содержится пигмент пурпурного цвета (родопсин), а в колбочках пигмент фиолетового цвета (йодопсин). Зрительные пигменты представляют собой высокомолекулярные соединения, состоящие из окисленного витамина А (ретиналя) и белка опсина. В темноте оба пигменты находятся в неактивной форме. Под действием квантов света пигменты мгновенно распадаются («выцветают») и переходят в активную ионную форму: ретиналь отщепляется от опсина. Результате фотохимических процессов в фоторецепторах глаза при воздействии света возникает рецепторный потенциал, основанный на гиперполяризации мембраны рецептора. Это отличительная особенность зрительных рецепторов, так как активация рецепторов других органов чувств чаще всего выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красных цветов рецепторный потенция п больше выражен у фоторецепторах центральной части сетчатки, а синего — в периферической. Синаптические окончания фоторецепторов конвертируют на биполярные нейроны сетчатки, которые являются первыми нейронами проводникового отдела зрительного анализатора. Аксоны биполярных клеток в свою очередь конвертируют на ганглиозные нейроны (второй нейрон). В результате на каждую ганглиозные клетки могут конвертировать около 140 палочек и 6 колбочек, При этом, чем ближе к желтого пятна, тем меньше фоторецепторов конвертирует на одну ганглиозных клеток. В области желтого пятна конвергенция почти не осуществляется и количество колбочек фактически равно количеству биполярных и ганглиозных нейронов. Именно это объясняет высокую остроту зрения в центральных отделах сетчатки.

Периферия сетчатки отличается большой чувствительностью к недостаточному света. Это, скорее всего, обусловлено тем, что до 600 палочек здесь конвертируют через биполярные нейроны на одну и ту же ганглиозных клеток. В результате сигналы от огромного количества палочек суммируются и вызывают более интенсивную стимуляцию биполярных нейронов.

В сетчатке, кроме вертикальных, существуют также латеральные нейронные связи. Латеральная взаимодействие рецепторов осуществляется горизонтальными клетками. Биполярные и ганглиозные нейроны взаимодействуют между собой за счет связей, образованных коллатералям дендритов и аксонов самих этих клеток, а также с помощью амакринових клеток.

Горизонтальные клетки сетчатки обеспечивают регуляцию передачи импульсов между фоторецепторами и биполярными нейронами, регулируя этим восприятие цветов, а также адаптацию глаза к различной степени освещенности. По характеру восприятия световых раздражений горизонтальные клетки делятся на два типа: 1 — тип, в котором потенциал возникает при действии любой волны спектра света, который воспринимает глаз, 2 -! тип (цветовой), в котором знак потенциала зависит от длины волны (например, красный свет дает деполяризацию, а синее — гиперполяризацию).

В темноте молекулы родопсина восстанавливаются сообщением витамина А с белком опсинов. Недостаток витамина Л нарушает образование родопсина и обуславливает резкое ухудшение сумеречного зрения (возникает куриная слепота) тогда как днем ​​зрение может оставаться нормальным. Колбочковых и палочковой светло-воспринимающие системы глаза обладают неодинаковой и спектральную чувствительность. Колбочки глаза, например, наиболее чувствительные к излучению с длиной волны 554 нм, а палочки — 513 нм. Это проявляется в изменении чувствительности глаза в дневное и сумеречное или ночное время. Например, в день в саду яркими кажутся плоды, имеющие желтое, оранжевое или красное окрашивание, тогда как ночью более различаются зеленые плоды.

По теории цветового зрения, которую впервые предложил М. В. Ломоносов (1756), в сетчатке глаза содержится 3виды колбочек, в каждой из которых есть особое вещество, чувствительное к волнам световых лучей определенной довжини1: одним из них присуща чувствительность к красному цвету, другим к зеленому, третьим — до фиолетового. В зрительном нерве являются соответственно 3 особые группы нервных волокон, каждые из которых проводят афферентные импульсы от одной из указанных групп колбочек. В обычных условиях лучи действуют не на одну группу колбочек, а одновременно на 2 или Из группы, при этом волны различной длины возбуждают их в разной степени, что обуславливает восприятие цветовых оттенков. Первичное различение цветов происходит в сетчатке, но окончательно ощущение воспринятого цвета формируется в высших зрительных центрах и, в определенной мере, является результатом предварительного обучения.

Иногда у человека частично или полностью нарушается восприятие цвета, что обуславливает цветовую слепоту. При полной цветовой слепоте человек видит все предметы окрашенными в серый цвет. Частичное нарушение цветового зрения получило название дальтонизма по имени английского химика Джон Дальтон, вернее Джон Долгой (1766-1844), который имел такое функциональное отклонения в состоянии своего зрения и первый его описал. Дальтоники, как правило, не различают красные и зеленые цвета. Дальтонизм является наследственной болезнью и чаще нарушения цветового зрения наблюдается у мужчин (6-8%), тогда как среди женщин это бывает всего в 0,4-0,5% случаев.

В состав внутреннего ядра глазного яблока входят: передняя камера глаза, задняя камера глаза, хрусталик, водянистая влага передней и задней камер глазного яблока и склисте тело.

Хрусталик прозрачен эластичным образованием, которое имеет форму двояковыпуклой линзы причем задняя поверхность более выпуклая, чем передняя. Хрусталик образован прозрачной бесцветной веществом, которое не имеет ни сосудов, ни нервов, а его питание происходит благодаря водянистой влаге камер глаза, 3 всех сторон хрусталик охвачен бесструктурной капсулой, своей экваториальной поверхностью образует реснитчатый поясок.

Реснитчатый поясок в свою очередь соединяется с реснитчатым телом с помощью тонких соединительнотканных волокон (циннова связь), фиксирующих хрусталик и своим внутренним концом вплетаются в капсулу хрусталика, а внешним — в вийчасте тело.

Важнейшей функцией хрусталика является преломление лучей света с целью их четкого фокусирования на поверхность сетчатки. Эта его способность связана с изменением кривизны (выпуклости) хрусталика, происходит вследствие работы ресничных (цилиарного) мышц. При сокращении этих мышц реснитчатый поясок расслабляется, выпуклость хрусталика увеличивается, соответственно увеличивается его заломлювальна сила, что нужно при рассматривании близко расположенных предметов. Когда ресничные мышцы расслабляются, что бывает при рассматривании далеко расположенных предметов, реснитчатый поясок натягивается, кривизна хрусталика уменьшается, он становится более уплощенным. Заломлювальна способность хрусталика способствует тому, что изображение предметов (около или далеко расположенных) падает точно на сетчатку. Это явление называется аккомодацией. С возрастом у человека аккомодация ослабляется из-за потери хрусталиком эластичности и способности менять свою форму. Снижение аккомодации называется пресбиопии и наблюдается после 40-45 лет.

Склисте тело занимает большую часть полости глазного яблока. Оно покрыто сверху тонкой прозрачной стекловидного перепонкой. Склисте тело состоит из белковой жидкости и нежных, переплетенных между собой волоконец. Передняя его поверхность вогнутая Й обращена к задней поверхности хрусталика, имеет форму ямки, в которой лежит задний полюс хрусталика. Большая же часть хрусталика прилегает к сетчатке глазного яблока и имеет выпуклую форму.

Передняя и задняя камеры глаза заполнены водянистой влагой, выделяемой ресничных отростков и радужки. Водянистая влага имеет незначительные заломлювальни свойства и основное ее назначение состоит в обеспечении роговицы и хрусталика кислородом, глюкозой и белками. Передняя камера глаза большая и находится между роговицей и радужкой, а задняя — между радужкой и хрусталиком.

Для выразительного видение предметов необходимо, чтобы лучи от всех точек объектов, рассматриваемых попадали на поверхность сетчатки, то есть были на ней сфокусированы. Совершенно очевидно, что для обеспечения такого фокусировки требуется определенная оптическая система, которая в каждом глазу представлена ​​следующими элементами: роговица — зрачок — передняя и задняя камеры глаза (заполнены водянистой влагой) — хрусталик — склисте тело. Каждое из указанных сред имеет свой показатель оптической силы относительно преломления лучей света, которая выражается в диоптриях. Одна диоптрия (Д) является оптической силой линзы с фокусным расстоянием 1 м. За счет постоянной оптической силы роговицы и переменной оптической силы хрусталика общая оптическая сила глаза может колебаться от 59 Д (при рассматривании далеких предметов) до 70,5 Д (при рассматривании близких предметов). При этом заломлювальна сила роговицы составляет 43,05 Д, а хрусталика — от 19,11 Д (при взгляде в даль) до 33,6 Д (для близкого видения).

Оптическая система функционально нормального глаза должна обеспечивать четкое изображение любого предмета , который проецируется на сетчатку глаза. После преломления световых лучей в хрусталике на сетчатке образуется зменшене1 и обратное изображение предмета. Ребенок в первые дни по рождению весь мир видит в перевернутом виде, стремится брать предметы по ту сторону, что противоположная нужной и только через несколько месяцев у него вырабатывается способность прямого видения, как и у взрослых. Это достигается с одной стороны за счет образования соответствующих условных рефлексов, а с другой-за счет свидетельства других анализаторов и постоянной проверки зрительных ощущений ежедневной практикой.

Для нормального глаза дальняя точка ясного видения лежит в неизмеримости. Далекие предметы здоровый глаз рассматривает без напряжения аккомодации, т.е. без сокращения реснитчатого мышцы. Ближайшая точка ясного видения у взрослого) ‘человека находится на расстоянии примерно 10 см от глаза. Это значит, что предметы, которые расположены ближе 10 см нельзя четко увидеть даже при максимальном сокращении реснитчатого мышцы. Ближайшая точка ясного видения значительно меняется с возрастом: у и 0 лет она находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет — 11 см, в 40 лет — 17 см, в 50-60 лет — 50 см, в 60-70 лет — 80 см.

Способность глаза при покое аккомодации, то есть когда хрусталик максимально уплощен, называется рефракцией ‘. Различают 3 вида рефракции глаза: нормальная (пропорциональная), дальнозоркие (80-90% новорожденных детей имеют дальнозоркие рефракцию) и близорукая. В глазу с нормальной рефракцией параллельные лучи, идущие от предметов, пересекаются на сетчатке, что обеспечивает четкое видение предмета.

Рассматривая предмет, находящийся прямо перед глазами, мы видим его отчетливо. Это происходит потому, что лучи света попадают на желтое пятно. Если же изображение предмета, находящегося на небольшом рас стоянии (около 12 см), попадает на слепое пятно, то мы его не видим, так как там нет светочувствительных рецепторов.

Зрачок, хрусталик и стекловидное тело служат для проведения и фокусировки световых лучей. Глазодвигательные мышцы изменяют положение глазного яблока таким образом, чтобы изображение предмета проецировалось именно на сетчатку, а не впереди или позади ее.

Зрение имеет большое значение в жизни человека. С помощью зрения человек познает окружающий мир, письменную речь обогащающую его мыслями и опытом других людей.

Зрительный анализатор контролирует двигательную и трудовую деятельность человека, помогает ориентироваться в окружающем пространстве. С помощью зрения артист балета оценивает расстояние и направление движения, взаимное расположение партнеров в дуэтном танце и массовых сценах. Зрительно он «держит точку» при вращении.

При дефектах зрения — близорукости и дальнозоркости — затрудняется разучивание новых движений и снижается техника выполнения уже заученных движений, Поэтому необходимо следить за правильной позой во время чтения и письма, не читать лежа или в движущемся транспорте, так как это может вызвать близорукость.

«Анатомия и физиология человека», М.С.Миловзорова

Периферической частью зрительного анализатора является сетчатка. Проводящая часть — это зрительный нерв, центральная — зрительная зона коры полушарий. Анализ освещенности, цвета, формы и деталей строения предмета начинается в сетчатке. В определении расстояния до предмета и между предметами, направления движения и изменения движеня предметов вместе со зрительным участвует и двигательный анализатор. Вся эта информация передается в…

Во внутреннем ухе, кроме улитки, находится вестибулярный аппарат — орган равновесия. Он состоит из преддверия и трех полукружных каналов. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и сообщаются с преддверием. В нем имеются две полости с волосковыми чувствительными клетками. Это и есть рецепторы. Над рецепторными клетками находится студенистая масса, в которой имеются отолиты — кристаллики…

Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение боли, что вызывает защитную реакцию организма. Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью осязания мы определяем не только, гладкая или шероховатая поверхность у предметов,…

Вкусовой анализатор Вкусовые ощущения способствуют поддержанию постоянства химического состава организма человека. От вкуса, как и от запаха, зависит, будет съедена пища или нет. Периферический отдел вкусового анализатора находится на поверхности языка. Здесь расположены вкусовые сосочки, содержащие рецепторы, анализирующие вкусовые раздражители. Вкусовые рецепторы возбуждаются только растворимыми в воде химическими веществами. Нерастворимые в воде вещества не создают…

Двигательный анализатор является древнейшим. В процессе исторического развития животного мира нервные и мышечные клетки образовались почти одновременно. Впоследствии у животных развились нервная и мышечная системы, функционально связанные друг с другом. Строение двигательного анализатора Периферической частью двигательного анализатора служат внутренние рецепторы органов движения — мышц, суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору…

Зрительный анализатор включает:

периферический отдел: рецепторы сетчатки глаза;

проводниковый отдел: зрительный нерв;

центральный отдел: затылочная доля коры больших полушарий.

Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

Строения глаза

Глаз состоит из глазного яблока и вспомогательного аппарата .

Вспомогательный аппарат глаза

брови - защита от пота;

ресницы - защита от пыли;

веки - механическая защита и поддержание влажности;

слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

Глазное яблоко

Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

Оно расположено на жировой подушке в переднем отделе глазницы.

Глаз имеет три оболочки:

белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;

сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;

сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

Стекловидное тело - полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.

Сетчатка (ретина) - рецепторный аппарат глаза.

Строение сетчатки

Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.

вторые - биполярные нейроны;

третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

Светочувствительные элементы сетчатки:

палочки - воспринимают яркость;

колбочки - воспринимают цвет.

Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называетсядиском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

Мышцы глаза

глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;

мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.

мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

Проводниковый отдел

Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ). После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

Центральный отдел

Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.